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Admin
• Keep an eye on Piazza for homework release (probably later this week) 

• Next class will be in hybrid mode, in DMP 101

• Those not officially enrolled are still totally welcome

• Should be plenty of space


• Will continue to livestream + record

• Probably on Zoom (same link)

• Will announce by this weekend on Piazza if something else


• I’ll test out the setup in this room beforehand

• but still probably higher odds of glitches than  

• Office hours:

• Tuesday 10-11 still Zoom-only

• Thursday 4-5, I’ll be in my office, ICCS X563 (and also on Zoom)
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Recap: Rademacher Complexity
ℜ̂S(#) = $σ [ sup

g∈#

1
n

n

∑
i=1

σig(zi)] = $σ [ sup
g∈#

1
n σ⊤gS]

gS = (g(z1), …, g(zn))S = (z1, …, zn) ∈ 'n

σ ∼ Radn = Uniform({−1,1})n

ℜn(#) = $S∼*n[ ̂ℜS(#)]

# ∋ g : ' → ℝ
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Massart’s lemma: for , if ,     


so , where  is the growth function

0 ⊂ ℝn max
a∈0

∥a∥ ≤ r $σ[ max
a∈0

1
n σ⊤a] ≤ 1

n r 2 log |0|

ℜ̂S(ℋ) ≤ 2
n log τℋ(n) τℋ ≤ (en/VCdim(ℋ))VCdim(ℋ)
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The Other Rademacher Complexity
ℜ̂S(#) = $σ [ sup

g∈#

1
n

n

∑
i=1

σig(zi)] = $σ [ sup
g∈#

1
n σ⊤gS]

gS = (g(z1), …, g(zn))S = (z1, …, zn) ∈ 'n

σ ∼ Radn = Uniform({−1,1})n
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: ~“how big can  be?”ℜ̂S(#) LS1
− LS2

: “how well can classifiers in  fit (or opposite-fit) random labels on sets from  of size ?”ℜn(ℋ) ℋ * n

# ∋ g : ' → ℝ

Theorem: if  maps to ,   # [0,B] sup
g∈#

$[g(z)]− 1
n

n

∑
i=1

g(zi) ≤ 2ℜn(#) + B2

2n
log 1

δ

||′ 

′ ′ 
||

′ 

′ 

′ | | when # = {z ↦ ℓ(h, z) : h ∈ ℋ}
if  outputs in , h {−1,1} ℜ̂S(#) 1

2 ℜ̂S(ℋ)
Massart’s lemma: for , if ,     


so , where  is the growth function

0 ⊂ ℝn max
a∈0

∥a∥ ≤ r $σ[ max
a∈0

1
n σ⊤a] ≤ 1

n r 2 log |0|

ℜ̂S(ℋ) ≤ 2
n log τℋ(n) τℋ ≤ (en/VCdim(ℋ))VCdim(ℋ)

| | 2

2

≤ +1/(2 n)

| |

′ 

′ 

 notation here isn’t standard: 
most people use one or the other
ℜ̂′ S

apply old lemma to 0 ∪ (−0)

′ ′ 
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A Tale of Two Complexities
ℜ̂S(#) = $σ [ sup

g∈#

1
n σ⊤gS] ℜ̂′ S(#) = $σ [ sup

g∈#

1
n |σ⊤gS|]
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Theorems: if  maps to ,





# [0,B]

sup
g∈#

[$[g(z)]− 1
n

n

∑
i=1

g(zi)] ≤ 2ℜn(#) + B2

2n log 1
δ

sup
g∈#

$[g(z)]− 1
n

n

∑
i=1

g(zi) ≤ 2ℜ′ n(#) + B2

2n log 1
δ
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Theorems: if  maps to ,





# [0,B]

sup
g∈#

[$[g(z)]− 1
n

n

∑
i=1

g(zi)] ≤ 2ℜn(#) + B2

2n log 1
δ

sup
g∈#

$[g(z)]− 1
n

n

∑
i=1

g(zi) ≤ 2ℜ′ n(#) + B2

2n log 1
δ

So, for 0-1 loss,  outputting in :




ℋ {−1,1}
sup
h∈ℋ

[L*(h) − LS(h)] ≤ ℜn(ℋ) + 1
2n log 1

δ

sup
h∈ℋ

L*(h) − LS(h) ≤ ℜ′ n(ℋ) + 1
n (1 + 1

2 log 1
δ )
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So, for 0-1 loss,  outputting in :




ℋ {−1,1}
sup
h∈ℋ

[L*(h) − LS(h)] ≤ ℜn(ℋ) + 1
2n log 1

δ

sup
h∈ℋ

L*(h) − LS(h) ≤ ℜ′ n(ℋ) + 1
n (1 + 1

2 log 1
δ )

if we just want something,

then first bound is strictly smaller (same big-O rate);


but need the second one to prove “Fundamental Theorem of Statistical Learning”

