
More Rademacher
CPSC 532S: Modern Statistical Learning Theory

31 January 2022

cs.ubc.ca/~dsuth/532S/22/

https://www.cs.ubc.ca/~dsuth/532S/22/

Admin
• Back to normal office hours (Tuesday 10-11, Thursday 4-5)
• A1 grading: hopefully by end of the week
• A2 release: hopefully later this week 

https://en.wikipedia.org/wiki/Radon's_theorem

Admin
• Back to normal office hours (Tuesday 10-11, Thursday 4-5)
• A1 grading: hopefully by end of the week
• A2 release: hopefully later this week 

• The website for SSBD is currently down (???)

• If you don’t have the pdf saved, I put it on the Canvas Files section  

https://en.wikipedia.org/wiki/Radon's_theorem

Admin
• Back to normal office hours (Tuesday 10-11, Thursday 4-5)
• A1 grading: hopefully by end of the week
• A2 release: hopefully later this week 

• The website for SSBD is currently down (???)

• If you don’t have the pdf saved, I put it on the Canvas Files section  

• Note on VC dim of homogenous linear classifiers: SSBD are being kinda sloppy

• Radon’s Theorem implies non-homogeneous halfspaces can’t shatter size

• (Basically the same proof as we talked about)

• Can do a reduction between homogeneous in and non-homog in

d + 2

ℝd ℝd−1

https://en.wikipedia.org/wiki/Radon's_theorem
Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Forever ago: “Fundamental Theorem of Learning”
 These are all equivalent:

1. has the uniform convergence property

2. Any ERM rule agnostically PAC learns

3. is agnostic PAC learnable

4. Any ERM rule PAC learns

5. is PAC learnable

6.

ℋ
ℋ

ℋ
ℋ

ℋ
VCdim(ℋ) < ∞

3

• If :

• has uniform convergence property,

• is agnostic PAC learnable,

• is PAC learnable,  

VCdim(ℋ) = d
ℋ C1

ε2 [d + log 1
δ] ≤ nUC

ℋ ≤ C2

ε2 [d + log 1
δ]

ℋ C1

ε2 [d + log 1
δ] ≤ nℋ ≤ C2

ε2 [d + log 1
δ]

ℋ C1
ε [d + log 1

δ] ≤ nℋ ≤ C2
ε [d log 1

ε +log 1
δ]

For binary classification  
with 0-1 loss:

Last time: Rademacher complexity
• The empirical Rademacher complexity of on a set is 

 
 
 

& S = (z1, …, zn)

4

̂ℜS(&) = (σ [sup
g∈&

1
n

n

∑
i=1

σig(zi)]
σi ∼ Rad means Pr(σi = − 1) = 1

2 = Pr(σi = 1)
σ ∼ Radn

Last time: Rademacher complexity
• The empirical Rademacher complexity of on a set is 

 
 
 

& S = (z1, …, zn)

4

̂ℜS(&) = (σ [sup
g∈&

1
n

n

∑
i=1

σig(zi)] = (σ [sup
g∈&

1
n σ⊤gS] gS = (g(z1), …, g(zn))

“how well can functions from  
 correlate with random noise?”

&
σi ∼ Rad means Pr(σi = − 1) = 1

2 = Pr(σi = 1)
σ ∼ Radn

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Last time: Rademacher complexity
• The empirical Rademacher complexity of on a set is 

 
 
 

& S = (z1, …, zn)

• The (“average-case”) Rademacher complexity is just  ℜn(&) = (S∼,n[̂ℜS(&)]

4

̂ℜS(&) = (σ [sup
g∈&

1
n

n

∑
i=1

σig(zi)] = (σ [sup
g∈&

1
n σ⊤gS] gS = (g(z1), …, g(zn))

“how well can functions from  
 correlate with random noise?”

&
σi ∼ Rad means Pr(σi = − 1) = 1

2 = Pr(σi = 1)
σ ∼ Radn

Last time: Rademacher complexity
• The empirical Rademacher complexity of on a set is 

 
 
 

& S = (z1, …, zn)

• The (“average-case”) Rademacher complexity is just  ℜn(&) = (S∼,n[̂ℜS(&)]
• Take for

• For 0-1 loss, , and
ℜn(&) & = {z ↦ ℓ(h, z) : h ∈ ℋ}

gh((x, y)) = .(h(x) ≠ y) ̂ℜS(&) = ̂ℜS|x
(ℋ)

4

̂ℜS(&) = (σ [sup
g∈&

1
n

n

∑
i=1

σig(zi)] = (σ [sup
g∈&

1
n σ⊤gS] gS = (g(z1), …, g(zn))

“how well can functions from  
 correlate with random noise?”

&
σi ∼ Rad means Pr(σi = − 1) = 1

2 = Pr(σi = 1)
σ ∼ Radn

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Last time: Rademacher complexity
• The empirical Rademacher complexity of on a set is 

 
 
 

& S = (z1, …, zn)

• The (“average-case”) Rademacher complexity is just  ℜn(&) = (S∼,n[̂ℜS(&)]
• Take for

• For 0-1 loss, , and
ℜn(&) & = {z ↦ ℓ(h, z) : h ∈ ℋ}

gh((x, y)) = .(h(x) ≠ y) ̂ℜS(&) = ̂ℜS|x
(ℋ)

• Binary clf: (; Massart, Sauer-Shelah) ℜn(ℋ) ≤ 2 VCdim(ℋ) log(n) / n n ≥ d ≥ 3

4

̂ℜS(&) = (σ [sup
g∈&

1
n

n

∑
i=1

σig(zi)] = (σ [sup
g∈&

1
n σ⊤gS] gS = (g(z1), …, g(zn))

“how well can functions from  
 correlate with random noise?”

