
More VC + Rademacher
CPSC 532S: Modern Statistical Learning Theory

26 January 2022

cs.ubc.ca/~dsuth/532S/22/

https://www.cs.ubc.ca/~dsuth/532S/22/

Admin
• Reminder: no office hours this week (ICML…)

• But feel free to Piazza / schedule a meeting if needed

• A1 grading: probably late next week

Admin
• Reminder: no office hours this week (ICML…)

• But feel free to Piazza / schedule a meeting if needed

• A1 grading: probably late next week
• A2 will be released probably next week, due ~2-3 weeks after release. A weird plan:

• Groups of up to 3 allowed

• You can use a different group per question if you want

• (e.g. do one problem alone, one with person A, one with B+C)

• You’ll hand in questions as separate Gradescope assignments

• (one per group per question, using Gradescope group feature)

• Drop lowest: still for total assignment grade (or more advantageous, TBD)

• Trying to encourage actively participating in each question
• Please don’t just split assignment in thirds

• Dropping lowest assignment grade is still per student

• Will try to calibrate difficulty/length a bit, but you’ll have groups

Previously: “Fundamental Theorem of Learning”
 These are all equivalent:

1. has the uniform convergence property

2. Any ERM rule agnostically PAC learns

3. is agnostic PAC learnable

4. Any ERM rule PAC learns

5. is PAC learnable

6.

ℋ
ℋ

ℋ
ℋ

ℋ
VCdim(ℋ) < ∞

3

For binary classification  
with 0-1 loss:

Previously: “Fundamental Theorem of Learning”
 These are all equivalent:

1. has the uniform convergence property

2. Any ERM rule agnostically PAC learns

3. is agnostic PAC learnable

4. Any ERM rule PAC learns

5. is PAC learnable

6.

ℋ
ℋ

ℋ
ℋ

ℋ
VCdim(ℋ) < ∞

3

• If :

• has uniform convergence property,

• is agnostic PAC learnable,

• is PAC learnable,  

VCdim(ℋ) = d
ℋ C1

ε2 [d + log 1
δ] ≤ nUC

ℋ ≤ C2

ε2 [d + log 1
δ]

ℋ C1

ε2 [d + log 1
δ] ≤ nℋ ≤ C2

ε2 [d + log 1
δ]

ℋ C1
ε [d + log 1

δ] ≤ nℋ ≤ C2
ε [d log 1

ε +log 1
δ]

For binary classification  
with 0-1 loss:

Previously: “Fundamental Theorem of Learning”
 These are all equivalent:

1. has the uniform convergence property

2. Any ERM rule agnostically PAC learns

3. is agnostic PAC learnable

4. Any ERM rule PAC learns

5. is PAC learnable

6.

ℋ
ℋ

ℋ
ℋ

ℋ
VCdim(ℋ) < ∞

3

• If :

• has uniform convergence property,

• is agnostic PAC learnable,

• is PAC learnable,  

VCdim(ℋ) = d
ℋ C1

ε2 [d + log 1
δ] ≤ nUC

ℋ ≤ C2

ε2 [d + log 1
δ]

ℋ C1

ε2 [d + log 1
δ] ≤ nℋ ≤ C2

ε2 [d + log 1
δ]

ℋ C1
ε [d + log 1

δ] ≤ nℋ ≤ C2
ε [d log 1

ε +log 1
δ]

For binary classification  
with 0-1 loss:

Previously: “Fundamental Theorem of Learning”
 These are all equivalent:

1. has the uniform convergence property

2. Any ERM rule agnostically PAC learns

3. is agnostic PAC learnable

4. Any ERM rule PAC learns

5. is PAC learnable

6.

ℋ
ℋ

ℋ
ℋ

ℋ
VCdim(ℋ) < ∞

3

• If :

• has uniform convergence property,

• is agnostic PAC learnable,

• is PAC learnable,  

VCdim(ℋ) = d
ℋ C1

ε2 [d + log 1
δ] ≤ nUC

ℋ ≤ C2

ε2 [d + log 1
δ]

ℋ C1

ε2 [d + log 1
δ] ≤ nℋ ≤ C2

ε2 [d + log 1
δ]

ℋ C1
ε [d + log 1

δ] ≤ nℋ ≤ C2
ε [d log 1

ε +log 1
δ]

For binary classification  
with 0-1 loss:

Last time: Finite VCdim implies uniform convergence
• Uniform convergence: with probability at least  

• Will prove in terms of the growth function:

• How many actually different functions from are there on sets of size ?

• If , then for  

• Theorem (SSBD 6.11):  

• Sauer-Shelah lemma: when ,

• Plugging together: uniform convergence when

sup
h∈ℋ

|L%(h) − LS(h)| ≤ ε 1 − δ

τℋ(n) = max
C⊆(: |C|=n

|ℋC|

ℋ n
VCdim(ℋ) = d τℋ(n) = 2n n ≤ d

sup
h∈ℋ

|L%(h) − LS(h)| ≤
4 + log(τℋ(2n))

δ 2n

n ≥ d τℋ(n) ≤ (en/d)d = * (nd)
n ≥ 4 2d

(δε)2 log (2d
(δε)2) + 4d log(2e/d)

(δε)24

This is the part we didn’t prove yet

VC dimension of linear classifiers
• on

• Can shatter, e.g., (actually, anything in “general position”)
hw(x) = + (w⊤x ≥ 0) ℝd

{e1, e2, …, ed}

5

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

VC dimension of linear classifiers
• on

• Can’t shatter anything of size
hw(x) = + (w⊤x ≥ 0) ℝd

d + 1

6

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

VC dimension of non-homogenous linear classifiers

• hw(x) = + (w0 + w⊤x ≥ 0)

