More on VC dimensions CPSC 532S: Modern Statistical Learning Theory

CPSC 532S: Modern Statistical Learning Theory

Admin

- A1 solutions <u>are posted</u> (just publicly on the course site) Also see the post-mortem poll on Piazza
- - Grading: probably next week sometime (ICML deadline...)
- A2 will come probably next week + allow (encourage) groups
- No office hours this week (ICML...)
 - Piazza / schedule a meeting if needed

Admin

- A1 solutions <u>are posted</u> (just publicly on the course site) Also see the post-mortem poll on Piazza

 - Grading: probably next week sometime (ICML deadline...)
- A2 will come probably next week + allow (encourage) groups
- No office hours this week (ICML...)
 - Piazza / schedule a meeting if needed
- FYI, now presenting from a different app • Going to try out some live scribbles for part of this lecture Will save stuff I write on slides and post after class

 - (Let me know if you hate it)

Last time: shattering / VC dimension

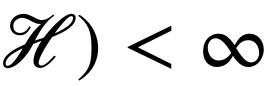
- Restriction of \mathscr{H} to C is $\mathscr{H}_C = \left\{ \left(h(c_1), \dots, h(c_{|C|}) \right) : h \in \mathscr{H} \right\}$
- \mathscr{H} shatters $C \subseteq \mathscr{X}$ if \mathscr{H}_C contains all functions from C to $\{0,1\}$: $|\mathscr{H}_C| = 2^{|C|}$ • $VCdim(\mathcal{H})$ is size of the largest set that \mathcal{H} can shatter, or ∞
- Doesn't need that all sets of size VCdim can be shattered it's worst-case • There is a C with |C| = VCdim that can be shattered

 - There is **no** C with |C| = VCdim + 1 that can be shattered

For binary classification with 0-1 loss:

These are all equivalent:

- 1. \mathcal{H} has the uniform convergence property
- 2. Any ERM rule agnostically PAC learns \mathcal{H}
- 3. \mathcal{H} is agnostic PAC learnable
- 4. Any ERM rule PAC learns \mathcal{H}
- 5. \mathcal{H} is PAC learnable
- 6. $VCdim(\mathcal{H}) < \infty$



For binary classification with 0-1 loss:

These are all equivalent:

- 1. \mathcal{H} has the uniform convergence property
- 2. Any ERM rule agnostically PAC learns \mathcal{H}
- 3. \mathcal{H} is agnostic PAC learnable
- 4. Any ERM rule PAC learns \mathcal{H}
- 5. \mathcal{H} is PAC learnable
- 6. $VCdim(\mathcal{H}) < \infty$

- If $VCdim(\mathcal{H}) = d$:
 - \mathcal{H} has uniform convergence property
 - ${\mathscr H}$ is agnostic PAC learnable,
 - \mathcal{H} is PAC learnable,

$$\frac{C_1}{\varepsilon^2} \left[d + \log \frac{1}{\delta} \right] \leq n_{\mathcal{H}}^{UC} \leq \frac{C_2}{\varepsilon^2} \left[d + \log \frac{1}{\delta} \right] \\
\frac{C_1}{\varepsilon^2} \left[d + \log \frac{1}{\delta} \right] \leq n_{\mathcal{H}} \leq \frac{C_2}{\varepsilon^2} \left[d + \log \frac{1}{\delta} \right] \\
\frac{C_1}{\varepsilon_4} \left[d + \log \frac{1}{\delta} \right] \leq n_{\mathcal{H}} \leq \frac{C_2}{\varepsilon} \left[d \log \frac{1}{\varepsilon} + \log \frac{1}{\delta} \right]$$

For binary classification with 0-1 loss:

- nese are all equivalent. 1. \mathcal{H} has the uniform convergence property 2. Any ERM rule agnostically PAC learns $\mathcal{H}_{\mathcal{L}}^{\mathcal{L}}$ saw today $\mathcal{H}_{\mathcal{L}}^{\mathcal{L}}$ learnable, findediate

 - 4. Any ERM rule PAC learns \mathscr{H}
 - 5. \mathcal{H} is PAC learnable 6. $VCdim(\mathcal{H}) < \infty$