&
σi ∼ Rad means Pr(σi = − 1) = 1

2 = Pr(σi = 1)
σ ∼ Radn

Mobile User

Mobile User

Mobile User

Mobile User

Last time: Rademacher complexity
• The empirical Rademacher complexity of on a set is 

 
 
 

& S = (z1, …, zn)

• The (“average-case”) Rademacher complexity is just  ℜn(&) = (S∼,n[̂ℜS(&)]
• Take for

• For 0-1 loss, , and
ℜn(&) & = {z ↦ ℓ(h, z) : h ∈ ℋ}

gh((x, y)) = .(h(x) ≠ y) ̂ℜS(&) = ̂ℜS|x
(ℋ)

• Binary clf: (; Massart, Sauer-Shelah) ℜn(ℋ) ≤ 2 VCdim(ℋ) log(n) / n n ≥ d ≥ 3

• Theorem: if maps to , & [0,1] sup
g∈&

([g(z)]− 1
n

n

∑
i=1

g(zi) ≤ 2ℜn(&) + 1
2n

log 1
δ

4

̂ℜS(&) = (σ [sup
g∈&

1
n

n

∑
i=1

σig(zi)] = (σ [sup
g∈&

1
n σ⊤gS] gS = (g(z1), …, g(zn))

“how well can functions from  
 correlate with random noise?”

&
σi ∼ Rad means Pr(σi = − 1) = 1

2 = Pr(σi = 1)
σ ∼ Radn

Mobile User

Mobile User

Mobile User

Mobile User

Last time: Rademacher complexity
• The empirical Rademacher complexity of on a set is 

 
 
 

& S = (z1, …, zn)

• The (“average-case”) Rademacher complexity is just  ℜn(&) = (S∼,n[̂ℜS(&)]
• Take for

• For 0-1 loss, , and
ℜn(&) & = {z ↦ ℓ(h, z) : h ∈ ℋ}

gh((x, y)) = .(h(x) ≠ y) ̂ℜS(&) = ̂ℜS|x
(ℋ)

• Binary clf: (; Massart, Sauer-Shelah) ℜn(ℋ) ≤ 2 VCdim(ℋ) log(n) / n n ≥ d ≥ 3

• Theorem: if maps to , & [0,1] sup
g∈&

([g(z)]− 1
n

n

∑
i=1

g(zi) ≤ 2ℜn(&) + 1
2n

log 1
δ

4

̂ℜS(&) = (σ [sup
g∈&

1
n

n

∑
i=1

σig(zi)] = (σ [sup
g∈&

1
n σ⊤gS] gS = (g(z1), …, g(zn))

“how well can functions from  
 correlate with random noise?”

&
σi ∼ Rad means Pr(σi = − 1) = 1

2 = Pr(σi = 1)
σ ∼ Radn

L,(h)

Mobile User

Mobile User

Mobile User

Mobile User

Last time: Rademacher complexity
• The empirical Rademacher complexity of on a set is 

 
 
 

& S = (z1, …, zn)

• The (“average-case”) Rademacher complexity is just  ℜn(&) = (S∼,n[̂ℜS(&)]
• Take for

• For 0-1 loss, , and
ℜn(&) & = {z ↦ ℓ(h, z) : h ∈ ℋ}

gh((x, y)) = .(h(x) ≠ y) ̂ℜS(&) = ̂ℜS|x
(ℋ)

• Binary clf: (; Massart, Sauer-Shelah) ℜn(ℋ) ≤ 2 VCdim(ℋ) log(n) / n n ≥ d ≥ 3

• Theorem: if maps to , & [0,1] sup
g∈&

([g(z)]− 1
n

n

∑
i=1

g(zi) ≤ 2ℜn(&) + 1
2n

log 1
δ

4

̂ℜS(&) = (σ [sup
g∈&

1
n

n

∑
i=1

σig(zi)] = (σ [sup
g∈&

1
n σ⊤gS] gS = (g(z1), …, g(zn))

“how well can functions from  
 correlate with random noise?”

&
σi ∼ Rad means Pr(σi = − 1) = 1

2 = Pr(σi = 1)
σ ∼ Radn

L,(h) LS(h)

Mobile User

Mobile User

Mobile User

Mobile User

Last time: Rademacher complexity
• The empirical Rademacher complexity of on a set is 

 
 
 

& S = (z1, …, zn)

• The (“average-case”) Rademacher complexity is just  ℜn(&) = (S∼,n[̂ℜS(&)]
• Take for

• For 0-1 loss, , and
ℜn(&) & = {z ↦ ℓ(h, z) : h ∈ ℋ}

gh((x, y)) = .(h(x) ≠ y) ̂ℜS(&) = ̂ℜS|x
(ℋ)

• Binary clf: (; Massart, Sauer-Shelah) ℜn(ℋ) ≤ 2 VCdim(ℋ) log(n) / n n ≥ d ≥ 3

• Theorem: if maps to , & [0,1] sup
g∈&

([g(z)]− 1
n

n

∑
i=1

g(zi) ≤ 2ℜn(&) + 1
2n

log 1
δ

4

̂ℜS(&) = (σ [sup
g∈&

1
n

n

∑
i=1

σig(zi)] = (σ [sup
g∈&

1
n σ⊤gS] gS = (g(z1), …, g(zn))

“how well can functions from  
 correlate with random noise?”

