
Even More Rademacher
CPSC 532S: Modern Statistical Learning Theory

2 February 2022

cs.ubc.ca/~dsuth/532S/22/

1

https://www.cs.ubc.ca/~dsuth/532S/22/

Admin
• Keep an eye on Piazza for homework release (probably later this week) 

• Next class will be in hybrid mode, in DMP 101

• Those not officially enrolled are still totally welcome

• Should be plenty of space

• Will continue to livestream + record

• Probably on Zoom (same link)

• Will announce by this weekend on Piazza if something else

• I’ll test out the setup in this room beforehand

• but still probably higher odds of glitches than  

• Office hours:

• Tuesday 10-11 still Zoom-only

• Thursday 4-5, I’ll be in my office, ICCS X563 (and also on Zoom)

2

Recap: Rademacher Complexity
ℜ̂S(#) = $σ [sup

g∈#

1
n

n

∑
i=1

σig(zi)] = $σ [sup
g∈#

1
n σ⊤gS]

gS = (g(z1), …, g(zn))S = (z1, …, zn) ∈ 'n

σ ∼ Radn = Uniform({−1,1})n

ℜn(#) = $S∼*n[̂ℜS(#)]

∋ g : ' → ℝ

3

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Recap: Rademacher Complexity
ℜ̂S(#) = $σ [sup

g∈#

1
n

n

∑
i=1

σig(zi)] = $σ [sup
g∈#

1
n σ⊤gS]

gS = (g(z1), …, g(zn))S = (z1, …, zn) ∈ 'n

σ ∼ Radn = Uniform({−1,1})n

ℜn(#) = $S∼*n[̂ℜS(#)]
: “how well can classifiers in fit random labels on ?”ℜ̂S(ℋ) ℋ S
: “how well can classifiers in fit random labels on sets from of size ?”ℜn(ℋ) ℋ * n

∋ g : ' → ℝ

3

Recap: Rademacher Complexity
ℜ̂S(#) = $σ [sup

g∈#

1
n

n

∑
i=1

σig(zi)] = $σ [sup
g∈#

1
n σ⊤gS]

gS = (g(z1), …, g(zn))S = (z1, …, zn) ∈ 'n

σ ∼ Radn = Uniform({−1,1})n

ℜn(#) = $S∼*n[̂ℜS(#)]
: “how well can classifiers in fit random labels on ?”ℜ̂S(ℋ) ℋ S

: ~“how big can be?”ℜ̂S(#) LS1
− LS2

when # = {z ↦ ℓ(h, z) : h ∈ ℋ}
: “how well can classifiers in fit random labels on sets from of size ?”ℜn(ℋ) ℋ * n

∋ g : ' → ℝ

if outputs in , h {−1,1} ℜ̂S(#) = 1
2 ℜ̂S(ℋ)

3

Recap: Rademacher Complexity
ℜ̂S(#) = $σ [sup

g∈#

1
n

n

∑
i=1

σig(zi)] = $σ [sup
g∈#

1
n σ⊤gS]

gS = (g(z1), …, g(zn))S = (z1, …, zn) ∈ 'n

σ ∼ Radn = Uniform({−1,1})n

ℜn(#) = $S∼*n[̂ℜS(#)]
: “how well can classifiers in fit random labels on ?”ℜ̂S(ℋ) ℋ S

: ~“how big can be?”ℜ̂S(#) LS1
− LS2

when # = {z ↦ ℓ(h, z) : h ∈ ℋ}
: “how well can classifiers in fit random labels on sets from of size ?”ℜn(ℋ) ℋ * n

∋ g : ' → ℝ

if outputs in , h {−1,1} ℜ̂S(#) = 1
2 ℜ̂S(ℋ)

Massart’s lemma: for , if ,

so , where is the growth function

0 ⊂ ℝn max
a∈0

∥a∥ ≤ r $σ[max
a∈0

1
n σ⊤a] ≤ 1

n r 2 log |0|

ℜ̂S(ℋ) ≤ 2
n log τℋ(n) τℋ ≤ (en/VCdim(ℋ))VCdim(ℋ)

3

Recap: Rademacher Complexity
ℜ̂S(#) = $σ [sup

g∈#

1
n

n

∑
i=1

σig(zi)] = $σ [sup
g∈#

1
n σ⊤gS]

gS = (g(z1), …, g(zn))S = (z1, …, zn) ∈ 'n

σ ∼ Radn = Uniform({−1,1})n

ℜn(#) = $S∼*n[̂ℜS(#)]
: “how well can classifiers in fit random labels on ?”ℜ̂S(ℋ) ℋ S

