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Back to normal office hours (Tuesday 10-11, Thursday 4-5)

A1 grading: hopefully by end of the week ) “Ww"‘ﬁ

A2 release: hopefully later this week v O .
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The website for SSBD is currently down (??77?) Q& L\"’/{?

e |f you don’t have the pdf saved, | put it on the Canvas Files section

Note on VC dim of homogenous linear classifiers: SSBD are being kinda sloppy

« Radon’s Theorem implies non-homogeneous halfspaces can’t shatter size d + 2
* (Basically the same proof as we talked about)

e Can do a reduction between homogeneous in |

d d—1

and non-homog in |


https://en.wikipedia.org/wiki/Radon's_theorem
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Forever ago: “Fundamental Theorem of Learning”

These are all equivalent:
5 1. A has the uniform convergence property ) -
2. Any ERM rule agnostically PAC learns # K
3. A is agnostic PAC learnable
ew”* 4. Any ERM rule PAC learns A
5. # is PAC learnable
0

« If VCdim(%) = - VCdim(%) < 00

. 7 has uniform convergence property, — [d + log ] < nUC < 8— d + log ;

. . C,
. # is agnostic PAC learnable, ? [a’ + log 3] <ng < — [d + log 3]

. /# is PAC learnable, kil [d + log %] <ng < % [d log %+log %]

€3



Last time: Rademacher complexity

» The empirical Rademacher complexity of & onaset$ = (z,...,2,) is

o~ ] &
Ry(%) =k, [SUP_ Z Uig(Zi)]

6 ~ Rad" | gez .
o, ~ Rad means Pr(c; = — 1) = - = Pr(g; = 1)




Last time: Rademacher complexity

 The empirical Rademacher complexity of & onaset$ = (z,...,2,) is

—~ ] -«
R (%) =E, [SHP—ZGig(Zi)] =, lsup%rfgs] g5 = (8- 8(z))

o ~ Rad" gEYG n i—=1 geY
o, ~ Rad means Pr(c; = —1) =

| “how well can functions from &
> — Pr(gl. — 1) correlate with random noise?”
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Last time: Rademacher complexity

ey Z,) S

» The empirical Rademacher complexity of & on aset S = (g5,

~ ] <&
R(%)=E, [SHP—ZGig(Zi)] =E, lsup%rfgs] g5 = (8- 8(z))

geEG

6 ~ Rad"® | se% i

“how well can functions from &

o, ~ Rad means Pr(c; = —1) = % = Pr(o; = 1) correlate with random noise?”

o The (“average-case”) Rademacher complexity is just R, (&) =

—S~Pn [ﬁs(?)]
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 The empirical Rademacher complexity of & onaset$ = (z,...,2,) is

7o =5, Lan za,g@] I e

~ n n g
6 ~ Rad 885 7 =1 8 “how well can functions from &
o, ~ Rad means Pr(c;=—1) == =Pr(c, = 1) correlate with random noise?”

» The (“average-case”) Rademacher complexﬂy isjust R (&) =E S,\,@n[m S(?)]

. Take R ,(¥) for & = {z > £(h,2):h € '}
. For 0-1loss, g,((x,y)) = l(h(x) # y), and SRS(?) —-»SRS‘ (#)

2 209z 2 2lh, 2¢) ‘iz'f (2(“/2"') o
C D.z C. ‘o " _ L )
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Last time: Rademacher complexity

» The empirical Rademacher complexity of & onaset$ = (z,...,2,) is
o~ ] & i
R(%)=E, [Sﬂpzz Gig(zi)] =E, lsup ;GTgS] g5 = (8- 8(z))
o ~ Rad" | ge9 ™ §€Y “how well can functions from &

o, ~ Rad means Pr(c; = —1) = % = Pr(o; = 1) correlate with random noise?”
o The (“average-case”) Rademacher complexity is just R (&) = E S,\,@n[m S(?)]

« Take R (&) for & = {Z — £ (h,z) : h € ?/}
. For 0-110ss, ,((,)) = I(h(x) # y), and  Ry(¥) =Ry (%)
o Binary clf: R (#) < /2 VCdim(#') log(n)/n (n > d > 3; Massart, Sauer-Shelah)
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Theorem: if & maps to [0,1], sup
geyg
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To start: a “low-probability” bound

. We’ll show E sup [E[g] — Eq[g] ‘ < 2R (&) (forany &; don’t need bounded)
geEG




To start: a “low-probability” bound

_ We’ll show [E sup ‘ -[g] — Elg] ‘ < 2R (&) (forany &; don’t need bounded)
geyg
 Immediately implies by Markov’s inequality

A\

2
that sup ‘ —[g] — Eqlg] ‘ < =R, (&) with prob at least | — 6
geyg 0
e Pretty similar to SSBD 6.11, but more general + better bound

If Pr(X > 0) = 1, then Pr (X> % -[X]) <0
1

Proof: take a = n - X in:

al s < X, so Elaliys 4] = aPr(X > a) < EX

Markov’s
inequality
(~1860s)

Andrey Markov Pafnuty Chebyshev



To start: a “low-probability” bound

_ We’ll show [E sup ‘ -[g] — Elg] ‘ < 2R (&) (forany &; don’t need bounded)
geyg
 Immediately implies by Markov’s inequality

A\

2
that sup ‘ —[g] — Eqlg] ‘ < =R, (&) with prob at least | — 6
geyg 0
e Pretty similar to SSBD 6.11, but more general + better bound

o Will get a better bound with McDiarmid’s inequality after

1
> — — & <
Markov's If Pr(X > 0) = 1, then Pr (X > — [X]) <0
inequality | & SU8 ? Proof: take a = % =X in:
-1s09) iy

al s < X, so Elaliys 4] = aPr(X > a) < EX

Andrey Markov Pafnuty Chebyshev



. Want

A\

= sup |E[g] — Eglg]] < 2R ()