&
σi ∼ Rad means Pr(σi = − 1) = 1

2 = Pr(σi = 1)
σ ∼ Radn

L,(h) LS(h) bounds 
(sup|L,(h) − LS(h)|

Mobile User

Mobile User

Mobile User

Mobile User

Last time: Rademacher complexity
• The empirical Rademacher complexity of on a set is 

 
 
 

& S = (z1, …, zn)

• The (“average-case”) Rademacher complexity is just  ℜn(&) = (S∼,n[̂ℜS(&)]
• Take for

• For 0-1 loss, , and
ℜn(&) & = {z ↦ ℓ(h, z) : h ∈ ℋ}

gh((x, y)) = .(h(x) ≠ y) ̂ℜS(&) = ̂ℜS|x
(ℋ)

• Binary clf: (; Massart, Sauer-Shelah) ℜn(ℋ) ≤ 2 VCdim(ℋ) log(n) / n n ≥ d ≥ 3

• Theorem: if maps to , & [0,1] sup
g∈&

([g(z)]− 1
n

n

∑
i=1

g(zi) ≤ 2ℜn(&) + 1
2n

log 1
δ

4

̂ℜS(&) = (σ [sup
g∈&

1
n

n

∑
i=1

σig(zi)] = (σ [sup
g∈&

1
n σ⊤gS] gS = (g(z1), …, g(zn))

“how well can functions from  
 correlate with random noise?”

&
σi ∼ Rad means Pr(σi = − 1) = 1

2 = Pr(σi = 1)
σ ∼ Radn

L,(h) LS(h) bounds 
(sup|L,(h) − LS(h)| how much bigger 

than its mean is likely

Mobile User

Mobile User

Mobile User

Mobile User

 of binary classifiers vs lossℜ

5

̂ℜS(&) = (σ[sup
h∈ℋ

1
n

n

∑
i=1

σi .(h(xi) ≠ yi)]

 of binary classifiers vs lossℜ

5

̂ℜS(&) = (σ[sup
h∈ℋ

1
n

n

∑
i=1

σi .(h(xi) ≠ yi)]

If , define by ; h : 1 → {0,1} h̃ : 1 → {−1,1} h̃(x) = 2h(x) − 1 ỹi = 2yi − 1

 of binary classifiers vs lossℜ

5

̂ℜS(&) = (σ[sup
h∈ℋ

1
n

n

∑
i=1

σi .(h(xi) ≠ yi)] = (σ [sup
h∈ℋ

1
n

n

∑
i=1

σi
1 − ỹih̃(xi)

2]
If , define by ; h : 1 → {0,1} h̃ : 1 → {−1,1} h̃(x) = 2h(x) − 1 ỹi = 2yi − 1

 of binary classifiers vs lossℜ

5

̂ℜS(&) = (σ[sup
h∈ℋ

1
n

n

∑
i=1

σi .(h(xi) ≠ yi)] = (σ [sup
h∈ℋ

1
n

n

∑
i=1

σi
1 − ỹih̃(xi)

2]
If , define by ; h : 1 → {0,1} h̃ : 1 → {−1,1} h̃(x) = 2h(x) − 1 ỹi = 2yi − 1

Adding constants doesn’t change :
̂ℜS
(σ [sup

g∈&
σ⊤(gS + c1)] = (σ [(sup

g∈&
σ⊤gS) + c σ⊤1] = (σ [sup

g∈&
σ⊤gS]

 of binary classifiers vs lossℜ

5

̂ℜS(&) = (σ[sup
h∈ℋ

1
n

n

∑
i=1

σi .(h(xi) ≠ yi)] = (σ [sup
h∈ℋ

1
n

n

∑
i=1

σi
1 − ỹih̃(xi)

2]
If , define by ; h : 1 → {0,1} h̃ : 1 → {−1,1} h̃(x) = 2h(x) − 1 ỹi = 2yi − 1

= 1
2 (σ [sup

h∈ℋ

1
n

n

∑
i=1

− σiỹih̃(xi)]

Adding constants doesn’t change :
̂ℜS
(σ [sup

g∈&
σ⊤(gS + c1)] = (σ [(sup

g∈&
σ⊤gS) + c σ⊤1] = (σ [sup

g∈&
σ⊤gS]

 of binary classifiers vs lossℜ

5

̂ℜS(&) = (σ[sup
h∈ℋ

1
n

n

∑
i=1

σi .(h(xi) ≠ yi)] = (σ [sup
h∈ℋ

1
n

n

∑
i=1

σi
1 − ỹih̃(xi)

2]
If , define by ; h : 1 → {0,1} h̃ : 1 → {−1,1} h̃(x) = 2h(x) − 1 ỹi = 2yi − 1

= 1
2 (σ [sup

h∈ℋ

1
n

n

∑
i=1

− σiỹih̃(xi)]

Adding constants doesn’t change :
̂ℜS
(σ [sup

g∈&
σ⊤(gS + c1)] = (σ [(sup

g∈&
σ⊤gS) + c σ⊤1] = (σ [sup

g∈&
σ⊤gS]

for fixed : ỹi −σiỹi ∼ Rad

 of binary classifiers vs lossℜ

5

̂ℜS(&) = (σ[sup
h∈ℋ

1
n

n

∑
i=1

σi .(h(xi) ≠ yi)] = (σ [sup
h∈ℋ

1
n

n

∑
i=1

σi
1 − ỹih̃(xi)

2]
If , define by ; h : 1 → {0,1} h̃ : 1 → {−1,1} h̃(x) = 2h(x) − 1 ỹi = 2yi − 1

= 1
2 (σ [sup

h∈ℋ

1
n

n

∑
i=1

− σiỹih̃(xi)]

Adding constants doesn’t change :
̂ℜS
(σ [sup

g∈&
σ⊤(gS + c1)] = (σ [(sup

g∈&
σ⊤gS) + c σ⊤1] = (σ [sup

g∈&
σ⊤gS]

= 1
2 (σ [sup

h∈ℋ

1
n

n

∑
i=1

σih̃(xi)]

for fixed : ỹi −σiỹi ∼ Rad

 of binary classifiers vs lossℜ

5

̂ℜS(&) = (σ[sup
h∈ℋ

1
n

n

∑
i=1

σi .(h(xi) ≠ yi)] = (σ [sup
h∈ℋ

1
n

n

∑
i=1

σi
1 − ỹih̃(xi)