7

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

M-ing the ER for halfspaces
• Just showed that ERM will agnostically PAC-learn a linear classifier (halfspace) with

 samples (with 0-1 loss) Ω (1
ε [d + log 1

δ])

8

https://proceedings.neurips.cc/paper/2000/file/39027dfad5138c9ca0c474d71db915c3-Paper.pdf

M-ing the ER for halfspaces
• Just showed that ERM will agnostically PAC-learn a linear classifier (halfspace) with

 samples (with 0-1 loss) Ω (1
ε [d + log 1

δ])
• But…turns out that finding the optimal halfspace (for 0-1 loss) 

is NP-hard to even approximate (i.e. to get loss) 
 [Ben-David+Simon, NeurIPS 2000] 

(1 + γ) L*

8

https://proceedings.neurips.cc/paper/2000/file/39027dfad5138c9ca0c474d71db915c3-Paper.pdf

M-ing the ER for halfspaces
• Just showed that ERM will agnostically PAC-learn a linear classifier (halfspace) with

 samples (with 0-1 loss) Ω (1
ε [d + log 1

δ])
• But…turns out that finding the optimal halfspace (for 0-1 loss) 

is NP-hard to even approximate (i.e. to get loss) 
 [Ben-David+Simon, NeurIPS 2000] 

(1 + γ) L*

• In the realizable (separable) case (), easy algorithms in polynomial time

• Perceptron

• Linear programming

• Logistic regression

• SVMs

• …

LS(hS) = 0

8

https://proceedings.neurips.cc/paper/2000/file/39027dfad5138c9ca0c474d71db915c3-Paper.pdf

(pause)

9

Generalization bound from growth functions

• SSBD’s theorem 6.11:  

with probability at least over the choice of , for any  

sup
h∈ℋ

|L%(h) − LS(h)| ≤
4 + log(τℋ(2n))

δ 2n
1 − δ S ∼ %n %

1010

Generalization bound from growth functions

• SSBD’s theorem 6.11:  

with probability at least over the choice of , for any  

sup
h∈ℋ

|L%(h) − LS(h)| ≤
4 + log(τℋ(2n))

δ 2n
1 − δ S ∼ %n %

• Follows from 0 sup
h∈ℋ

|L%(h) − LS(h)| ≤
4 + log(τℋ(2n))

2n

1010

Andrey Markov

Markov’s 
inequality 
(~1860s)

Pafnuty Chebyshev

Generalization bound from growth functions

• SSBD’s theorem 6.11:  

with probability at least over the choice of , for any  

sup
h∈ℋ

|L%(h) − LS(h)| ≤
4 + log(τℋ(2n))

δ 2n
1 − δ S ∼ %n %

• Follows from 0 sup
h∈ℋ

|L%(h) − LS(h)| ≤
4 + log(τℋ(2n))

2n

1010

Andrey Markov

Markov’s 
inequality 
(~1860s)

Pafnuty Chebyshev

Generalization bound from growth functions

• SSBD’s theorem 6.11:  

with probability at least over the choice of , for any  

sup
h∈ℋ

|L%(h) − LS(h)| ≤
4 + log(τℋ(2n))

δ 2n
1 − δ S ∼ %n %

• Follows from 0 sup
h∈ℋ

|L%(h) − LS(h)| ≤
4 + log(τℋ(2n))

2n

10

If , then Pr(X ≥ 0) = 1 Pr (X > 1
δ 0[X]) ≤ δ

10

Andrey Markov

Markov’s 
inequality 
(~1860s)

Pafnuty Chebyshev

Generalization bound from growth functions

• SSBD’s theorem 6.11:  

with probability at least over the choice of , for any  

sup
h∈ℋ

|L%(h) − LS(h)| ≤
4 + log(τℋ(2n))

δ 2n
1 − δ S ∼ %n %

• Follows from 0 sup
h∈ℋ

|L%(h) − LS(h)| ≤
4 + log(τℋ(2n))

2n

10

If , then Pr(X ≥ 0) = 1 Pr (X > 1
δ 0[X]) ≤ δ

Proof: take in:

 , so

a = 1
δ 0X

a+[X≥a] ≤ X 0[a+[X≥a]] = a Pr(X ≥ a) ≤ 0X
10

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

but, actually, we’re going to do better than that

11

but, actually, we’re going to do better than that

11

using (a) Rademacher complexity 
and (b) McDiarmid’s inequality rather than Markov’s

but, actually, we’re going to do better than that

11

the overall proof uses the same core techniques, 
and the basic version gets much closer to the optimal rate, 

using machinery that we were going to do pretty soon anyway

most of this is in SSBD chapter 26,  
but today’s presentation will more or less follow MRT chapter 3

using (a) Rademacher complexity 
and (b) McDiarmid’s inequality rather than Markov’s

Rademacher complexities
• Measure the complexity of a set of functions from to

• For example, could have and of binary classifiers

• But (unlike VC), will be easy to use for much more general settings  

1 2 ℝ
2 = (1 = ℋ

12

Rademacher complexities
• Measure the complexity of a set of functions from to

• For example, could have and of binary classifiers

• But (unlike VC), will be easy to use for much more general settings  

1 2 ℝ
2 = (1 = ℋ

• The empirical Rademacher complexity of on a set is 
 
 
 
 
 

1 S = (z1, …, zn)

12

Rademacher complexities
• Measure the complexity of a set of functions from to

• For example, could have and of binary classifiers

• But (unlike VC), will be easy to use for much more general settings  

1 2 ℝ
2 = (1 = ℋ

• The empirical Rademacher complexity of on a set is 
 
 
 
 
 

