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Admin
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• But feel free to Piazza / schedule a meeting if needed
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Admin
• Reminder: no office hours this week (ICML…)

• But feel free to Piazza / schedule a meeting if needed

• A1 grading: probably late next week
• A2 will be released probably next week, due ~2-3 weeks after release. A weird plan:

• Groups of up to 3 allowed

• You can use a different group per question if you want

• (e.g. do one problem alone, one with person A, one with B+C)


• You’ll hand in questions as separate Gradescope assignments

• (one per group per question, using Gradescope group feature)


• Drop lowest: still for total assignment grade (or more advantageous, TBD)

• Trying to encourage actively participating in each question 
• Please don’t just split assignment in thirds


• Dropping lowest assignment grade is still per student

• Will try to calibrate difficulty/length a bit, but you’ll have groups



Previously: “Fundamental Theorem of Learning”
   These are all equivalent:


1.  has the uniform convergence property

2. Any ERM rule agnostically PAC learns 

3.  is agnostic PAC learnable

4. Any ERM rule PAC learns 

5.  is PAC learnable

6.

ℋ
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ℋ
VCdim(ℋ) < ∞

3

For binary classification  
with 0-1 loss:
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• If :


•  has uniform convergence property, 
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VCdim(ℋ) = d
ℋ C1

ε2 [d + log 1
δ ] ≤ nUC

ℋ ≤ C2

ε2 [d + log 1
δ ]

ℋ C1

ε2 [d + log 1
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ε [d log 1
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with 0-1 loss:
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Last time: Finite VCdim implies uniform convergence
• Uniform convergence:  with probability at least  

• Will prove in terms of the growth function: 


• How many actually different functions from  are there on sets of size ?

• If , then  for  

• Theorem (SSBD 6.11):  

• Sauer-Shelah lemma: when ,     


• Plugging together: uniform convergence when 

sup
h∈ℋ

|L%(h) − LS(h)| ≤ ε 1 − δ

τℋ(n) = max
C⊆(: |C|=n

|ℋC|

ℋ n
VCdim(ℋ) = d τℋ(n) = 2n n ≤ d

sup
h∈ℋ

|L%(h) − LS(h)| ≤
4 + log(τℋ(2n))

δ 2n

n ≥ d τℋ(n) ≤ (en/d)d = * (nd)
n ≥ 4 2d

(δε)2 log ( 2d
(δε)2 ) + 4d log(2e/d)

(δε)24

This is the part we didn’t prove yet



VC dimension of linear classifiers
•  on 

• Can shatter, e.g.,  (actually, anything in “general position”)
hw(x) = + (w⊤x ≥ 0) ℝd

{e1, e2, …, ed}
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VC dimension of linear classifiers
•  on 

• Can’t shatter anything of size 
hw(x) = + (w⊤x ≥ 0) ℝd

d + 1
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VC dimension of non-homogenous linear classifiers

• hw(x) = + (w0 + w⊤x ≥ 0)

7
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M-ing the ER for halfspaces
• Just showed that ERM will agnostically PAC-learn a linear classifier (halfspace) with 

 samples (with 0-1 loss) Ω ( 1
ε [d + log 1

δ ])

8

https://proceedings.neurips.cc/paper/2000/file/39027dfad5138c9ca0c474d71db915c3-Paper.pdf
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• Just showed that ERM will agnostically PAC-learn a linear classifier (halfspace) with 

 samples (with 0-1 loss) Ω ( 1
ε [d + log 1

δ ])
• But…turns out that finding the optimal halfspace (for 0-1 loss) 

is NP-hard to even approximate (i.e. to get loss ) 
                                                                                   [Ben-David+Simon, NeurIPS 2000] 

(1 + γ) L*
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M-ing the ER for halfspaces
• Just showed that ERM will agnostically PAC-learn a linear classifier (halfspace) with 

 samples (with 0-1 loss) Ω ( 1
ε [d + log 1

δ ])
• But…turns out that finding the optimal halfspace (for 0-1 loss) 

is NP-hard to even approximate (i.e. to get loss ) 
                                                                                   [Ben-David+Simon, NeurIPS 2000] 

(1 + γ) L*

• In the realizable (separable) case ( ), easy algorithms in polynomial time

• Perceptron

• Linear programming

• Logistic regression

• SVMs

• …

LS(hS) = 0

8

https://proceedings.neurips.cc/paper/2000/file/39027dfad5138c9ca0c474d71db915c3-Paper.pdf


(pause)
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Generalization bound from growth functions

• SSBD’s theorem 6.11:   

with probability at least  over the choice of , for any  

sup
h∈ℋ

|L%(h) − LS(h)| ≤
4 + log(τℋ(2n))