: ~“how big can be?”ℜ̂S(#) LS1
− LS2

when # = {z ↦ ℓ(h, z) : h ∈ ℋ}
: “how well can classifiers in fit random labels on sets from of size ?”ℜn(ℋ) ℋ * n

∋ g : ' → ℝ

if outputs in , h {−1,1} ℜ̂S(#) = 1
2 ℜ̂S(ℋ)

Massart’s lemma: for , if ,

so , where is the growth function

0 ⊂ ℝn max
a∈0

∥a∥ ≤ r $σ[max
a∈0

1
n σ⊤a] ≤ 1

n r 2 log |0|

ℜ̂S(ℋ) ≤ 2
n log τℋ(n) τℋ ≤ (en/VCdim(ℋ))VCdim(ℋ)

Theorem: if maps to , # [0,B] sup
g∈#

[$[g(z)]− 1
n

n

∑
i=1

g(zi)] ≤ 2ℜn(#) + B2

2n
log 1

δ
3

The Other Rademacher Complexity
ℜ̂S(#) = $σ [sup

g∈#

1
n

n

∑
i=1

σig(zi)] = $σ [sup
g∈#

1
n σ⊤gS]

gS = (g(z1), …, g(zn))S = (z1, …, zn) ∈ 'n

σ ∼ Radn = Uniform({−1,1})n

ℜn(#) = $S∼*n[̂ℜS(#)]
: “how well can classifiers in fit (or opposite-fit) random labels on ?”ℜ̂S(ℋ) ℋ S

: ~“how big can be?”ℜ̂S(#) LS1
− LS2

: “how well can classifiers in fit (or opposite-fit) random labels on sets from of size ?”ℜn(ℋ) ℋ * n

∋ g : ' → ℝ

Theorem: if maps to , # [0,B] sup
g∈#

$[g(z)]− 1
n

n

∑
i=1

g(zi) ≤ 2ℜn(#) + B2

2n
log 1

δ

||′

′ ′
||

′

′

′ | | when # = {z ↦ ℓ(h, z) : h ∈ ℋ}
if outputs in , h {−1,1} ℜ̂S(#) 1

2 ℜ̂S(ℋ)
Massart’s lemma: for , if ,

so , where is the growth function

0 ⊂ ℝn max
a∈0

∥a∥ ≤ r $σ[max
a∈0

1
n σ⊤a] ≤ 1

n r 2 log |0|

ℜ̂S(ℋ) ≤ 2
n log τℋ(n) τℋ ≤ (en/VCdim(ℋ))VCdim(ℋ)

| | 2

2

≤ +1/(2 n)

| |

′

′

 notation here isn’t standard: 
most people use one or the other
ℜ̂′ S

apply old lemma to 0 ∪ (−0)

′ ′

4

A Tale of Two Complexities
ℜ̂S(#) = $σ [sup

g∈#

1
n σ⊤gS] ℜ̂′ S(#) = $σ [sup

g∈#

1
n |σ⊤gS|]

5

A Tale of Two Complexities
ℜ̂S(#) = $σ [sup

g∈#

1
n σ⊤gS] ℜ̂′ S(#) = $σ [sup

g∈#

1
n |σ⊤gS|]

ℜ̂S(#) ≤ ℜ̂S(# ∪ (−#)) = ℜ̂′ S(#) (so if is already symmetric, they’re the same)#

5

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

A Tale of Two Complexities
ℜ̂S(#) = $σ [sup

g∈#

1
n σ⊤gS] ℜ̂′ S(#) = $σ [sup

g∈#

1
n |σ⊤gS|]

ℜ̂S(#) ≤ ℜ̂S(# ∪ (−#)) = ℜ̂′ S(#) (so if is already symmetric, they’re the same)#

ℜ̂S(c#) = |c|ℜ̂S(#) ℜ̂′ S(c#) = |c|ℜ̂′ S(#)

5

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

A Tale of Two Complexities
ℜ̂S(#) = $σ [sup

g∈#

1
n σ⊤gS] ℜ̂′ S(#) = $σ [sup

g∈#

1
n |σ⊤gS|]