1 S = (z1, …, zn)

12

̂ℜS(1) = 0σ [sup
g∈1

1
n

n

∑
i=1

σig(zi)]
σ ∼ Radn

Rademacher complexities
• Measure the complexity of a set of functions from to

• For example, could have and of binary classifiers

• But (unlike VC), will be easy to use for much more general settings  

1 2 ℝ
2 = (1 = ℋ

• The empirical Rademacher complexity of on a set is 
 
 
 
 
 

1 S = (z1, …, zn)

12

̂ℜS(1) = 0σ [sup
g∈1

1
n

n

∑
i=1

σig(zi)]
σi ∼ Rad means Pr(σi = − 1) = 1

2 = Pr(σi = 1)
σ ∼ Radn

Rademacher complexities
• Measure the complexity of a set of functions from to

• For example, could have and of binary classifiers

• But (unlike VC), will be easy to use for much more general settings  

1 2 ℝ
2 = (1 = ℋ

• The empirical Rademacher complexity of on a set is 
 
 
 
 
 

1 S = (z1, …, zn)

12

̂ℜS(1) = 0σ [sup
g∈1

1
n

n

∑
i=1

σig(zi)] = 0σ [sup
g∈1

1
n σ⊤gS] gS = (g(z1), …, g(zn))

σi ∼ Rad means Pr(σi = − 1) = 1
2 = Pr(σi = 1)

σ ∼ Radn

Rademacher complexities
• Measure the complexity of a set of functions from to

• For example, could have and of binary classifiers

• But (unlike VC), will be easy to use for much more general settings  

1 2 ℝ
2 = (1 = ℋ

• The empirical Rademacher complexity of on a set is 
 
 
 
 
 

1 S = (z1, …, zn)

12

̂ℜS(1) = 0σ [sup
g∈1

1
n

n

∑
i=1

σig(zi)] = 0σ [sup
g∈1

1
n σ⊤gS] gS = (g(z1), …, g(zn))

σi ∼ Rad means Pr(σi = − 1) = 1
2 = Pr(σi = 1)

σ ∼ Radn “how well can functions from  
 correlate with random noise?”

1

Rademacher complexities
• Measure the complexity of a set of functions from to

• For example, could have and of binary classifiers

• But (unlike VC), will be easy to use for much more general settings  

1 2 ℝ
2 = (1 = ℋ

• The empirical Rademacher complexity of on a set is 
 
 
 
 
 

1 S = (z1, …, zn)

• The (“average-case”) Rademacher complexity is just

• Distribution-dependent notion of complexity!

ℜn(1) = 0S∼%n[̂ℜS(1)]
12

̂ℜS(1) = 0σ [sup
g∈1

1
n

n

∑
i=1

σig(zi)] = 0σ [sup
g∈1

1
n σ⊤gS] gS = (g(z1), …, g(zn))

σi ∼ Rad means Pr(σi = − 1) = 1
2 = Pr(σi = 1)

σ ∼ Radn “how well can functions from  
 correlate with random noise?”

1

 of singleton setsℜ
• If  ℋ = {h}

13

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

 of linear functionsℜ
• If ℋ = {x ↦ w⊤x : ∥w∥ ≤ B}

14

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

 Relating back to VC dim
• Massart’s lemma: for , if , 6 ⊂ ℝn max

a∈6
∥a∥ ≤ r 0σ[max

a∈6
1
n σ⊤a] ≤ 1

n r 2 log|6|

15

Pascal Massart

 Relating back to VC dim
• Massart’s lemma: for , if , 6 ⊂ ℝn max

a∈6
∥a∥ ≤ r 0σ[max

a∈6
1
n σ⊤a] ≤ 1

n r 2 log|6|

• (Proof is a nice + not too complicated result on concentration of max of sums; we’ll come back to it)  

15

Pascal Massart

 Relating back to VC dim
• Massart’s lemma: for , if , 6 ⊂ ℝn max

a∈6
∥a∥ ≤ r 0σ[max

a∈6
1
n σ⊤a] ≤ 1

n r 2 log|6|

• (Proof is a nice + not too complicated result on concentration of max of sums; we’ll come back to it)  

• For binary classifiers, with output in or :{0,1} {−1,1}

15

Pascal Massart

 Relating back to VC dim
• Massart’s lemma: for , if , 6 ⊂ ℝn max

a∈6
∥a∥ ≤ r 0σ[max

a∈6
1
n σ⊤a] ≤ 1

n r 2 log|6|

• (Proof is a nice + not too complicated result on concentration of max of sums; we’ll come back to it)  

• For binary classifiers, with output in or :{0,1} {−1,1}
• Recall ℋS = {(h(x1), …, h(xn)) : h ∈ ℋ} = {hS : h ∈ ℋ}

15

Pascal Massart

 Relating back to VC dim
• Massart’s lemma: for , if , 6 ⊂ ℝn max

a∈6
∥a∥ ≤ r 0σ[max

a∈6
1
n σ⊤a] ≤ 1

n r 2 log|6|

• (Proof is a nice + not too complicated result on concentration of max of sums; we’ll come back to it)  

• For binary classifiers, with output in or :{0,1} {−1,1}
• Recall ℋS = {(h(x1), …, h(xn)) : h ∈ ℋ} = {hS : h ∈ ℋ}
• But ̂ℜS(ℋ) = 0σ[sup

h∈ℋ

1
n σ⊤hS] = 0σ[max

hS∈ℋS

1
n σ⊤hS]

15

Pascal Massart

 Relating back to VC dim
• Massart’s lemma: for , if , 6 ⊂ ℝn max

a∈6
∥a∥ ≤ r 0σ[max

a∈6
1
n σ⊤a] ≤ 1

n r 2 log|6|

• (Proof is a nice + not too complicated result on concentration of max of sums; we’ll come back to it)  