2]
If , define by ; h : 1 → {0,1} h̃ : 1 → {−1,1} h̃(x) = 2h(x) − 1 ỹi = 2yi − 1

= 1
2 (σ [sup

h∈ℋ

1
n

n

∑
i=1

− σiỹih̃(xi)]

Adding constants doesn’t change :
̂ℜS
(σ [sup

g∈&
σ⊤(gS + c1)] = (σ [(sup

g∈&
σ⊤gS) + c σ⊤1] = (σ [sup

g∈&
σ⊤gS]

= 1
2 (σ [sup

h∈ℋ

1
n

n

∑
i=1

σih̃(xi)] = 1
2

̂ℜS|x
(ℋ̃)

for fixed : ỹi −σiỹi ∼ Rad

 of binary classifiers vs lossℜ

5

̂ℜS(&) = (σ[sup
h∈ℋ

1
n

n

∑
i=1

σi .(h(xi) ≠ yi)] = (σ [sup
h∈ℋ

1
n

n

∑
i=1

σi
1 − ỹih̃(xi)

2]
If , define by ; h : 1 → {0,1} h̃ : 1 → {−1,1} h̃(x) = 2h(x) − 1 ỹi = 2yi − 1

= 1
2 (σ [sup

h∈ℋ

1
n

n

∑
i=1

− σiỹih̃(xi)]

Adding constants doesn’t change :
̂ℜS
(σ [sup

g∈&
σ⊤(gS + c1)] = (σ [(sup

g∈&
σ⊤gS) + c σ⊤1] = (σ [sup

g∈&
σ⊤gS]

= 1
2 (σ [sup

h∈ℋ

1
n

n

∑
i=1

σih̃(xi)] = 1
2

̂ℜS|x
(ℋ̃)

Scaling by gives :
c |c| ̂ℜS
(σ [sup

g∈&
σ⊤(cgS)] = |c| (σ [sup

g∈&
sign(c) σ⊤gS] = |c| (σ [sup

g∈&
σ⊤gS]

for fixed : ỹi −σiỹi ∼ Rad

 of binary classifiers vs lossℜ

5

̂ℜS(&) = (σ[sup
h∈ℋ

1
n

n

∑
i=1

σi .(h(xi) ≠ yi)] = (σ [sup
h∈ℋ

1
n

n

∑
i=1

σi
1 − ỹih̃(xi)

2]
If , define by ; h : 1 → {0,1} h̃ : 1 → {−1,1} h̃(x) = 2h(x) − 1 ỹi = 2yi − 1

= 1
2 (σ [sup

h∈ℋ

1
n

n

∑
i=1

− σiỹih̃(xi)]

Adding constants doesn’t change :
̂ℜS
(σ [sup

g∈&
σ⊤(gS + c1)] = (σ [(sup

g∈&
σ⊤gS) + c σ⊤1] = (σ [sup

g∈&
σ⊤gS]

= 1
2 (σ [sup

h∈ℋ

1
n

n

∑
i=1

σih̃(xi)] = 1
2

̂ℜS|x
(ℋ̃) = ̂ℜS|x

(ℋ)

Scaling by gives :
c |c| ̂ℜS
(σ [sup

g∈&
σ⊤(cgS)] = |c| (σ [sup

g∈&
sign(c) σ⊤gS] = |c| (σ [sup

g∈&
σ⊤gS]

for fixed : ỹi −σiỹi ∼ Rad

Mobile User

Mobile User

Mobile User

Mobile User

To start: a “low-probability” bound
• We’ll show (for any ; don’t need bounded)(sup

g∈&
([g] − (̂S[g] ≤ 2ℜn(&) &

66

Andrey Markov

Markov’s 
inequality 
(~1860s)

Pafnuty Chebyshev

To start: a “low-probability” bound
• We’ll show (for any ; don’t need bounded)(sup

g∈&
([g] − (̂S[g] ≤ 2ℜn(&) &

• Immediately implies by Markov’s inequality  
that with prob at least sup

g∈&
([g] − (̂S[g] ≤ 2

δ
ℜn(&) 1 − δ

• Pretty similar to SSBD 6.11, but more general + better bound 

6

If , then Pr(X ≥ 0) = 1 Pr (X > 1
δ ([X]) ≤ δ

Proof: take in:

 , so

a = 1
δ (X

a.[X≥a] ≤ X ([a.[X≥a]] = a Pr(X ≥ a) ≤ (X
6

Andrey Markov

Markov’s 
inequality 
(~1860s)

Pafnuty Chebyshev

To start: a “low-probability” bound
• We’ll show (for any ; don’t need bounded)(sup

g∈&
([g] − (̂S[g] ≤ 2ℜn(&) &

• Immediately implies by Markov’s inequality  
that with prob at least sup

g∈&
([g] − (̂S[g] ≤ 2

δ
ℜn(&) 1 − δ

• Pretty similar to SSBD 6.11, but more general + better bound 

• Will get a better bound with McDiarmid’s inequality after

6

If , then Pr(X ≥ 0) = 1 Pr (X > 1
δ ([X]) ≤ δ

Proof: take in:

 , so

a = 1
δ (X

a.[X≥a] ≤ X ([a.[X≥a]] = a Pr(X ≥ a) ≤ (X
6

• Want (sup
g∈&

|([g] − (̂S[g]| ≤ 2ℜn(&)

7777

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

• Want (sup
g∈&

|([g] − (̂S[g]| ≤ 2ℜn(&)

• Rewrite using a ghost sample: with ([g] = (S′ ∼,n[(̂S′
[g]] S′ = (z′ 1, …, z′ n)

7777

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

• Want (sup
g∈&

|([g] − (̂S[g]| ≤ 2ℜn(&)

• Rewrite using a ghost sample: with ([g] = (S′ ∼,n[(̂S′
[g]] S′ = (z′ 1, …, z′ n)