ℜ̂S(#) ≤ ℜ̂S(# ∪ (−#)) = ℜ̂′ S(#) (so if is already symmetric, they’re the same)#

ℜ̂S({g}) = $σ [1
n σ⊤gS] = 0

ℜ̂S(c#) = |c|ℜ̂S(#) ℜ̂′ S(c#) = |c|ℜ̂′ S(#)

5

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

A Tale of Two Complexities
ℜ̂S(#) = $σ [sup

g∈#

1
n σ⊤gS] ℜ̂′ S(#) = $σ [sup

g∈#

1
n |σ⊤gS|]

ℜ̂S(#) ≤ ℜ̂S(# ∪ (−#)) = ℜ̂′ S(#) (so if is already symmetric, they’re the same)#

ℜ̂S({g}) = $σ [1
n σ⊤gS] = 0 ℜ̂′ S({g}) = $σ [1

n |σ⊤gS|] > 0 if gS ≠ 0

ℜ̂S(c#) = |c|ℜ̂S(#) ℜ̂′ S(c#) = |c|ℜ̂′ S(#)

5

A Tale of Two Complexities
ℜ̂S(#) = $σ [sup

g∈#

1
n σ⊤gS] ℜ̂′ S(#) = $σ [sup

g∈#

1
n |σ⊤gS|]

ℜ̂S(#) ≤ ℜ̂S(# ∪ (−#)) = ℜ̂′ S(#) (so if is already symmetric, they’re the same)#

ℜ̂S({g}) = $σ [1
n σ⊤gS] = 0 ℜ̂′ S({g}) = $σ [1

n |σ⊤gS|] > 0 if gS ≠ 0
ℜ̂′ S({c1}) = |c|$σ [1

n |σ⊤1|] ≤ |c|
n

$σ [|σ⊤1|2] = |c|
n ∑

i,j
$σiσj = |c|

n

ℜ̂S(c#) = |c|ℜ̂S(#) ℜ̂′ S(c#) = |c|ℜ̂′ S(#)

5

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

A Tale of Two Complexities
ℜ̂S(#) = $σ [sup

g∈#

1
n σ⊤gS] ℜ̂′ S(#) = $σ [sup

g∈#

1
n |σ⊤gS|]

ℜ̂S(#) ≤ ℜ̂S(# ∪ (−#)) = ℜ̂′ S(#) (so if is already symmetric, they’re the same)#

ℜ̂S({g}) = $σ [1
n σ⊤gS] = 0 ℜ̂′ S({g}) = $σ [1

n |σ⊤gS|] > 0 if gS ≠ 0
ℜ̂′ S({c1}) = |c|$σ [1

n |σ⊤1|] ≤ |c|
n

$σ [|σ⊤1|2] = |c|
n ∑

i,j
$σiσj = |c|

n

ℜ̂S(ℱ + #) = ℜ̂S(ℱ) + ℜ̂S(#) ℜ̂′ S(ℱ + #) ≤ ℜ̂′ S(ℱ) + ℜ̂′ S(#)

ℜ̂S(c#) = |c|ℜ̂S(#) ℜ̂′ S(c#) = |c|ℜ̂′ S(#)

5

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

A Tale of Two Complexities
ℜ̂S(#) = $σ [sup

g∈#

1
n σ⊤gS] ℜ̂′ S(#) = $σ [sup

g∈#

1
n |σ⊤gS|]

ℜ̂S(#) ≤ ℜ̂S(# ∪ (−#)) = ℜ̂′ S(#) (so if is already symmetric, they’re the same)#

ℜ̂S({g}) = $σ [1
n σ⊤gS] = 0 ℜ̂′ S({g}) = $σ [1

n |σ⊤gS|] > 0 if gS ≠ 0
ℜ̂′ S({c1}) = |c|$σ [1

n |σ⊤1|] ≤ |c|
n

$σ [|σ⊤1|2] = |c|
n ∑

i,j
$σiσj = |c|

n

ℜ̂S(ℱ + #) = ℜ̂S(ℱ) + ℜ̂S(#) ℜ̂′ S(ℱ + #) ≤ ℜ̂′ S(ℱ) + ℜ̂′ S(#)

ℜ̂S(c#) = |c|ℜ̂S(#) ℜ̂′ S(c#) = |c|ℜ̂′ S(#)