- If $VCdim(\mathcal{H}) = d$:
 - \mathcal{H} has uniform convergence property
 - ${\mathscr H}$ is agnostic PAC learnable,
 - \mathcal{H} is PAC learnable,

$$\frac{C_1}{\varepsilon^2} \left[d + \log \frac{1}{\delta} \right] \leq n_{\mathcal{H}}^{UC} \leq \frac{C_2}{\varepsilon^2} \left[d + \log \frac{1}{\delta} \right] \\
\frac{C_1}{\varepsilon^2} \left[d + \log \frac{1}{\delta} \right] \leq n_{\mathcal{H}} \leq \frac{C_2}{\varepsilon^2} \left[d + \log \frac{1}{\delta} \right] \\
\frac{C_1}{\varepsilon_4} \left[d + \log \frac{1}{\delta} \right] \leq n_{\mathcal{H}} \leq \frac{C_2}{\varepsilon} \left[d \log \frac{1}{\varepsilon} + \log \frac{1}{\delta} \right]$$

- For binary classification with 0-1 loss:
- These are all equivalent:
- The are all equivalent. 1. \mathcal{H} has the uniform convergence property 2. Any ERM rule agnostically PAC learns $\mathcal{H}_{\mathcal{L}}^{\mathcal{L}}$ saw today $\mathcal{H}_{\mathcal{L}}^{\mathcal{L}}$ immediate

 - *H* is agnostic PAC learnable
 Any ERM rule PAC learns *H*
 - 5. \mathcal{H} is PAC learnable 6. $VCdim(\mathcal{H}) < \infty$

- If $VCdim(\mathcal{H}) = d$:
 - \mathcal{H} has uniform convergence property
 - ${\mathscr H}$ is agnostic PAC learnable,
 - \mathcal{H} is PAC learnable,

$$\frac{C_1}{\varepsilon^2} \left[d + \log \frac{1}{\delta} \right] \leq n_{\mathcal{H}}^{UC} \leq \frac{C_2}{\varepsilon^2} \left[d + \log \frac{1}{\delta} \right] \\
\frac{C_1}{\varepsilon^2} \left[d + \log \frac{1}{\delta} \right] \leq n_{\mathcal{H}} \leq \frac{C_2}{\varepsilon^2} \left[d + \log \frac{1}{\delta} \right] \\
\frac{C_1}{\varepsilon_4} \left[d + \log \frac{1}{\delta} \right] \leq n_{\mathcal{H}} \leq \frac{C_2}{\varepsilon} \left[d \log \frac{1}{\varepsilon} + \log \frac{1}{\delta} \right]$$

- For binary classification with 0-1 loss:
- These are all equivalent:
- The learnable interval \mathcal{H} is the uniform convergence property 2. Any ERM rule agnostically PAC learns \mathcal{H} immediate

 - 4. Any ERM rule PAC learns \mathcal{H}
 - 5. \mathcal{H} is PAC learnable 6. $VCdim(\mathcal{H}) < \infty$

- If $VCdim(\mathcal{H}) = d$:
 - \mathcal{H} has uniform convergence property
 - ${\mathscr H}$ is agnostic PAC learnable,
 - \mathcal{H} is PAC learnable,

(actually will show something worse today)

$$y, \frac{C_1}{\varepsilon^2} \left[d + \log \frac{1}{\delta} \right] \leq \left[n_{\mathcal{H}}^{UC} \leq \frac{C_2}{\varepsilon^2} \left[d + \log \frac{1}{\delta} \right] \right]$$
$$\frac{C_1}{\varepsilon^2} \left[d + \log \frac{1}{\delta} \right] \leq n_{\mathcal{H}} \leq \frac{C_2}{\varepsilon^2} \left[d + \log \frac{1}{\delta} \right]$$
$$\frac{C_1}{\varepsilon_4} \left[d + \log \frac{1}{\delta} \right] \leq n_{\mathcal{H}} \leq \frac{C_2}{\varepsilon} \left[d \log \frac{1}{\varepsilon} + \log \frac{1}{\delta} \right]$$

Finite VCdim implies uniform convergence uniform convergence $|L_{\mathscr{D}}(h) - L_{S}(h)| \leq \varepsilon$ with probability at least $1 - \delta$

Finite VCdim implies uniform convergence uniform convergence $\|L_{\mathcal{D}}(h) - L_{S}(h)\| \le \varepsilon$ with probability at least $1 - \delta$

- Will prove in terms of the growth function: $\tau_{\mathcal{H}}(n) = \max_{C \subseteq \mathcal{X}: |C|=n} |\mathcal{H}_C|$
 - How many actually different functions from \mathcal{H} are there on sets of size n?