2D
N . Z
!Esﬁ > (:2(7( b)
tf
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., Want E sup |E[g] — Eglg]| < 2R (%)

. Rewrife {iS]

A\

r% a ghost sample:

“[g] =

s

“olgl] with §" = (21, ...,

/

<n

)
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.~ Want Esup |E[g] —

geYG

o Rewrite using a ghost sample:

_ Then [Egsup |
geEG

A\

—[g] —

“[g] =

A\

—slgll =

—gSUp ‘
geyg

— S/~ 1 [

_S’[

A\

A\

—o[g]| —

-S,[g]] with " = (zg, ...,

slg] ‘

/

<n

)
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So what does that mean?

e For {0,1} classifiers in symmetric # with 0-1 loss, n > d = VCdim(#") > 3,

2 2 [12d1
sup | Lo (h) — L(h)| < =R, (%) < =1/ —=" = £

O 0 n g N 2.0l (3'1
he#
E SECI
?{ (5 Iol‘ﬂﬁfy O(QSQ'@('Q/‘S (€ Syﬂlmev'f/‘fc/ / g 8/0';_
2§ SE

u’
@(,S‘F [ (A3 965@%0\[——3@[6
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So what does that mean?

e For {0,1} classifiers in symmetric # with 0-1 loss, n > d = VCdim(#") > 3,

2 2 [2dlogn
sup |Lg(h) — Lg(h)| < R () < | ——
heH 0 0 N

N ﬂ(%s”)

/

« Showed d < oo implies # has the uniform convergence property
* and so finally proved the Fundamental Theorem of Learning! (up to Massart’s lemma)

C
. But optimal rate is n%c < 5_22 [d + log %] . much better in 0
— e’
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One-sided vs two-sided convergence

« For {0,1} classifiers, # not necessarily symmetric, with 0-1 loss,

n>d=VCdim(#) > 3,

2 2 [2dlogn
sup Loy (h) — Lg(h) < =R (%) < =
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One-sided vs two-sided convergence

« For {0,1} classifiers, # not necessarily symmetric, with 0-1 loss,

n>d=VCdim(#) > 3,

2 2 [2dlogn
sup Loy (h) — Lg(h) < =R (%) < =

. Is what we really care about: for any 7 € #Z’, have Lg(h) < LS(h)+%mn(7/ )

Vg‘ - LJ)
l:L
@Lg D
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One-sided vs two-sided convergence

« For {0,1} classifiers, # not necessarily symmetric, with 0-1 loss,

n>d=VCdim(#) > 3,

2 2 [2dlogn
sup Lg(h) — Lg(h) < =R (H) < =/ ———

. Is what we really care about: for any 7 € #Z’, have Lg(h) < LS(h)+%mn(7/ )

 Rademacher results usually framed this way to avoid the symmetric condition
 Some other bounds work this way too (e.g. PAC-Bayes)
* Difference between two-sided and one-sided will be important later!

11
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McDiarmid’s inequality

 Hoeffding’s inequality:
“the mean of independent, bounded RVs concentrates around its expectation”
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Hoeffding’s inequality:
“the mean of independent, bounded RVs concentrates around its expectation”

McDiarmid’s inequality lets us take more general functions of independent RVs:
 Say f has bounded differences if forall 1 <1 < n,

S oo X5 Xy Xt s ..{,xn) — (X e s X5 X X s e X)) | S C
€(xl/“‘/7<"]) Z p %Xc ) ﬁn
L + 0.01-\’0.(-?0'((
x:¢ 0o (03 o2t 0]
e (A, Axt]

0
(
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McDiarmid’s inequality

 Hoeffding’s inequality:
“the mean of independent, bounded RVs concentrates around its expectation”

 McDiarmid’s inequality lets us take more general functions of independent RVs:
 Say f has bounded differences if forall 1 <1 < n,

‘f(xl, ...,)Cl-_l, Xl, Xl-_l_l, ""'XI/Z) _f(xl, ”"xl.—l’xi,’ xi+1’ ”.,xn) S C-

l

?; If X, ...,X, € Rindependent, f has bounded diffs with ¢,
. i PR 2
McDiarmid’s & —2¢
| | ' M. ¥ then Pr (f(S) > _S’f(S,) T 8) < ”exp Z o
Y C.
,.. i l

iInequality y .
and same for Pr (f(S) < Egf(S) — 8)

(1989)

Colin McDiarmid


Mobile User


More general than Hoeffding

g

— 2 g " _22n £
\ b 2 Z/ — B> =2 ’/%-
Xn) = L
(o) & Ok B0 T o B

If X, ...,X, € Rindependent, f has bounded diffs with ¢,

Colin McDiarmid

McDiarmid’s [ o
iInequality
(1989)
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R converges to R,

. fﬁS also satisfies bounded differences for bounded g
+ So | — N | concentrates, by McDiarmid

» Can split o failure prob into 6/2 for this, 0/2 for previous theorem
and bound ®(S) in terms of R
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If there’s time left, let’s prove: (If not: we’ll come back to it another time!)

, _ n o - 1.7 L 2 Tool o]
Massart’s lemma: for &/ C R”, if max||al| <, ~| max —o a] < —=r 2log| |

acsl aco
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Summary

* We finally proved the fundamental theorem:

* Finite VCdim characterizes PAC learnability (realizable or agnostic) + ERM
* Proved a generalization bound via Rademacher complexity

 Works for any bounded loss function
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