ℜ̂S(a# + b) = |a|ℜ̂S(#) ℜ̂′ S(a# + b) ≤ |a|ℜ̂′ S(#) + |b|

n

5

A Tale of Two Complexities
ℜ̂S(#) = $σ [sup

g∈#

1
n σ⊤gS] ℜ̂′ S(#) = $σ [sup

g∈#

1
n |σ⊤gS|]

ℜ̂S(#) ≤ ℜ̂S(# ∪ (−#)) = ℜ̂′ S(#) (so if is already symmetric, they’re the same)#

ℜ̂S({g}) = $σ [1
n σ⊤gS] = 0 ℜ̂′ S({g}) = $σ [1

n |σ⊤gS|] > 0 if gS ≠ 0
ℜ̂′ S({c1}) = |c|$σ [1

n |σ⊤1|] ≤ |c|
n

$σ [|σ⊤1|2] = |c|
n ∑

i,j
$σiσj = |c|

n

ℜ̂S(ℱ + #) = ℜ̂S(ℱ) + ℜ̂S(#) ℜ̂′ S(ℱ + #) ≤ ℜ̂′ S(ℱ) + ℜ̂′ S(#)

ℜ̂S(c#) = |c|ℜ̂S(#) ℜ̂′ S(c#) = |c|ℜ̂′ S(#)

ℜ̂S(a# + b) = |a|ℜ̂S(#) ℜ̂′ S(a# + b) ≤ |a|ℜ̂′ S(#) + |b|

n
so ℜ̂S (1

2 (yS ∘ ℋ)+ 1
2) = 1

2 ℜ̂S(ℋ)
5

A Tale of Two Complexities
ℜ̂S(#) = $σ [sup

g∈#

1
n σ⊤gS] ℜ̂′ S(#) = $σ [sup

g∈#

1
n |σ⊤gS|]

ℜ̂S(#) ≤ ℜ̂S(# ∪ (−#)) = ℜ̂′ S(#) (so if is already symmetric, they’re the same)#

ℜ̂S({g}) = $σ [1
n σ⊤gS] = 0 ℜ̂′ S({g}) = $σ [1

n |σ⊤gS|] > 0 if gS ≠ 0
ℜ̂′ S({c1}) = |c|$σ [1

n |σ⊤1|] ≤ |c|
n

$σ [|σ⊤1|2] = |c|
n ∑

i,j
$σiσj = |c|

n

ℜ̂S(ℱ + #) = ℜ̂S(ℱ) + ℜ̂S(#) ℜ̂′ S(ℱ + #) ≤ ℜ̂′ S(ℱ) + ℜ̂′ S(#)

ℜ̂S(c#) = |c|ℜ̂S(#) ℜ̂′ S(c#) = |c|ℜ̂′ S(#)

ℜ̂S(a# + b) = |a|ℜ̂S(#) ℜ̂′ S(a# + b) ≤ |a|ℜ̂′ S(#) + |b|

n
so ℜ̂S (1

2 (yS ∘ ℋ)+ 1
2) = 1

2 ℜ̂S(ℋ) so ℜ̂′ S (1
2 (yS ∘ ℋ)+ 1

2) ≤ 1
2 ℜ̂′ S(ℋ)+ 1

2 n5

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Theorems: if maps to ,

[0,B]

sup
g∈#

[$[g(z)]− 1
n

n

∑
i=1

g(zi)] ≤ 2ℜn(#) + B2

2n log 1
δ

sup
g∈#

$[g(z)]− 1
n

n

∑
i=1

g(zi) ≤ 2ℜ′ n(#) + B2

2n log 1
δ

6

Theorems: if maps to ,

[0,B]

sup
g∈#

[$[g(z)]− 1
n

n

∑
i=1

g(zi)] ≤ 2ℜn(#) + B2

2n log 1
δ

sup
g∈#

$[g(z)]− 1
n

n

∑
i=1

g(zi) ≤ 2ℜ′ n(#) + B2

2n log 1
δ

So, for 0-1 loss, outputting in :

ℋ {−1,1}
sup
h∈ℋ

[L*(h) − LS(h)] ≤ ℜn(ℋ) + 1
2n log 1

δ

sup
h∈ℋ

L*(h) − LS(h) ≤ ℜ′ n(ℋ) + 1
n (1 + 1

2 log 1
δ)