Finite VCdim implies uniform convergence uniform convergence $|L_{\mathcal{D}}(h) - L_{S}(h)| \leq \varepsilon$ with probability at least $1 - \delta$

- Will prove in terms of the growth function
 - How many actually different functions from \mathcal{H} are there on sets of size n?
 - If $\operatorname{VCdim}(\mathscr{H}) = d$, then $\tau_{\mathscr{H}}(n) = 2^n$ for $n \leq d$

$$\tau_{\mathcal{H}}(n) = \max_{C \subseteq \mathcal{X}: |C| = n} |\mathcal{H}_C|$$

from \mathscr{H} are there on sets of size n? or $n \leq d$

Finite VCdim implies uniform convergence • Uniform convergence: sup $|L_{\mathscr{D}}(h) - L_{S}(h)| \leq \varepsilon$ with probability at least $1 - \delta$ $h \in \mathcal{H}$. Will prove in terms of the growth function: $\tau_{\mathcal{H}}(n) = \max_{C \subseteq \mathcal{X}: |C|=n} |\mathcal{H}_C|$ (0, 0) (0, 1) (1, 0) • How many actually different functions from \mathcal{H} are there on sets of size n? (\mathcal{V}) • If $\operatorname{VCdim}(\mathscr{H}) = d$, then $\tau_{\mathscr{H}}(n) = 2^n$ for $n \leq d$

Theorem (SSBD 6.11): sup $|L_{\mathscr{D}}(h) - L_{S}(h)| = h \in \mathcal{H}$

$$(h) | \leq \frac{4 + \sqrt{\log(\tau_{\mathcal{H}}(2n))}}{\delta\sqrt{2n}}$$

Finite VCdim implies uniform convergence Uniform convergence: $\sup_{h\in\mathcal{H}}|L_{\mathcal{D}}(h) - L_{S}(h)| \leq \varepsilon \text{ with probability at least } 1 - \delta$

- Will prove in terms of the growth function
 - How many actually different functions fr
 - If $\operatorname{VCdim}(\mathscr{H}) = d$, then $\tau_{\mathscr{H}}(n) = 2^n$ fo

• Theorem (SSBD 6.11): $\sup_{h \in \mathcal{H}} |L_{\mathcal{D}}(h) - L_{S}(h)| \leq \mathcal{H}$

• Sauer-Shelah lemma: when $n \ge d$, $\tau_{\mathcal{H}}(n) \le (en/d)^d = \mathcal{O}(n^d)$

$$n: \tau_{\mathcal{H}}(n) = \max_{\substack{C \subseteq \mathcal{X}: |C| = n}} |\mathcal{H}_{C}|$$

rom \mathcal{H} are there on sets of size n ?
or $n \leq d$

$$\int o_{\mathcal{I}}(\mathcal{I}^{r}) \rightarrow \int n \log 2$$

$$(h)| \leq \frac{4 + \sqrt{\log(\tau_{\mathcal{H}}(2n))}}{\delta\sqrt{2n}} \int \log O(n^{d}) / \sqrt{1 + \sqrt{\log(\tau_{\mathcal{H}}(2n))}} = \int d O(\log n) / \sqrt{1 + \sqrt{1 + \sqrt{\log(\tau_{\mathcal{H}}(2n))}}} = \int d O(\log n) / \sqrt{1 + \sqrt{1 + \sqrt{\log(\tau_{\mathcal{H}}(2n))}}} = \int d O(\log n) / \sqrt{1 + \sqrt{1 + \sqrt{\log(\tau_{\mathcal{H}}(2n))}}} = \int d O(\log n) / \sqrt{1 + \sqrt{$$

• Uniform convergence: sup $|L_{\mathcal{D}}(h) - L_{\mathcal{S}}(h)| \leq \varepsilon$ with probability at least $1 - \delta$ $h \in \mathcal{H}$

- Will prove in terms of the growth function
 - How many actually different functions from \mathcal{H} are there on sets of size n?
 - If $\operatorname{VCdim}(\mathscr{H}) = d$, then $\tau_{\mathscr{H}}(n) = 2^n$ for $n \leq d$

• Theorem (SSBD 6.11): $\sup |L_{\mathcal{D}}(h) - L_{S}(h)| = L_{S}(h)$ $h \in \mathcal{H}$

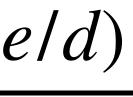
• Sauer-Shelah lemma: when $n \ge d$, $\tau_{\mathscr{H}}$

Plugging together: uniform convergence v

Finite VCdim implies uniform convergence

$$\tau_{\mathscr{H}}(n) = \max_{C \subseteq \mathscr{X}: |C|=n} |\mathscr{H}_{C}|$$

$$|(h)| \le \frac{4 + \sqrt{\log(\tau_{\mathcal{H}}(2n))}}{\delta\sqrt{2n}}$$



• Uniform convergence: sup $|L_{\mathcal{D}}(h) - L_{\mathcal{S}}(h)| \leq \varepsilon$ with probability at least $1 - \delta$ $h \in \mathcal{H}$