• For binary classifiers, with output in or :{0,1} {−1,1}
• Recall ℋS = {(h(x1), …, h(xn)) : h ∈ ℋ} = {hS : h ∈ ℋ}
• But ̂ℜS(ℋ) = 0σ[sup

h∈ℋ

1
n σ⊤hS] = 0σ[max

hS∈ℋS

1
n σ⊤hS]

15

Pascal Massart

Massart’s lemma, using

∥hS∥ ≤ 12 + ⋯ + 12 = n

≤ 1
n n 2 log|ℋS|

 Relating back to VC dim
• Massart’s lemma: for , if , 6 ⊂ ℝn max

a∈6
∥a∥ ≤ r 0σ[max

a∈6
1
n σ⊤a] ≤ 1

n r 2 log|6|

• (Proof is a nice + not too complicated result on concentration of max of sums; we’ll come back to it)  

• For binary classifiers, with output in or :{0,1} {−1,1}
• Recall ℋS = {(h(x1), …, h(xn)) : h ∈ ℋ} = {hS : h ∈ ℋ}
• But ̂ℜS(ℋ) = 0σ[sup

h∈ℋ

1
n σ⊤hS] = 0σ[max

hS∈ℋS

1
n σ⊤hS]

15

Pascal Massart

≤ 2
n log τℋ(n)

by definition of the growth function 
τℋ(n) = sup

|S|=n
|ℋS|

Massart’s lemma, using

∥hS∥ ≤ 12 + ⋯ + 12 = n

≤ 1
n n 2 log|ℋS|

 Relating back to VC dim
• Massart’s lemma: for , if , 6 ⊂ ℝn max

a∈6
∥a∥ ≤ r 0σ[max

a∈6
1
n σ⊤a] ≤ 1

n r 2 log|6|

• (Proof is a nice + not too complicated result on concentration of max of sums; we’ll come back to it)  

• For binary classifiers, with output in or :{0,1} {−1,1}
• Recall ℋS = {(h(x1), …, h(xn)) : h ∈ ℋ} = {hS : h ∈ ℋ}
• But ̂ℜS(ℋ) = 0σ[sup

h∈ℋ

1
n σ⊤hS] = 0σ[max

hS∈ℋS

1
n σ⊤hS]

15

Pascal Massart

≤ 2
n d [1 + log n − log d]

where is the VC dimension of  
and (Sauer-Shelah)

d ℋ
n ≥ d

≤ 2
n log τℋ(n)

by definition of the growth function 
τℋ(n) = sup

|S|=n
|ℋS|

Massart’s lemma, using

∥hS∥ ≤ 12 + ⋯ + 12 = n

≤ 1
n n 2 log|ℋS|

 Relating back to VC dim
• Massart’s lemma: for , if , 6 ⊂ ℝn max

a∈6
∥a∥ ≤ r 0σ[max

a∈6
1
n σ⊤a] ≤ 1

n r 2 log|6|

• (Proof is a nice + not too complicated result on concentration of max of sums; we’ll come back to it)  

• For binary classifiers, with output in or :{0,1} {−1,1}
• Recall ℋS = {(h(x1), …, h(xn)) : h ∈ ℋ} = {hS : h ∈ ℋ}
• But ̂ℜS(ℋ) = 0σ[sup

h∈ℋ

1
n σ⊤hS] = 0σ[max

hS∈ℋS

1
n σ⊤hS]

15

Pascal Massart

≤ 2
n d [1 + log n − log d]

where is the VC dimension of  
and (Sauer-Shelah)

d ℋ
n ≥ d

≤ 2d log n
n

if d ≥ 3

≤ 2
n log τℋ(n)

by definition of the growth function 
τℋ(n) = sup

|S|=n
|ℋS|

Massart’s lemma, using

∥hS∥ ≤ 12 + ⋯ + 12 = n

≤ 1
n n 2 log|ℋS|

• Our goal was to upper bound in terms of VC dimensionsup
h∈ℋ

|L%(h) − LS(h)|

16

• Our goal was to upper bound in terms of VC dimensionsup
h∈ℋ

|L%(h) − LS(h)|

• We’ve shown  ℜn(ℋ) ≤ 2 VCdim(ℋ) log(n) / n

16

• Our goal was to upper bound in terms of VC dimensionsup
h∈ℋ

|L%(h) − LS(h)|

• We’ve shown  ℜn(ℋ) ≤ 2 VCdim(ℋ) log(n) / n

• One more step: consider for ℜn(1) 1 = {z ↦ ℓ(h, z) : h ∈ ℋ}

16

• Our goal was to upper bound in terms of VC dimensionsup
h∈ℋ

|L%(h) − LS(h)|

• We’ve shown  ℜn(ℋ) ≤ 2 VCdim(ℋ) log(n) / n

• One more step: consider for ℜn(1) 1 = {z ↦ ℓ(h, z) : h ∈ ℋ}
• says, “what would the loss of predictor be for a given ?”gh : 2 → ℝ h (x, y)

16

• Our goal was to upper bound in terms of VC dimensionsup
h∈ℋ

|L%(h) − LS(h)|

• We’ve shown  ℜn(ℋ) ≤ 2 VCdim(ℋ) log(n) / n

• One more step: consider for ℜn(1) 1 = {z ↦ ℓ(h, z) : h ∈ ℋ}
• says, “what would the loss of predictor be for a given ?”gh : 2 → ℝ h (x, y)
• For 0-1 loss, , and  gh((x, y)) = +(h(x) ≠ y) ̂ℜS(1) = ̂ℜS|x

(ℋ)

16

or that, if maps to 1
2 ℋ ±1

• Our goal was to upper bound in terms of VC dimensionsup
h∈ℋ

|L%(h) − LS(h)|

• We’ve shown  ℜn(ℋ) ≤ 2 VCdim(ℋ) log(n) / n

• One more step: consider for ℜn(1) 1 = {z ↦ ℓ(h, z) : h ∈ ℋ}
• says, “what would the loss of predictor be for a given ?”gh : 2 → ℝ h (x, y)
• For 0-1 loss, , and  gh((x, y)) = +(h(x) ≠ y) ̂ℜS(1) = ̂ℜS|x