δ 2n
1 − δ S ∼ %n %

1010
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Andrey Markov

Markov’s 
inequality 
(~1860s)

Pafnuty Chebyshev

Generalization bound from growth functions

• SSBD’s theorem 6.11:   

with probability at least  over the choice of , for any  

sup
h∈ℋ

|L%(h) − LS(h)| ≤
4 + log(τℋ(2n))

δ 2n
1 − δ S ∼ %n %

• Follows from 0 sup
h∈ℋ

|L%(h) − LS(h)| ≤
4 + log(τℋ(2n))

2n

10

If , then Pr(X ≥ 0) = 1 Pr (X > 1
δ 0[X]) ≤ δ

Proof:  take  in:

 , so  

a = 1
δ 0X

a+[X≥a] ≤ X 0[a+[X≥a]] = a Pr(X ≥ a) ≤ 0X
10
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but, actually, we’re going to do better than that
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using (a) Rademacher complexity 
and (b) McDiarmid’s inequality rather than Markov’s



but, actually, we’re going to do better than that

11

the overall proof uses the same core techniques, 
and the basic version gets much closer to the optimal rate, 

using machinery that we were going to do pretty soon anyway

most of this is in SSBD chapter 26,  
but today’s presentation will more or less follow MRT chapter 3

using (a) Rademacher complexity 
and (b) McDiarmid’s inequality rather than Markov’s



Rademacher complexities
• Measure the complexity of a set of functions  from  to 

• For example, could have  and  of binary classifiers

• But (unlike VC), will be easy to use for much more general settings  

1 2 ℝ
2 = ( 1 = ℋ
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• Measure the complexity of a set of functions  from  to 

• For example, could have  and  of binary classifiers

• But (unlike VC), will be easy to use for much more general settings  

1 2 ℝ
2 = ( 1 = ℋ

• The empirical Rademacher complexity of  on a set  is 
 
 
 
 
 

1 S = (z1, …, zn)

• The (“average-case”) Rademacher complexity is just 

• Distribution-dependent notion of complexity!

ℜn(1) = 0S∼%n[ ̂ℜS(1)]
12
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1
n
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 of singleton setsℜ
• If  ℋ = {h}
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 of linear functionsℜ
• If ℋ = {x ↦ w⊤x : ∥w∥ ≤ B}

14
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= 1
2 0σ [ sup

h∈ℋ

1
n

n

∑
i=1
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− σiỹih̃(xi)]

Adding constants doesn’t change :
̂ℜS
0σ [ sup

g∈1
σ⊤(gS + c1)] = 0σ [( sup

g∈1
σ⊤gS) + c σ⊤1)] = 0σ [ sup

g∈1
σ⊤gS]

= 1
2 0σ [ sup

h∈ℋ

1
n

n

∑
i=1

σih̃(xi)] = 1
2

̂ℜS|x
(ℋ̃)

for fixed , ỹi −σiỹi ∼ Rad
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− σiỹih̃(xi)]

Adding constants doesn’t change :
̂ℜS
0σ [ sup

g∈1
σ⊤(gS + c1)] = 0σ [( sup

g∈1
σ⊤gS) + c σ⊤1)] = 0σ [ sup

g∈1
σ⊤gS]

= 1
2 0σ [ sup

h∈ℋ

1
n

n

∑
i=1

σih̃(xi)] = 1
2

̂ℜS|x
(ℋ̃) = ̂ℜS|x

(ℋ)

Scaling by  gives :
c |c| ̂ℜS
0σ [ sup

g∈1
σ⊤(cgS)] = |c| 0σ [ sup

g∈1
sign(c) σ⊤gS] = |c| 0σ [ sup

g∈1
σ⊤gS]

for fixed , ỹi −σiỹi ∼ Rad



Massart’s lemma: for , if ,     6 ⊂ ℝn max
a∈6

∥a∥ ≤ r 0σ[ max
a∈6

1
n σ⊤a] ≤ 1

n r 2 log|6|
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If there’s time left, let’s prove: (If not: we’ll come back to it another time!)



Summary
• VC dimension for linear classifiers:

•  for homogenous,  for not (same as # of params)

• So ERM works with 0-1 loss…except we can’t do ERM in non-separable case!  

• We still haven’t quite proved the fundamental theorem

• But we’ll prove a much better bound when we do, on Monday


• Empirical Rademacher complexity: how much can  correlate with  noise on ?

• Rademacher complexity: its expectation over a random 

• Upper bounded in terms of VC dimension

• Stated a generalization bound in terms of Rademacher complexity

• Will imply (almost) the optimal sample complexity for agnostic case


• Will be easy(ish) to extend to things beyond 0-1 loss binary classification

d d + 1

1 ±1 S
S ∼ %n
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