L*(h) ≤
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• Let  be CDF of some random variable F(t) = Pr(X ≤ t) X

•  is empirical CDF of samplesFn(t) = 1
n

n

∑
i=1

9(xi ≤ t)

from Wikipedia on DKW inequality

Glivenko-Cantelli / DKW inequality

7
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sup

t
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• ; known that  is sharpsup
t

|F(t) − Fn(t)| ≤ 8
n log(2n + 2) + 1
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from Wikipedia on DKW inequality

Glivenko-Cantelli / DKW inequality

7

https://en.wikipedia.org/wiki/Dvoretzky%E2%80%93Kiefer%E2%80%93Wolfowitz_inequality


(pause)

8



Lipschitz losses
• Recall a -Lipschitz function  has  ρ ϕ ∥ϕ(x) − ϕ(x′ )∥ ≤ ρ∥x − x′ ∥

• Contraction Lemma (aka Talagrand’s Lemma):  
Let  for , . 
If the  are each -Lipschitz, then . 

ϕ ∘ ℋ = {(ϕ1(h(z1)), …, ϕn(h(zn))) : h ∈ ℋ} ϕi : ℝ → ℝ i ∈ [n]
ϕi ρ ℜ̂S(ϕ ∘ ℋ) ≤ ρ ℜ̂S(ℋ)

9
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• Recall a -Lipschitz function  has  ρ ϕ ∥ϕ(x) − ϕ(x′ )∥ ≤ ρ∥x − x′ ∥
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Let  for , . 
If the  are each -Lipschitz, then . 

ϕ ∘ ℋ = {(ϕ1(h(z1)), …, ϕn(h(zn))) : h ∈ ℋ} ϕi : ℝ → ℝ i ∈ [n]
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Lipschitz losses
• Recall a -Lipschitz function  has  ρ ϕ ∥ϕ(x) − ϕ(x′ )∥ ≤ ρ∥x − x′ ∥

• Contraction Lemma (aka Talagrand’s Lemma):  
Let  for , . 
If the  are each -Lipschitz, then . 

ϕ ∘ ℋ = {(ϕ1(h(z1)), …, ϕn(h(zn))) : h ∈ ℋ} ϕi : ℝ → ℝ i ∈ [n]
ϕi ρ ℜ̂S(ϕ ∘ ℋ) ≤ ρ ℜ̂S(ℋ)

• If also , then .ϕi(0) = 0 ℜ̂′ S(ϕ ∘ ℋ) ≤ 2 ρ ℜ̂′ S(ℋ)
• If not: let . 

Then . 
ϕ(0) = (ϕ1(0), …, ϕn(0))

ℜ̂′ S(ϕ ∘ ℋ) ≤ 2 ρ ℜ̂′ S(ℋ) + ℜ̂′ S ({ϕ(0)})
• Proof is kind of annoying; 

MRT Lemma 5.7 or SSBD Lemma 26.9 for  (manageable), 
really long case analysis for  (Theorem 4.12 of Ledoux & Talagrand [log in with UBC])

ℜ̂S
ℜ̂′ S
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Bounded regression bounds
• In (scalar) regression: , use  instead of to a class labely ∈ ℝ h : < → ℝ
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p = 2

• Assumption for today:  and  are each bounded in the interval y h [A, A + B]
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Bounded regression bounds
• In (scalar) regression: , use  instead of to a class labely ∈ ℝ h : < → ℝ
• Usual loss: , usually for , sometimes 

• Get “partial credit” for being closer

• Linear regression (ordinary least squares) uses  

ℓ(h, (x, y)) = (h(x) − y)p p = 2 p = 1

p = 2

• Assumption for today:  and  are each bounded in the interval y h [A, A + B]
• Then  is -Lipschitz on relevant domain̂y ↦ | ̂y − y|p (pBp−1)
• So  has # = {(x, y) ↦ |h(x) − y|p : h ∈ ℋ} ℜ̂S(#) ≤ pBp−1ℜ̂S(ℋ)
• Plugging into our theorem, since loss is in : [0,Bp]

sup
h∈ℋ

[L*(h) − LS(h)] ≤ pBp−1ℜn(ℋ) + Bp 1
2n log 1

δ
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 of linear functionsℜ
• If ℋ = {x ↦ w⊤x : ∥w∥ ≤ B}
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Summary

• Sorted out the two definitions of Rademacher

• One-sided is enough for upper bounds on 

• Need two-sided for uniform conv property, our not-quite-optimal DKW inequality  

• Rademacher complexity of linear functions

• Contraction lemma

• Easy upper bounds for bounded regression problems with bounded data /  

• Next time: but how do we pick an  (e.g. a bound for )???

L*

∥w∥

ℋ ∥w∥
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