6

Theorems: if maps to ,

[0,B]

sup
g∈#

[$[g(z)]− 1
n

n

∑
i=1

g(zi)] ≤ 2ℜn(#) + B2

2n log 1
δ

sup
g∈#

$[g(z)]− 1
n

n

∑
i=1

g(zi) ≤ 2ℜ′ n(#) + B2

2n log 1
δ

So, for 0-1 loss, outputting in :

ℋ {−1,1}
sup
h∈ℋ

[L*(h) − LS(h)] ≤ ℜn(ℋ) + 1
2n log 1

δ

sup
h∈ℋ

L*(h) − LS(h) ≤ ℜ′ n(ℋ) + 1
n (1 + 1

2 log 1
δ)

if we just want something,

then first bound is strictly smaller (same big-O rate);

but need the second one to prove “Fundamental Theorem of Statistical Learning”

L*(h) ≤

6

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

• Let be CDF of some random variable F(t) = Pr(X ≤ t) X

• is empirical CDF of samplesFn(t) = 1
n

n

∑
i=1

9(xi ≤ t)

from Wikipedia on DKW inequality

Glivenko-Cantelli / DKW inequality

7

https://en.wikipedia.org/wiki/Dvoretzky%E2%80%93Kiefer%E2%80%93Wolfowitz_inequality

• Let be CDF of some random variable F(t) = Pr(X ≤ t) X

• is empirical CDF of samplesFn(t) = 1
n

n

∑
i=1

9(xi ≤ t)

• Worst-case error of is, letting , Fn # = {x ↦ 9(x ≤ t) : t ∈ ℝ}
sup

t
|F(t) − Fn(t)| ≤ 2ℜ̂′ S(#) + 1

2n log 1
δ from Wikipedia on DKW inequality

Glivenko-Cantelli / DKW inequality

7

https://en.wikipedia.org/wiki/Dvoretzky%E2%80%93Kiefer%E2%80%93Wolfowitz_inequality

• Let be CDF of some random variable F(t) = Pr(X ≤ t) X

• is empirical CDF of samplesFn(t) = 1
n

n

∑
i=1

9(xi ≤ t)

• Worst-case error of is, letting , Fn # = {x ↦ 9(x ≤ t) : t ∈ ℝ}
sup

t
|F(t) − Fn(t)| ≤ 2ℜ̂′ S(#) + 1

2n log 1
δ

• The behaviour on is simple: S |#S| = n + 1
from Wikipedia on DKW inequality

Glivenko-Cantelli / DKW inequality

7

https://en.wikipedia.org/wiki/Dvoretzky%E2%80%93Kiefer%E2%80%93Wolfowitz_inequality

• Let be CDF of some random variable F(t) = Pr(X ≤ t) X

• is empirical CDF of samplesFn(t) = 1
n

n

∑
i=1

9(xi ≤ t)

• Worst-case error of is, letting , Fn # = {x ↦ 9(x ≤ t) : t ∈ ℝ}
sup

t
|F(t) − Fn(t)| ≤ 2ℜ̂′ S(#) + 1

2n log 1
δ

• The behaviour on is simple: S |#S| = n + 1

• Plugging in version of Massart’s lemma, ℜ̂′ S ℜ̂′ S(#) ≤ 2
n log(2(n + 1))

from Wikipedia on DKW inequality

Glivenko-Cantelli / DKW inequality

7

https://en.wikipedia.org/wiki/Dvoretzky%E2%80%93Kiefer%E2%80%93Wolfowitz_inequality

• Let be CDF of some random variable F(t) = Pr(X ≤ t) X

• is empirical CDF of samplesFn(t) = 1
n

n

∑
i=1

9(xi ≤ t)

• Worst-case error of is, letting , Fn # = {x ↦ 9(x ≤ t) : t ∈ ℝ}
sup

t
|F(t) − Fn(t)| ≤ 2ℜ̂′ S(#) + 1

2n log 1
δ

• The behaviour on is simple: S |#S| = n + 1

• Plugging in version of Massart’s lemma, ℜ̂′ S ℜ̂′ S(#) ≤ 2
n log(2(n + 1))

• ; known that is sharpsup
t

|F(t) − Fn(t)| ≤ 8
n log(2n + 2) + 1

2n log 1
δ

1
2n log 2

δ

from Wikipedia on DKW inequality

Glivenko-Cantelli / DKW inequality

7

https://en.wikipedia.org/wiki/Dvoretzky%E2%80%93Kiefer%E2%80%93Wolfowitz_inequality