(ℋ)

16

(proof is next)
or that, if maps to 1

2 ℋ ±1

• Our goal was to upper bound in terms of VC dimensionsup
h∈ℋ

|L%(h) − LS(h)|

• We’ve shown  ℜn(ℋ) ≤ 2 VCdim(ℋ) log(n) / n

• One more step: consider for ℜn(1) 1 = {z ↦ ℓ(h, z) : h ∈ ℋ}
• says, “what would the loss of predictor be for a given ?”gh : 2 → ℝ h (x, y)
• For 0-1 loss, , and  gh((x, y)) = +(h(x) ≠ y) ̂ℜS(1) = ̂ℜS|x

(ℋ)

• Theorem: for mapping to , prob is over that for all 1 [0,1] ≥ 1 − δ S ∼ %n g ∈ 1

16

(proof is next)
or that, if maps to 1

2 ℋ ±1

• Our goal was to upper bound in terms of VC dimensionsup
h∈ℋ

|L%(h) − LS(h)|

• We’ve shown  ℜn(ℋ) ≤ 2 VCdim(ℋ) log(n) / n

• One more step: consider for ℜn(1) 1 = {z ↦ ℓ(h, z) : h ∈ ℋ}
• says, “what would the loss of predictor be for a given ?”gh : 2 → ℝ h (x, y)
• For 0-1 loss, , and  gh((x, y)) = +(h(x) ≠ y) ̂ℜS(1) = ̂ℜS|x

(ℋ)

• Theorem: for mapping to , prob is over that for all 1 [0,1] ≥ 1 − δ S ∼ %n g ∈ 1

•  0[g(z)]− 1
n

n

∑
i=1

g(zi) ≤ 2ℜn(1) + 1
2n

log 1
δ

16

(proof is next)
or that, if maps to 1

2 ℋ ±1

• Our goal was to upper bound in terms of VC dimensionsup
h∈ℋ

|L%(h) − LS(h)|

• We’ve shown  ℜn(ℋ) ≤ 2 VCdim(ℋ) log(n) / n

• One more step: consider for ℜn(1) 1 = {z ↦ ℓ(h, z) : h ∈ ℋ}
• says, “what would the loss of predictor be for a given ?”gh : 2 → ℝ h (x, y)
• For 0-1 loss, , and  gh((x, y)) = +(h(x) ≠ y) ̂ℜS(1) = ̂ℜS|x

(ℋ)

• Theorem: for mapping to , prob is over that for all 1 [0,1] ≥ 1 − δ S ∼ %n g ∈ 1

•  0[g(z)]− 1
n

n

∑
i=1

g(zi) ≤ 2ℜn(1) + 1
2n

log 1
δ

16

(proof is next)
or that, if maps to 1

2 ℋ ±1

≤ *̃ (1
n (VCdim + log 1

δ))

• Our goal was to upper bound in terms of VC dimensionsup
h∈ℋ

|L%(h) − LS(h)|

• We’ve shown  ℜn(ℋ) ≤ 2 VCdim(ℋ) log(n) / n

• One more step: consider for ℜn(1) 1 = {z ↦ ℓ(h, z) : h ∈ ℋ}
• says, “what would the loss of predictor be for a given ?”gh : 2 → ℝ h (x, y)
• For 0-1 loss, , and  gh((x, y)) = +(h(x) ≠ y) ̂ℜS(1) = ̂ℜS|x

(ℋ)

• Theorem: for mapping to , prob is over that for all 1 [0,1] ≥ 1 − δ S ∼ %n g ∈ 1

•  0[g(z)]− 1
n

n

∑
i=1

g(zi) ≤ 2ℜn(1) + 1
2n

log 1
δ

16

(proof is next)
or that, if maps to 1

2 ℋ ±1

L%(h)

≤ *̃ (1
n (VCdim + log 1

δ))

• Our goal was to upper bound in terms of VC dimensionsup
h∈ℋ

|L%(h) − LS(h)|

• We’ve shown  ℜn(ℋ) ≤ 2 VCdim(ℋ) log(n) / n

• One more step: consider for ℜn(1) 1 = {z ↦ ℓ(h, z) : h ∈ ℋ}
• says, “what would the loss of predictor be for a given ?”gh : 2 → ℝ h (x, y)
• For 0-1 loss, , and  gh((x, y)) = +(h(x) ≠ y) ̂ℜS(1) = ̂ℜS|x

(ℋ)

• Theorem: for mapping to , prob is over that for all 1 [0,1] ≥ 1 − δ S ∼ %n g ∈ 1

•  0[g(z)]− 1
n

n

∑
i=1

g(zi) ≤ 2ℜn(1) + 1
2n

log 1
δ

16

(proof is next)
or that, if maps to 1

2 ℋ ±1

L%(h) LS(h)

≤ *̃ (1
n (VCdim + log 1

δ))

• Our goal was to upper bound in terms of VC dimensionsup
h∈ℋ

|L%(h) − LS(h)|

• We’ve shown  ℜn(ℋ) ≤ 2 VCdim(ℋ) log(n) / n

• One more step: consider for ℜn(1) 1 = {z ↦ ℓ(h, z) : h ∈ ℋ}
• says, “what would the loss of predictor be for a given ?”gh : 2 → ℝ h (x, y)
• For 0-1 loss, , and  gh((x, y)) = +(h(x) ≠ y) ̂ℜS(1) = ̂ℜS|x

(ℋ)