• Then (S sup
g∈&

|([g] − (̂S[g]| = (S sup
g∈&

(S′ [(̂S′
[g]] − (̂S[g]

7777

• Want (sup
g∈&

|([g] − (̂S[g]| ≤ 2ℜn(&)

• Rewrite using a ghost sample: with ([g] = (S′ ∼,n[(̂S′
[g]] S′ = (z′ 1, …, z′ n)

• Then (S sup
g∈&

|([g] − (̂S[g]| = (S sup
g∈&

(S′ [(̂S′
[g]] − (̂S[g]

77

≤ (S sup
g∈&

(S′
(̂S′

[g] − (̂S[g]

77

• Want (sup
g∈&

|([g] − (̂S[g]| ≤ 2ℜn(&)

• Rewrite using a ghost sample: with ([g] = (S′ ∼,n[(̂S′
[g]] S′ = (z′ 1, …, z′ n)

• Then (S sup
g∈&

|([g] − (̂S[g]| = (S sup
g∈&

(S′ [(̂S′
[g]] − (̂S[g]

77

≤ (S sup
g∈&

(S′
(̂S′

[g] − (̂S[g]

 is convex  
so
f(x) = |x − y|

|(X − y| ≤ (|X − y|

77

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Johan Ludwig William Valdemar Jensen

Jensen’s 
inequality 
(1906)

If is convex, .f f((X) ≤ (f(X)

• Want (sup
g∈&

|([g] − (̂S[g]| ≤ 2ℜn(&)

• Rewrite using a ghost sample: with ([g] = (S′ ∼,n[(̂S′
[g]] S′ = (z′ 1, …, z′ n)

• Then (S sup
g∈&

|([g] − (̂S[g]| = (S sup
g∈&

(S′ [(̂S′
[g]] − (̂S[g]

77

≤ (S sup
g∈&

(S′
(̂S′

[g] − (̂S[g]

 is convex  
so
f(x) = |x − y|

|(X − y| ≤ (|X − y|

77

Johan Ludwig William Valdemar Jensen

Jensen’s 
inequality 
(1906)

If is convex, .f f((X) ≤ (f(X)

• Want (sup
g∈&

|([g] − (̂S[g]| ≤ 2ℜn(&)

• Rewrite using a ghost sample: with ([g] = (S′ ∼,n[(̂S′
[g]] S′ = (z′ 1, …, z′ n)

• Then (S sup
g∈&

|([g] − (̂S[g]| = (S sup
g∈&

(S′ [(̂S′
[g]] − (̂S[g]

77

≤ (S sup
g∈&

(S′
(̂S′

[g] − (̂S[g]

 is convex  
so
f(x) = |x − y|

|(X − y| ≤ (|X − y|

To remember the direction: 
 is convex, and X2 [(X]2 ≤ ([X2]

77

Johan Ludwig William Valdemar Jensen

Jensen’s 
inequality 
(1906)

If is convex, .f f((X) ≤ (f(X)

• Want (sup
g∈&

|([g] − (̂S[g]| ≤ 2ℜn(&)

• Rewrite using a ghost sample: with ([g] = (S′ ∼,n[(̂S′
[g]] S′ = (z′ 1, …, z′ n)

• Then (S sup
g∈&

|([g] − (̂S[g]| = (S sup
g∈&

(S′ [(̂S′
[g]] − (̂S[g]

77

≤ (S sup
g∈&

(S′
(̂S′

[g] − (̂S[g]

 is convex  
so
f(x) = |x − y|

|(X − y| ≤ (|X − y|

To remember the direction: 
 is convex, and X2 [(X]2 ≤ ([X2]

77

• Want

• Rewrite using a ghost sample: with

• Then

(sup
g∈&

|([g] − (̂S[g]| ≤ 2ℜn(&)

([g] = (S′ ∼,n[(̂S′
[g]] S′ = (z′ 1, …, z′ n)

(S sup
g∈&

|([g] − (̂S[g]| = (S sup
g∈&

(S′ [(̂S′
[g]] − (̂S[g]

88

≤ (S sup
g∈&

(S′
(̂S′

[g] − (̂S[g]

88

• Want

• Rewrite using a ghost sample: with

• Then

(sup
g∈&

|([g] − (̂S[g]| ≤ 2ℜn(&)

([g] = (S′ ∼,n[(̂S′
[g]] S′ = (z′ 1, …, z′ n)

(S sup
g∈&

|([g] − (̂S[g]| = (S sup
g∈&

(S′ [(̂S′
[g]] − (̂S[g]

88

≤ (S sup
g∈&

(S′
(̂S′

[g] − (̂S[g]

88

≤ (S(S′
sup
g∈&

|(̂S′
[g] − (̂S(g)|

Always have :

 for each  

so for each  

so can take of LHS and still true

sup
y

(X[fy(X)] ≤ (X [sup
y

fy(X)]
fy(X) ≤ sup

y
fy(X) y

(X fy(X) ≤ (X sup
y

fy(X) y

sup

• Want

• Rewrite using a ghost sample: with

• Then

(sup
g∈&

|([g] − (̂S[g]| ≤ 2ℜn(&)

([g] = (S′ ∼,n[(̂S′
[g]] S′ = (z′ 1, …, z′ n)

(S sup
g∈&

|([g] − (̂S[g]| = (S sup
g∈&

(S′ [(̂S′
[g]] − (̂S[g]

88

≤ (S sup
g∈&

(S′
(̂S′

[g] − (̂S[g]

88

≤ (S(S′
sup
g∈&

|(̂S′
[g] − (̂S(g)|

Always have :

 for each  

so for each  

so can take of LHS and still true

sup
y

(X[fy(X)] ≤ (X [sup
y

fy(X)]
fy(X) ≤ sup

y
fy(X) y

(X fy(X) ≤ (X sup
y

fy(X) y

sup

= (S,S′
sup
g∈&

1
n

n

∑
i=1

[g(z′ i) − g(zi)]