• Let be CDF of some random variable F(t) = Pr(X ≤ t) X

• is empirical CDF of samplesFn(t) = 1
n

n

∑
i=1

9(xi ≤ t)

• Worst-case error of is, letting , Fn # = {x ↦ 9(x ≤ t) : t ∈ ℝ}
sup

t
|F(t) − Fn(t)| ≤ 2ℜ̂′ S(#) + 1

2n log 1
δ

• The behaviour on is simple: S |#S| = n + 1

• Plugging in version of Massart’s lemma, ℜ̂′ S ℜ̂′ S(#) ≤ 2
n log(2(n + 1))

• ; known that is sharpsup
t

|F(t) − Fn(t)| ≤ 8
n log(2n + 2) + 1

2n log 1
δ

1
2n log 2

δ

• For any fixed , as ε Pr(sup
t

|F(t) − Fn(t)| ≥ ε) → 0 n → ∞

from Wikipedia on DKW inequality

Glivenko-Cantelli / DKW inequality

7

https://en.wikipedia.org/wiki/Dvoretzky%E2%80%93Kiefer%E2%80%93Wolfowitz_inequality

(pause)

8

Lipschitz losses
• Recall a -Lipschitz function has  ρ ϕ ∥ϕ(x) − ϕ(x′)∥ ≤ ρ∥x − x′ ∥

• Contraction Lemma (aka Talagrand’s Lemma):  
Let for , . 
If the are each -Lipschitz, then . 

ϕ ∘ ℋ = {(ϕ1(h(z1)), …, ϕn(h(zn))) : h ∈ ℋ} ϕi : ℝ → ℝ i ∈ [n]
ϕi ρ ℜ̂S(ϕ ∘ ℋ) ≤ ρ ℜ̂S(ℋ)

9

https://link.springer.com/book/10.1007/978-3-642-20212-4
Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Lipschitz losses
• Recall a -Lipschitz function has  ρ ϕ ∥ϕ(x) − ϕ(x′)∥ ≤ ρ∥x − x′ ∥

• Contraction Lemma (aka Talagrand’s Lemma):  
Let for , . 
If the are each -Lipschitz, then . 

ϕ ∘ ℋ = {(ϕ1(h(z1)), …, ϕn(h(zn))) : h ∈ ℋ} ϕi : ℝ → ℝ i ∈ [n]
ϕi ρ ℜ̂S(ϕ ∘ ℋ) ≤ ρ ℜ̂S(ℋ)

• If also , then .ϕi(0) = 0 ℜ̂′ S(ϕ ∘ ℋ) ≤ 2 ρ ℜ̂′ S(ℋ)

9

https://link.springer.com/book/10.1007/978-3-642-20212-4

Lipschitz losses
• Recall a -Lipschitz function has  ρ ϕ ∥ϕ(x) − ϕ(x′)∥ ≤ ρ∥x − x′ ∥

• Contraction Lemma (aka Talagrand’s Lemma):  
Let for , . 
If the are each -Lipschitz, then . 

ϕ ∘ ℋ = {(ϕ1(h(z1)), …, ϕn(h(zn))) : h ∈ ℋ} ϕi : ℝ → ℝ i ∈ [n]
ϕi ρ ℜ̂S(ϕ ∘ ℋ) ≤ ρ ℜ̂S(ℋ)

• If also , then .ϕi(0) = 0 ℜ̂′ S(ϕ ∘ ℋ) ≤ 2 ρ ℜ̂′ S(ℋ)
• If not: let . 

Then . 
ϕ(0) = (ϕ1(0), …, ϕn(0))

ℜ̂′ S(ϕ ∘ ℋ) ≤ 2 ρ ℜ̂′ S(ℋ) + ℜ̂′ S ({ϕ(0)})

9

https://link.springer.com/book/10.1007/978-3-642-20212-4

Lipschitz losses
• Recall a -Lipschitz function has  ρ ϕ ∥ϕ(x) − ϕ(x′)∥ ≤ ρ∥x − x′ ∥

• Contraction Lemma (aka Talagrand’s Lemma):  
Let for , . 
If the are each -Lipschitz, then . 

ϕ ∘ ℋ = {(ϕ1(h(z1)), …, ϕn(h(zn))) : h ∈ ℋ} ϕi : ℝ → ℝ i ∈ [n]
ϕi ρ ℜ̂S(ϕ ∘ ℋ) ≤ ρ ℜ̂S(ℋ)

• If also , then .ϕi(0) = 0 ℜ̂′ S(ϕ ∘ ℋ) ≤ 2 ρ ℜ̂′ S(ℋ)
• If not: let . 