• Theorem: for mapping to , prob is over that for all 1 [0,1] ≥ 1 − δ S ∼ %n g ∈ 1

•  0[g(z)]− 1
n

n

∑
i=1

g(zi) ≤ 2ℜn(1) + 1
2n

log 1
δ

16

(proof is next)
or that, if maps to 1

2 ℋ ±1

L%(h) LS(h)

≤ *̃ (1
n (VCdim + log 1

δ))bounds 
0 sup L%(h) − LS(h)

• Our goal was to upper bound in terms of VC dimensionsup
h∈ℋ

|L%(h) − LS(h)|

• We’ve shown  ℜn(ℋ) ≤ 2 VCdim(ℋ) log(n) / n

• One more step: consider for ℜn(1) 1 = {z ↦ ℓ(h, z) : h ∈ ℋ}
• says, “what would the loss of predictor be for a given ?”gh : 2 → ℝ h (x, y)
• For 0-1 loss, , and  gh((x, y)) = +(h(x) ≠ y) ̂ℜS(1) = ̂ℜS|x

(ℋ)

• Theorem: for mapping to , prob is over that for all 1 [0,1] ≥ 1 − δ S ∼ %n g ∈ 1

•  0[g(z)]− 1
n

n

∑
i=1

g(zi) ≤ 2ℜn(1) + 1
2n

log 1
δ

16

(proof is next)
or that, if maps to 1

2 ℋ ±1

L%(h) LS(h)

≤ *̃ (1
n (VCdim + log 1

δ))bounds 
0 sup L%(h) − LS(h) how much bigger 

than its mean is likely

• Our goal was to upper bound in terms of VC dimensionsup
h∈ℋ

|L%(h) − LS(h)|

• We’ve shown  ℜn(ℋ) ≤ 2 VCdim(ℋ) log(n) / n

• One more step: consider for ℜn(1) 1 = {z ↦ ℓ(h, z) : h ∈ ℋ}
• says, “what would the loss of predictor be for a given ?”gh : 2 → ℝ h (x, y)
• For 0-1 loss, , and  gh((x, y)) = +(h(x) ≠ y) ̂ℜS(1) = ̂ℜS|x

(ℋ)

• Theorem: for mapping to , prob is over that for all 1 [0,1] ≥ 1 − δ S ∼ %n g ∈ 1

•  0[g(z)]− 1
n

n

∑
i=1

g(zi) ≤ 2ℜn(1) + 1
2n

log 1
δ

16

(proof is next)
or that, if maps to 1

2 ℋ ±1

2| |
| |L%(h) LS(h)

≤ *̃ (1
n (VCdim + log 1

δ))bounds 
0 sup L%(h) − LS(h) how much bigger 

than its mean is likely

Danica Sutherland

• Our goal was to upper bound in terms of VC dimensionsup
h∈ℋ

|L%(h) − LS(h)|

• We’ve shown  ℜn(ℋ) ≤ 2 VCdim(ℋ) log(n) / n

• One more step: consider for ℜn(1) 1 = {z ↦ ℓ(h, z) : h ∈ ℋ}
• says, “what would the loss of predictor be for a given ?”gh : 2 → ℝ h (x, y)
• For 0-1 loss, , and  gh((x, y)) = +(h(x) ≠ y) ̂ℜS(1) = ̂ℜS|x

(ℋ)

• Theorem: for mapping to , prob is over that for all 1 [0,1] ≥ 1 − δ S ∼ %n g ∈ 1

•  0[g(z)]− 1
n

n

∑
i=1

g(zi) ≤ 2ℜn(1) + 1
2n

log 1
δ

• 0[g(z)]− 1
n

n

∑
i=1

g(zi) ≤ 2 ̂ℜS(1) + 3 1
2n

log 2
δ

16

(proof is next)
or that, if maps to 1

2 ℋ ±1

2| |
| |L%(h) LS(h)

≤ *̃ (1
n (VCdim + log 1

δ))bounds 
0 sup L%(h) − LS(h) how much bigger 

than its mean is likely

Danica Sutherland

• Our goal was to upper bound in terms of VC dimensionsup
h∈ℋ

|L%(h) − LS(h)|

• We’ve shown  ℜn(ℋ) ≤ 2 VCdim(ℋ) log(n) / n

• One more step: consider for ℜn(1) 1 = {z ↦ ℓ(h, z) : h ∈ ℋ}
• says, “what would the loss of predictor be for a given ?”gh : 2 → ℝ h (x, y)
• For 0-1 loss, , and  gh((x, y)) = +(h(x) ≠ y) ̂ℜS(1) = ̂ℜS|x

(ℋ)

• Theorem: for mapping to , prob is over that for all 1 [0,1] ≥ 1 − δ S ∼ %n g ∈ 1

•  0[g(z)]− 1
n

n

∑
i=1

g(zi) ≤ 2ℜn(1) + 1
2n

log 1
δ

• 0[g(z)]− 1
n

n

∑
i=1

g(zi) ≤ 2 ̂ℜS(1) + 3 1
2n

log 2
δ

16

(proof is next)
or that, if maps to 1

2 ℋ ±1

2•| |

2| |
| |L%(h) LS(h)

≤ *̃ (1
n (VCdim + log 1

δ))bounds 
0 sup L%(h) − LS(h) how much bigger 

than its mean is likely

Danica Sutherland

Danica Sutherland

• Our goal was to upper bound in terms of VC dimensionsup
h∈ℋ

|L%(h) − LS(h)|

• We’ve shown  ℜn(ℋ) ≤ 2 VCdim(ℋ) log(n) / n

• One more step: consider for ℜn(1) 1 = {z ↦ ℓ(h, z) : h ∈ ℋ}
• says, “what would the loss of predictor be for a given ?”gh : 2 → ℝ h (x, y)
• For 0-1 loss, , and  gh((x, y)) = +(h(x) ≠ y) ̂ℜS(1) = ̂ℜS|x