• Want

• Rewrite using a ghost sample: with

• Then

(sup
g∈&

|([g] − (̂S[g]| ≤ 2ℜn(&)

([g] = (S′ ∼,n[(̂S′
[g]] S′ = (z′ 1, …, z′ n)

(S sup
g∈&

|([g] − (̂S[g]| ≤ (S,S′
sup
g∈&

1
n

n

∑
i=1

[g(z′ i) − g(zi)]

99999999

• Want

• Rewrite using a ghost sample: with

• Then

(sup
g∈&

|([g] − (̂S[g]| ≤ 2ℜn(&)

([g] = (S′ ∼,n[(̂S′
[g]] S′ = (z′ 1, …, z′ n)

(S sup
g∈&

|([g] − (̂S[g]| ≤ (S,S′
sup
g∈&

1
n

n

∑
i=1

[g(z′ i) − g(zi)]

9999999

Trick called symmetrization: 
it doesn’t matter if we swap  

 and , since everything is iid 
and only looked at once
zi z′ i

= (S,S′
sup
g∈&

1
n

n

∑
i=1

σi [g(z′ i) − g(zi)]
arbitrary σi ∈ {−1,1}

9

• Want

• Rewrite using a ghost sample: with

• Then

(sup
g∈&

|([g] − (̂S[g]| ≤ 2ℜn(&)

([g] = (S′ ∼,n[(̂S′
[g]] S′ = (z′ 1, …, z′ n)

(S sup
g∈&

|([g] − (̂S[g]| ≤ (S,S′
sup
g∈&

1
n

n

∑
i=1

[g(z′ i) − g(zi)]

9999999

Trick called symmetrization: 
it doesn’t matter if we swap  

 and , since everything is iid 
and only looked at once
zi z′ i

= (S,S′
sup
g∈&

1
n

n

∑
i=1

σi [g(z′ i) − g(zi)]
arbitrary σi ∈ {−1,1}

= (S,S′
(σ sup

g∈&

1
n

n

∑
i=1

σi [g(z′ i) − g(zi)]
 now iid  

(Rademacher distribution)
σi Uniform({−1,1})

9

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

• Want

• Rewrite using a ghost sample: with

• Then

(sup
g∈&

|([g] − (̂S[g]| ≤ 2ℜn(&)

([g] = (S′ ∼,n[(̂S′
[g]] S′ = (z′ 1, …, z′ n)

(S sup
g∈&

|([g] − (̂S[g]| ≤ (S,S′
sup
g∈&

1
n

n

∑
i=1

[g(z′ i) − g(zi)]

9999999

Trick called symmetrization: 
it doesn’t matter if we swap  

 and , since everything is iid 
and only looked at once
zi z′ i

= (S,S′
sup
g∈&

1
n

n

∑
i=1

σi [g(z′ i) − g(zi)]
arbitrary σi ∈ {−1,1}

= (S,S′
(σ sup

g∈&

1
n

n

∑
i=1

σi [g(z′ i) − g(zi)]
 now iid  

(Rademacher distribution)
σi Uniform({−1,1})

9

≤ (S,S′
(σ sup

g∈&

1
n

n

∑
i=1

σig(z′ i) + (S,S′
(σ sup

g∈&

1
n

n

∑
i=1

−σig(zi)

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

• Want

• Rewrite using a ghost sample: with

• Then

(sup
g∈&

|([g] − (̂S[g]| ≤ 2ℜn(&)

([g] = (S′ ∼,n[(̂S′
[g]] S′ = (z′ 1, …, z′ n)

(S sup
g∈&

|([g] − (̂S[g]| ≤ (S,S′
sup
g∈&

1
n

n

∑
i=1

[g(z′ i) − g(zi)]

9999999

Trick called symmetrization: 
it doesn’t matter if we swap  

 and , since everything is iid 
and only looked at once
zi z′ i

= (S,S′
sup
g∈&

1
n

n

∑
i=1

σi [g(z′ i) − g(zi)]
arbitrary σi ∈ {−1,1}

= (S,S′
(σ sup

g∈&

1
n

n

∑
i=1

σi [g(z′ i) − g(zi)]
 now iid  

(Rademacher distribution)
σi Uniform({−1,1})

9

≤ (S,S′
(σ sup

g∈&

1
n

n

∑
i=1

σig(z′ i) + (S,S′
(σ sup

g∈&

1
n

n

∑
i=1

−σig(zi) = 2ℜn(&)

triangle inequality + sup
x

[f(x) + g(x)] ≤ sup
x

f(x) + sup
x

g(x)

if is symmetric: 
 implies

&
g ∈ & −g ∈ &

• Want

• Rewrite using a ghost sample: with

• Then

(sup
g∈&

|([g] − (̂S[g]| ≤ 2ℜn(&)

([g] = (S′ ∼,n[(̂S′
[g]] S′ = (z′ 1, …, z′ n)

(S sup
g∈&

|([g] − (̂S[g]| ≤ (S,S′
sup
g∈&

1
n

n

∑
i=1

[g(z′ i) − g(zi)]

9999999

Trick called symmetrization: 
it doesn’t matter if we swap  

 and , since everything is iid 
and only looked at once
zi z′ i

= (S,S′
sup
g∈&

1
n

n

∑
i=1

σi [g(z′ i) − g(zi)]
arbitrary σi ∈ {−1,1}

= (S,S′
(σ sup

g∈&

1
n

n

∑
i=1

σi [g(z′ i) − g(zi)]
 now iid  

(Rademacher distribution)
σi Uniform({−1,1})