Then . 
ϕ(0) = (ϕ1(0), …, ϕn(0))

ℜ̂′ S(ϕ ∘ ℋ) ≤ 2 ρ ℜ̂′ S(ℋ) + ℜ̂′ S ({ϕ(0)})
• Proof is kind of annoying; 

MRT Lemma 5.7 or SSBD Lemma 26.9 for (manageable), 
really long case analysis for (Theorem 4.12 of Ledoux & Talagrand [log in with UBC])

ℜ̂S
ℜ̂′ S

9

https://link.springer.com/book/10.1007/978-3-642-20212-4

Bounded regression bounds
• In (scalar) regression: , use instead of to a class labely ∈ ℝ h : < → ℝ

10

Bounded regression bounds
• In (scalar) regression: , use instead of to a class labely ∈ ℝ h : < → ℝ
• Usual loss: , usually for , sometimes

• Get “partial credit” for being closer

• Linear regression (ordinary least squares) uses  

ℓ(h, (x, y)) = (h(x) − y)p p = 2 p = 1

p = 2

10

Bounded regression bounds
• In (scalar) regression: , use instead of to a class labely ∈ ℝ h : < → ℝ
• Usual loss: , usually for , sometimes

• Get “partial credit” for being closer

• Linear regression (ordinary least squares) uses  

ℓ(h, (x, y)) = (h(x) − y)p p = 2 p = 1

p = 2

• Assumption for today: and are each bounded in the interval y h [A, A + B]

10

Bounded regression bounds
• In (scalar) regression: , use instead of to a class labely ∈ ℝ h : < → ℝ
• Usual loss: , usually for , sometimes

• Get “partial credit” for being closer

• Linear regression (ordinary least squares) uses  

ℓ(h, (x, y)) = (h(x) − y)p p = 2 p = 1

p = 2

• Assumption for today: and are each bounded in the interval y h [A, A + B]
• Then is -Lipschitz on relevant domain̂y ↦ | ̂y − y|p (pBp−1)

10

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Bounded regression bounds
• In (scalar) regression: , use instead of to a class labely ∈ ℝ h : < → ℝ
• Usual loss: , usually for , sometimes

• Get “partial credit” for being closer

• Linear regression (ordinary least squares) uses  

ℓ(h, (x, y)) = (h(x) − y)p p = 2 p = 1

p = 2

• Assumption for today: and are each bounded in the interval y h [A, A + B]
• Then is -Lipschitz on relevant domain̂y ↦ | ̂y − y|p (pBp−1)
• So has # = {(x, y) ↦ |h(x) − y|p : h ∈ ℋ} ℜ̂S(#) ≤ pBp−1ℜ̂S(ℋ)

10

Bounded regression bounds
• In (scalar) regression: , use instead of to a class labely ∈ ℝ h : < → ℝ
• Usual loss: , usually for , sometimes

• Get “partial credit” for being closer

• Linear regression (ordinary least squares) uses  

ℓ(h, (x, y)) = (h(x) − y)p p = 2 p = 1

p = 2

• Assumption for today: and are each bounded in the interval y h [A, A + B]
• Then is -Lipschitz on relevant domain̂y ↦ | ̂y − y|p (pBp−1)
• So has # = {(x, y) ↦ |h(x) − y|p : h ∈ ℋ} ℜ̂S(#) ≤ pBp−1ℜ̂S(ℋ)
• Plugging into our theorem, since loss is in : [0,Bp]

sup
h∈ℋ

[L*(h) − LS(h)] ≤ pBp−1ℜn(ℋ) + Bp 1
2n log 1

δ

10

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

 of linear functionsℜ
• If ℋ = {x ↦ w⊤x : ∥w∥ ≤ B}

11

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Summary

• Sorted out the two definitions of Rademacher

• One-sided is enough for upper bounds on

• Need two-sided for uniform conv property, our not-quite-optimal DKW inequality  

• Rademacher complexity of linear functions

• Contraction lemma

• Easy upper bounds for bounded regression problems with bounded data /  

• Next time: but how do we pick an (e.g. a bound for)???

L*

∥w∥

ℋ ∥w∥

12