(ℋ)

• Theorem: for mapping to , prob is over that for all 1 [0,1] ≥ 1 − δ S ∼ %n g ∈ 1

•  0[g(z)]− 1
n

n

∑
i=1

g(zi) ≤ 2ℜn(1) + 1
2n

log 1
δ

• 0[g(z)]− 1
n

n

∑
i=1

g(zi) ≤ 2 ̂ℜS(1) + 3 1
2n

log 2
δ

16

(proof is next)
or that, if maps to 1

2 ℋ ±1

2•| |

2| |
| |L%(h) LS(h)

≤ *̃ (1
n (VCdim + log 1

δ))bounds 
0 sup L%(h) − LS(h) how much bigger 

than its mean is likely

because is close to ̂ℜ S ℜn

Danica Sutherland

Danica Sutherland

• Our goal was to upper bound in terms of VC dimensionsup
h∈ℋ

|L%(h) − LS(h)|

• We’ve shown  ℜn(ℋ) ≤ 2 VCdim(ℋ) log(n) / n

• One more step: consider for ℜn(1) 1 = {z ↦ ℓ(h, z) : h ∈ ℋ}
• says, “what would the loss of predictor be for a given ?”gh : 2 → ℝ h (x, y)
• For 0-1 loss, , and  gh((x, y)) = +(h(x) ≠ y) ̂ℜS(1) = ̂ℜS|x

(ℋ)

• Theorem: for mapping to , prob is over that for all 1 [0,1] ≥ 1 − δ S ∼ %n g ∈ 1

•  0[g(z)]− 1
n

n

∑
i=1

g(zi) ≤ 2ℜn(1) + 1
2n

log 1
δ

• 0[g(z)]− 1
n

n

∑
i=1

g(zi) ≤ 2 ̂ℜS(1) + 3 1
2n

log 2
δ

16

(proof is next)

(proof on Monday)

or that, if maps to 1
2 ℋ ±1

2•| |

2| |
| |L%(h) LS(h)

≤ *̃ (1
n (VCdim + log 1

δ))bounds 
0 sup L%(h) − LS(h) how much bigger 

than its mean is likely

because is close to ̂ℜ S ℜn

Danica Sutherland

Danica Sutherland

 of binary classifiers vs lossℜ

17

 of binary classifiers vs lossℜ

17

̂ℜS(1) = 0σ[sup
h∈ℋ

1
n

n

∑
i=1

σi +(h(xi) ≠ yi)]

 of binary classifiers vs lossℜ

17

̂ℜS(1) = 0σ[sup
h∈ℋ

1
n

n

∑
i=1

σi +(h(xi) ≠ yi)]

If , define by ; h : (→ {0,1} h̃ : (→ {−1,1} h̃(x) = 2h(x) − 1 ỹi = 2yi − 1

 of binary classifiers vs lossℜ

17

̂ℜS(1) = 0σ[sup
h∈ℋ

1
n

n

∑
i=1

σi +(h(xi) ≠ yi)] = 0σ [sup
h∈ℋ

1
n

n

∑
i=1

σi
1 − ỹih̃(xi)

2]
If , define by ; h : (→ {0,1} h̃ : (→ {−1,1} h̃(x) = 2h(x) − 1 ỹi = 2yi − 1

 of binary classifiers vs lossℜ

17

̂ℜS(1) = 0σ[sup
h∈ℋ

1
n

n

∑
i=1

σi +(h(xi) ≠ yi)] = 0σ [sup
h∈ℋ

1
n

n

∑
i=1

σi
1 − ỹih̃(xi)

2]
If , define by ; h : (→ {0,1} h̃ : (→ {−1,1} h̃(x) = 2h(x) − 1 ỹi = 2yi − 1

Adding constants doesn’t change :
̂ℜS
0σ [sup

g∈1
σ⊤(gS + c1)] = 0σ [(sup

g∈1
σ⊤gS) + c σ⊤1)] = 0σ [sup

g∈1
σ⊤gS]

 of binary classifiers vs lossℜ

17

̂ℜS(1) = 0σ[sup
h∈ℋ

1
n

n

∑
i=1

σi +(h(xi) ≠ yi)] = 0σ [sup
h∈ℋ

1
n

n

∑
i=1

σi
1 − ỹih̃(xi)

2]
If , define by ; h : (→ {0,1} h̃ : (→ {−1,1} h̃(x) = 2h(x) − 1 ỹi = 2yi − 1

= 1
2 0σ [sup

h∈ℋ

1
n

n

∑
i=1

− σiỹih̃(xi)]

Adding constants doesn’t change :
̂ℜS
0σ [sup

g∈1
σ⊤(gS + c1)] = 0σ [(sup

g∈1
σ⊤gS) + c σ⊤1)] = 0σ [sup

g∈1
σ⊤gS]

 of binary classifiers vs lossℜ

17

̂ℜS(1) = 0σ[sup
h∈ℋ

1
n

n

∑
i=1

σi +(h(xi) ≠ yi)] = 0σ [sup
h∈ℋ

1
n

n

∑
i=1

σi
1 − ỹih̃(xi)

2]
If , define by ; h : (→ {0,1} h̃ : (→ {−1,1} h̃(x) = 2h(x) − 1 ỹi = 2yi − 1

= 1
2 0σ [sup

h∈ℋ

1
n

n

∑
i=1

− σiỹih̃(xi)]

