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• A1 grading: hopefully by end of the week
• A2 release: hopefully later this week 

• The website for SSBD is currently down (???)

• If you don’t have the pdf saved, I put it on the Canvas Files section  

• Note on VC dim of homogenous linear classifiers: SSBD are being kinda sloppy

• Radon’s Theorem implies non-homogeneous halfspaces can’t shatter size 

• (Basically the same proof as we talked about)


• Can do a reduction between homogeneous in  and non-homog in 

d + 2

ℝd ℝd−1

https://en.wikipedia.org/wiki/Radon's_theorem
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Forever ago: “Fundamental Theorem of Learning”
   These are all equivalent:


1.  has the uniform convergence property

2. Any ERM rule agnostically PAC learns 

3.  is agnostic PAC learnable

4. Any ERM rule PAC learns 

5.  is PAC learnable

6.

ℋ
ℋ

ℋ
ℋ

ℋ
VCdim(ℋ) < ∞

3

• If :


•  has uniform convergence property, 


•  is agnostic PAC learnable,              


•  is PAC learnable,                            

VCdim(ℋ) = d
ℋ C1

ε2 [d + log 1
δ ] ≤ nUC

ℋ ≤ C2

ε2 [d + log 1
δ ]

ℋ C1

ε2 [d + log 1
δ ] ≤ nℋ ≤ C2

ε2 [d + log 1
δ ]

ℋ C1
ε [d + log 1

δ ] ≤ nℋ ≤ C2
ε [d log 1

ε +log 1
δ ]

For binary classification  
with 0-1 loss:



Last time: Rademacher complexity
• The empirical Rademacher complexity of  on a set  is 

 
 
 

& S = (z1, …, zn)

4

̂ℜS(&) = (σ [ sup
g∈&

1
n

n

∑
i=1

σig(zi)]
σi ∼ Rad means Pr(σi = − 1) = 1

2 = Pr(σi = 1)
σ ∼ Radn



Last time: Rademacher complexity
• The empirical Rademacher complexity of  on a set  is 

 
 
 

& S = (z1, …, zn)

4

̂ℜS(&) = (σ [ sup
g∈&

1
n

n

∑
i=1

σig(zi)] = (σ [ sup
g∈&

1
n σ⊤gS] gS = (g(z1), …, g(zn))

“how well can functions from  
  correlate with random noise?”

&
σi ∼ Rad means Pr(σi = − 1) = 1

2 = Pr(σi = 1)
σ ∼ Radn

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User



Last time: Rademacher complexity
• The empirical Rademacher complexity of  on a set  is 

 
 
 

& S = (z1, …, zn)

• The (“average-case”) Rademacher complexity is just  ℜn(&) = (S∼,n[ ̂ℜS(&)]

4

̂ℜS(&) = (σ [ sup
g∈&

1
n

n

∑
i=1

σig(zi)] = (σ [ sup
g∈&

1
n σ⊤gS] gS = (g(z1), …, g(zn))

“how well can functions from  
  correlate with random noise?”

&
σi ∼ Rad means Pr(σi = − 1) = 1

2 = Pr(σi = 1)
σ ∼ Radn



Last time: Rademacher complexity
• The empirical Rademacher complexity of  on a set  is 

 
 
 

& S = (z1, …, zn)

• The (“average-case”) Rademacher complexity is just  ℜn(&) = (S∼,n[ ̂ℜS(&)]
• Take  for 


• For 0-1 loss, , and    
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= 1
2 (σ [ sup

h∈ℋ

1
n

n

∑
i=1

− σiỹih̃(xi)]

Adding constants doesn’t change :
̂ℜS
(σ [ sup

g∈&
σ⊤(gS + c1)] = (σ [( sup

g∈&
σ⊤gS) + c σ⊤1] = (σ [ sup

g∈&
σ⊤gS]