9

≤ (S,S′
(σ sup

g∈&

1
n

n

∑
i=1

σig(z′ i) + (S,S′
(σ sup

g∈&

1
n

n

∑
i=1

−σig(zi) = 2ℜn(&)

triangle inequality + sup
x

[f(x) + g(x)] ≤ sup
x

f(x) + sup
x

g(x)

if is symmetric: 
 implies

&
g ∈ & −g ∈ &

always (sup
g∈&

([g] − (̂S[g] ≤ 2ℜn(&)

So what does that mean?
• For classifiers in symmetric with 0-1 loss, ,  

 

 

 
 
 
 

{0,1} ℋ n ≥ d = VCdim(ℋ) ≥ 3

sup
h∈ℋ

|L,(h) − LS(h)| ≤ 2
δ

ℜn(ℋ) ≤ 2
δ

2d log n
n

10

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

So what does that mean?
• For classifiers in symmetric with 0-1 loss, ,  

 

 

 
 
 
 

{0,1} ℋ n ≥ d = VCdim(ℋ) ≥ 3

sup
h∈ℋ

|L,(h) − LS(h)| ≤ 2
δ

ℜn(ℋ) ≤ 2
δ

2d log n
n

• Showed implies has the uniform convergence property

• and so finally proved the Fundamental Theorem of Learning! (up to Massart’s lemma)

d < ∞ ℋ

• But optimal rate is : much better in nUC
ℋ ≤ C2

ε2 [d + log 1
δ] δ

10

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

One-sided vs two-sided convergence

11

One-sided vs two-sided convergence
• For classifiers, not necessarily symmetric, with 0-1 loss,

, 
 

 

{0,1} ℋ
n ≥ d = VCdim(ℋ) ≥ 3

sup
h∈ℋ

L,(h) − LS(h) ≤ 2
δ

ℜn(ℋ) ≤ 2
δ

2d log n
n

11

One-sided vs two-sided convergence
• For classifiers, not necessarily symmetric, with 0-1 loss,

, 
 

 

{0,1} ℋ
n ≥ d = VCdim(ℋ) ≥ 3

sup
h∈ℋ

L,(h) − LS(h) ≤ 2
δ

ℜn(ℋ) ≤ 2
δ

2d log n
n

• Is what we really care about: for any , have  h ∈ ℋ L,(h) ≤ LS(h)+ 2
δ ℜn(ℋ)

11

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

One-sided vs two-sided convergence
• For classifiers, not necessarily symmetric, with 0-1 loss,

, 
 

 

{0,1} ℋ
n ≥ d = VCdim(ℋ) ≥ 3

sup
h∈ℋ

L,(h) − LS(h) ≤ 2
δ

ℜn(ℋ) ≤ 2
δ

2d log n
n

• Is what we really care about: for any , have  h ∈ ℋ L,(h) ≤ LS(h)+ 2
δ ℜn(ℋ)

• Rademacher results usually framed this way to avoid the symmetric condition

• Some other bounds work this way too (e.g. PAC-Bayes)

• Difference between two-sided and one-sided will be important later!

11

(pause)

12

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

McDiarmid’s inequality

13

McDiarmid’s inequality
• Hoeffding’s inequality: 

“the mean of independent, bounded RVs concentrates around its expectation” 

13

McDiarmid’s inequality
• Hoeffding’s inequality: 

“the mean of independent, bounded RVs concentrates around its expectation” 

• McDiarmid’s inequality lets us take more general functions of independent RVs:

13

McDiarmid’s inequality
• Hoeffding’s inequality: 

“the mean of independent, bounded RVs concentrates around its expectation” 

• McDiarmid’s inequality lets us take more general functions of independent RVs:
• Say has bounded differences if for all , 

f 1 ≤ i ≤ n

f(x1, …, xi−1, xi, xi+1, …, xn) − f(x1, …, xi−1, x′ i, xi+1, …, xn) ≤ ci

13

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

McDiarmid’s inequality
• Hoeffding’s inequality: 

“the mean of independent, bounded RVs concentrates around its expectation” 

• McDiarmid’s inequality lets us take more general functions of independent RVs:
• Say has bounded differences if for all , 

f 1 ≤ i ≤ n

f(x1, …, xi−1, xi, xi+1, …, xn) − f(x1, …, xi−1, x′ i, xi+1, …, xn) ≤ ci

13Colin McDiarmid

McDiarmid’s  
inequality 

(1989)

If independent, has bounded diffs with ,X1, …, Xn ∈ ℝ f ci

then Pr (f(S) > (S′
f(S′) + ε) ≤ 2 exp (−2ε2

∑i c2
i)

13
and same for Pr (f(S) < (S′

f(S′) − ε)

Mobile User

More general than Hoeffding

14Colin McDiarmid

McDiarmid’s  
inequality 

(1989)

If independent, has bounded diffs with ,X1, …, Xn ∈ ℝ f ci

then Pr (f(S) > (S′
f(S′) + ε) ≤ 2 exp (−2ε2

∑i c2
i)

14
and same for Pr (f(S) < (S′

f(S′) − ε)

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Generalization gap has bounded differences

• Consider

• Let be with replaced by (for any one)

Φ(S) = sup
g∈&

([g] − (̂S[g]

S′ S zi z′ i i

15

Generalization gap has bounded differences

• Consider

• Let be with replaced by (for any one)

Φ(S) = sup
g∈&

([g] − (̂S[g]

S′ S zi z′ i i

15

Φ(S) = sup
g∈&

([g] − (̂S[g]

Generalization gap has bounded differences

• Consider

• Let be with replaced by (for any one)

Φ(S) = sup
g∈&

([g] − (̂S[g]

S′ S zi z′ i i

15

= sup
g∈&

([g] − (̂S′
g+ 1

n g(z′ i)− 1
n g(zi)

Φ(S) = sup
g∈&

([g] − (̂S[g]

Generalization gap has bounded differences

• Consider

• Let be with replaced by (for any one)

Φ(S) = sup
g∈&

([g] − (̂S[g]