Adding constants doesn’t change :
̂ℜS
0σ [sup

g∈1
σ⊤(gS + c1)] = 0σ [(sup

g∈1
σ⊤gS) + c σ⊤1)] = 0σ [sup

g∈1
σ⊤gS]

for fixed , ỹi −σiỹi ∼ Rad

 of binary classifiers vs lossℜ

17

̂ℜS(1) = 0σ[sup
h∈ℋ

1
n

n

∑
i=1

σi +(h(xi) ≠ yi)] = 0σ [sup
h∈ℋ

1
n

n

∑
i=1

σi
1 − ỹih̃(xi)

2]
If , define by ; h : (→ {0,1} h̃ : (→ {−1,1} h̃(x) = 2h(x) − 1 ỹi = 2yi − 1

= 1
2 0σ [sup

h∈ℋ

1
n

n

∑
i=1

− σiỹih̃(xi)]

Adding constants doesn’t change :
̂ℜS
0σ [sup

g∈1
σ⊤(gS + c1)] = 0σ [(sup

g∈1
σ⊤gS) + c σ⊤1)] = 0σ [sup

g∈1
σ⊤gS]

= 1
2 0σ [sup

h∈ℋ

1
n

n

∑
i=1

σih̃(xi)]

for fixed , ỹi −σiỹi ∼ Rad

 of binary classifiers vs lossℜ

17

̂ℜS(1) = 0σ[sup
h∈ℋ

1
n

n

∑
i=1

σi +(h(xi) ≠ yi)] = 0σ [sup
h∈ℋ

1
n

n

∑
i=1

σi
1 − ỹih̃(xi)

2]
If , define by ; h : (→ {0,1} h̃ : (→ {−1,1} h̃(x) = 2h(x) − 1 ỹi = 2yi − 1

= 1
2 0σ [sup

h∈ℋ

1
n

n

∑
i=1

− σiỹih̃(xi)]

Adding constants doesn’t change :
̂ℜS
0σ [sup

g∈1
σ⊤(gS + c1)] = 0σ [(sup

g∈1
σ⊤gS) + c σ⊤1)] = 0σ [sup

g∈1
σ⊤gS]

= 1
2 0σ [sup

h∈ℋ

1
n

n

∑
i=1

σih̃(xi)] = 1
2

̂ℜS|x
(ℋ̃)

for fixed , ỹi −σiỹi ∼ Rad

 of binary classifiers vs lossℜ

17

̂ℜS(1) = 0σ[sup
h∈ℋ

1
n

n

∑
i=1

σi +(h(xi) ≠ yi)] = 0σ [sup
h∈ℋ

1
n

n

∑
i=1

σi
1 − ỹih̃(xi)

2]
If , define by ; h : (→ {0,1} h̃ : (→ {−1,1} h̃(x) = 2h(x) − 1 ỹi = 2yi − 1

= 1
2 0σ [sup

h∈ℋ

1
n

n

∑
i=1

− σiỹih̃(xi)]

Adding constants doesn’t change :
̂ℜS
0σ [sup

g∈1
σ⊤(gS + c1)] = 0σ [(sup

g∈1
σ⊤gS) + c σ⊤1)] = 0σ [sup

g∈1
σ⊤gS]

= 1
2 0σ [sup

h∈ℋ

1
n

n

∑
i=1

σih̃(xi)] = 1
2

̂ℜS|x
(ℋ̃)

Scaling by gives :
c |c| ̂ℜS
0σ [sup

g∈1
σ⊤(cgS)] = |c| 0σ [sup

g∈1
sign(c) σ⊤gS] = |c| 0σ [sup

g∈1
σ⊤gS]

for fixed , ỹi −σiỹi ∼ Rad

 of binary classifiers vs lossℜ

17

̂ℜS(1) = 0σ[sup
h∈ℋ

1
n

n

∑
i=1

σi +(h(xi) ≠ yi)] = 0σ [sup
h∈ℋ

1
n

n

∑
i=1

σi
1 − ỹih̃(xi)

2]
If , define by ; h : (→ {0,1} h̃ : (→ {−1,1} h̃(x) = 2h(x) − 1 ỹi = 2yi − 1

= 1
2 0σ [sup

h∈ℋ

1
n

n

∑
i=1

− σiỹih̃(xi)]

Adding constants doesn’t change :
̂ℜS
0σ [sup

g∈1
σ⊤(gS + c1)] = 0σ [(sup

g∈1
σ⊤gS) + c σ⊤1)] = 0σ [sup

g∈1
σ⊤gS]

= 1
2 0σ [sup

h∈ℋ

1
n

n

∑
i=1

σih̃(xi)] = 1
2

̂ℜS|x
(ℋ̃) = ̂ℜS|x

(ℋ)

Scaling by gives :
c |c| ̂ℜS
0σ [sup

g∈1
σ⊤(cgS)] = |c| 0σ [sup

g∈1
sign(c) σ⊤gS] = |c| 0σ [sup

g∈1
σ⊤gS]

for fixed , ỹi −σiỹi ∼ Rad

Massart’s lemma: for , if , 6 ⊂ ℝn max
a∈6

∥a∥ ≤ r 0σ[max
a∈6

1
n σ⊤a] ≤ 1

n r 2 log|6|

18

If there’s time left, let’s prove: (If not: we’ll come back to it another time!)

Summary
• VC dimension for linear classifiers:

• for homogenous, for not (same as # of params)

• So ERM works with 0-1 loss…except we can’t do ERM in non-separable case!  

• We still haven’t quite proved the fundamental theorem

• But we’ll prove a much better bound when we do, on Monday

• Empirical Rademacher complexity: how much can correlate with noise on ?

• Rademacher complexity: its expectation over a random

• Upper bounded in terms of VC dimension

• Stated a generalization bound in terms of Rademacher complexity

• Will imply (almost) the optimal sample complexity for agnostic case

• Will be easy(ish) to extend to things beyond 0-1 loss binary classification

d d + 1

1 ±1 S
S ∼ %n

19