= 1
2 (σ [ sup

h∈ℋ

1
n

n

∑
i=1

σih̃(xi)] = 1
2

̂ℜS|x
(ℋ̃)

for fixed :    ỹi −σiỹi ∼ Rad
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So what does that mean?
• For  classifiers in symmetric  with 0-1 loss, ,  

 

 

 
 
 
 

{0,1} ℋ n ≥ d = VCdim(ℋ) ≥ 3

sup
h∈ℋ

|L,(h) − LS(h)| ≤ 2
δ

ℜn(ℋ) ≤ 2
δ

2d log n
n
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So what does that mean?
• For  classifiers in symmetric  with 0-1 loss, ,  

 

 

 
 
 
 

{0,1} ℋ n ≥ d = VCdim(ℋ) ≥ 3

sup
h∈ℋ

|L,(h) − LS(h)| ≤ 2
δ

ℜn(ℋ) ≤ 2
δ

2d log n
n

• Showed  implies  has the uniform convergence property

• and so finally proved the Fundamental Theorem of Learning! (up to Massart’s lemma)

d < ∞ ℋ

• But optimal rate is : much better in nUC
ℋ ≤ C2

ε2 [d + log 1
δ ] δ
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sup
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δ

ℜn(ℋ) ≤ 2
δ
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• Is what we really care about: for any , have  h ∈ ℋ L,(h) ≤ LS(h)+ 2
δ ℜn(ℋ)
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One-sided vs two-sided convergence
• For  classifiers,  not necessarily symmetric, with 0-1 loss, 

, 
 

 

{0,1} ℋ
n ≥ d = VCdim(ℋ) ≥ 3

sup
h∈ℋ

L,(h) − LS(h) ≤ 2
δ

ℜn(ℋ) ≤ 2
δ

2d log n
n

• Is what we really care about: for any , have  h ∈ ℋ L,(h) ≤ LS(h)+ 2
δ ℜn(ℋ)

• Rademacher results usually framed this way to avoid the symmetric condition

• Some other bounds work this way too (e.g. PAC-Bayes)

• Difference between two-sided and one-sided will be important later!

11



(pause)
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McDiarmid’s  
inequality 

(1989)

If  independent,  has bounded diffs with ,X1, …, Xn ∈ ℝ f ci

then Pr (f(S) > (S′ 
f(S′ ) + ε) ≤ 2 exp ( −2ε2

∑i c2
i )

13
and same for Pr (f(S) < (S′ 

f(S′ ) − ε)
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More general than Hoeffding
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Generalization gap has bounded differences

• Consider 


• Let  be  with  replaced by  (for any one )

   

Φ(S) = sup
g∈&

([g] − (̂S[g]

S′ S zi z′ i i
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([g] − (̂S′ 
g + 1

n sup
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|g(z′ i) − g(zi)|

≤ Φ(S′ )+ B
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and assume g(z) ∈ [0,B]

so |Φ(S) − Φ(S′ )| ≤ B
n

Φ(S) = sup
g∈&

([g] − (̂S[g]
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≤ exp (−2nε2/B2)Solving for , get ε Φ(S) ≤ 2ℜn(&) + B2

2n
log 1

δ

Still has pesky  inside the ;

can get optimal rate with chaining

log n ℜn



 converges to ℜ̂S ℜn

•  also satisfies bounded differences for bounded 

• So  concentrates, by McDiarmid

• Can split  failure prob into  for this,  for previous theorem  

and bound  in terms of 

ℜ̂S g
|ℜ̂S − ℜn|

δ δ/2 δ/2
Φ(S) ℜ̂S

17



Massart’s lemma: for , if ,     8 ⊂ ℝn max
a∈8

∥a∥ ≤ r (σ[ max
a∈8

1
n σ⊤a] ≤ 1

n r 2 log|8|

18

If there’s time left, let’s prove: (If not: we’ll come back to it another time!)



Summary

• We finally proved the fundamental theorem:

• Finite VCdim characterizes PAC learnability (realizable or agnostic) + ERM


• Proved a generalization bound via Rademacher complexity

• Works for any bounded loss function
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