S′ S zi z′ i i

15

= sup
g∈&

([g] − (̂S′
g+ 1

n g(z′ i)− 1
n g(zi)

≤ sup
g∈&

([g] − (̂S′
g + 1

n sup
g∈&

|g(z′ i) − g(zi)|

Φ(S) = sup
g∈&

([g] − (̂S[g]

Generalization gap has bounded differences

• Consider

• Let be with replaced by (for any one)

Φ(S) = sup
g∈&

([g] − (̂S[g]

S′ S zi z′ i i

15

= sup
g∈&

([g] − (̂S′
g+ 1

n g(z′ i)− 1
n g(zi)

≤ sup
g∈&

([g] − (̂S′
g + 1

n sup
g∈&

|g(z′ i) − g(zi)|

and assume g(z) ∈ [0,B]

Φ(S) = sup
g∈&

([g] − (̂S[g]

Generalization gap has bounded differences

• Consider

• Let be with replaced by (for any one)

Φ(S) = sup
g∈&

([g] − (̂S[g]

S′ S zi z′ i i

15

= sup
g∈&

([g] − (̂S′
g+ 1

n g(z′ i)− 1
n g(zi)

≤ sup
g∈&

([g] − (̂S′
g + 1

n sup
g∈&

|g(z′ i) − g(zi)|

≤ Φ(S′)+ B
n

and assume g(z) ∈ [0,B]

Φ(S) = sup
g∈&

([g] − (̂S[g]

Generalization gap has bounded differences

• Consider

• Let be with replaced by (for any one)

Φ(S) = sup
g∈&

([g] − (̂S[g]

S′ S zi z′ i i

15

= sup
g∈&

([g] − (̂S′
g+ 1

n g(z′ i)− 1
n g(zi)

≤ sup
g∈&

([g] − (̂S′
g + 1

n sup
g∈&

|g(z′ i) − g(zi)|

≤ Φ(S′)+ B
n

and assume g(z) ∈ [0,B]

so |Φ(S) − Φ(S′)| ≤ B
n

Φ(S) = sup
g∈&

([g] − (̂S[g]

A better generalization bound
• Consider and assume Φ(S) = sup

g∈&
([g] − (̂S[g] g(z) ∈ [0,B]

16

A better generalization bound
• Consider and assume Φ(S) = sup

g∈&
([g] − (̂S[g] g(z) ∈ [0,B]

• satisfies bounded differences with Φ ci = B
n

16

A better generalization bound
• Consider and assume Φ(S) = sup

g∈&
([g] − (̂S[g] g(z) ∈ [0,B]

• satisfies bounded differences with Φ ci = B
n

• Already saw  (SΦ(S) ≤ 2ℜn(&)

16

A better generalization bound
• Consider and assume Φ(S) = sup

g∈&
([g] − (̂S[g] g(z) ∈ [0,B]

• satisfies bounded differences with Φ ci = B
n

• Already saw  (SΦ(S) ≤ 2ℜn(&)

• So we get 

Pr (Φ(S) > 2ℜn(&) + ε) ≤ Pr (Φ(S) > (S′
Φ(S′) + ε) ≤ exp (−2ε2

n ⋅ (B/n)2)
16

A better generalization bound
• Consider and assume Φ(S) = sup

g∈&
([g] − (̂S[g] g(z) ∈ [0,B]

• satisfies bounded differences with Φ ci = B
n

• Already saw  (SΦ(S) ≤ 2ℜn(&)

• So we get 

Pr (Φ(S) > 2ℜn(&) + ε) ≤ Pr (Φ(S) > (S′
Φ(S′) + ε) ≤ exp (−2ε2

n ⋅ (B/n)2)
16

≤ exp (−2nε2/B2)

A better generalization bound
• Consider and assume Φ(S) = sup

g∈&
([g] − (̂S[g] g(z) ∈ [0,B]

• satisfies bounded differences with Φ ci = B
n

• Already saw  (SΦ(S) ≤ 2ℜn(&)

• So we get 

Pr (Φ(S) > 2ℜn(&) + ε) ≤ Pr (Φ(S) > (S′
Φ(S′) + ε) ≤ exp (−2ε2

n ⋅ (B/n)2)
16

≤ exp (−2nε2/B2)Solving for , get ε Φ(S) ≤ 2ℜn(&) + B2

2n
log 1

δ

A better generalization bound
• Consider and assume Φ(S) = sup

g∈&
([g] − (̂S[g] g(z) ∈ [0,B]

• satisfies bounded differences with Φ ci = B
n

• Already saw  (SΦ(S) ≤ 2ℜn(&)

• So we get 

Pr (Φ(S) > 2ℜn(&) + ε) ≤ Pr (Φ(S) > (S′
Φ(S′) + ε) ≤ exp (−2ε2

n ⋅ (B/n)2)
16

≤ exp (−2nε2/B2)Solving for , get ε Φ(S) ≤ 2ℜn(&) + B2

2n
log 1

δ

Still has pesky inside the ;

can get optimal rate with chaining

log n ℜn

 converges to ℜ̂S ℜn

• also satisfies bounded differences for bounded

• So concentrates, by McDiarmid

• Can split failure prob into for this, for previous theorem  

and bound in terms of

ℜ̂S g
|ℜ̂S − ℜn|

δ δ/2 δ/2
Φ(S) ℜ̂S

17

Massart’s lemma: for , if , 8 ⊂ ℝn max
a∈8

∥a∥ ≤ r (σ[max
a∈8

1
n σ⊤a] ≤ 1

n r 2 log|8|

18

If there’s time left, let’s prove: (If not: we’ll come back to it another time!)

Summary

• We finally proved the fundamental theorem:

• Finite VCdim characterizes PAC learnability (realizable or agnostic) + ERM

• Proved a generalization bound via Rademacher complexity

• Works for any bounded loss function

19