- Will prove in terms of the growth function
 - How many actually different functions from \mathcal{H} are there on sets of size n?
 - If $\operatorname{VCdim}(\mathscr{H}) = d$, then $\tau_{\mathscr{H}}(n) = 2^n$ for $n \leq d$

• Theorem (SSBD 6.11): $\sup |L_{\mathcal{D}}(h) - L_{\mathcal{S}}(h)| = L_{\mathcal{S}}(h)$ $h \in \mathcal{H}$

We'll come back f

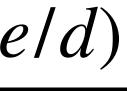
• Sauer-Shelah lemma: when $n \ge d$, $\tau_{\mathcal{H}}$

Plugging together: uniform convergence w

Finite VCdim implies uniform convergence

$$\tau_{\mathcal{H}}(n) = \max_{C \subseteq \mathcal{X}: |C|=n} |\mathcal{H}_C|$$

$$\begin{aligned} \|h\| &\leq \frac{4 + \sqrt{\log(\tau_{\mathscr{H}}(2n))}}{\delta\sqrt{2n}} \\ \text{for a much better rate in } \delta - \sqrt{\log\frac{1}{\delta}} \text{ instead of } \frac{1}{\delta} - \text{ pretty soon} \\ \mu(n) &\leq (en/d)^d = \mathcal{O}\left(n^d\right) \\ \text{when } n &\geq 4 \frac{2d}{(\delta\varepsilon)^2} \log\left(\frac{2d}{(\delta\varepsilon)^2}\right) + \frac{4d\log(2n)}{(\delta\varepsilon)^2} \end{aligned}$$



Sauer-Shelah lemma

- Independently proved by, at least:
 - Sauer 1972 (to solve a combinatorical problem posed by Erdős) Shelah 1972 (with Perles) as a lemma about "stable models"

 - Perles, later on, in ergodic theory
 - Vapnik+Chervonenkis, also in the 70s, to make VC theory work

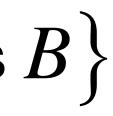
Sauer-Shelah lemma: Let VCdim(2

• Corollary: for $n \ge d$, $\tau_{\mathcal{H}}(n) \le \left(\frac{1}{d}en\right)^{d}$

$$\mathcal{H} \leq d < \infty$$
. Then $\tau_{\mathcal{H}}(n) \leq \sum_{i=0}^{d} \binom{n}{i}$

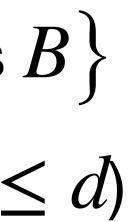
Proof of Sauer's lemma . Want to prove $\tau_{\mathcal{H}}(n) = \max_{C \subseteq \mathcal{X}: |C|=n} |\mathcal{H}_C| \le \sum_{i=0}^d \binom{n}{i}$

- Will prove something stronger: for any $C \subseteq \mathcal{X}$,



- Will prove something stronger: for any $C \subseteq \mathcal{X}$,

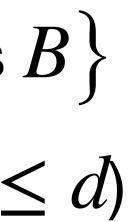
• \mathcal{H} doesn't shatter anything bigger than d: RHS \leq (total # of subsets of size $\leq d$)



- Will prove something stronger: for any $C \subseteq \mathcal{X}$,

 - Proof by induction

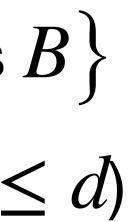
• \mathcal{H} doesn't shatter anything bigger than d: RHS \leq (total # of subsets of size $\leq d$)



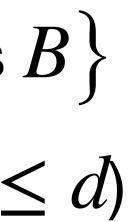
- Will prove something stronger: for any $C \subseteq \mathcal{X}$,

 - Proof by induction
 - Base case: n = 1, so $C = \{c_1\}$

• \mathcal{H} doesn't shatter anything bigger than d: RHS \leq (total # of subsets of size $\leq d$)



- Will prove something stronger: for any $C \subseteq \mathcal{X}$,
 - \mathcal{H} doesn't shatter anything bigger than d: RHS \leq (total # of subsets of size $\leq d$)
 - Proof by induction
 - Base case: n = 1, so $C = \{c_1\}$
 - If d = 0: LHS is 1 (\mathcal{H}_C always $\{0\}$ or $\{1\}$), RHS is just the empty set: 1



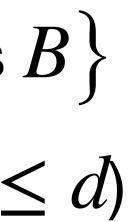
- Will prove something stronger: for any $C \subseteq \mathcal{X}$,

 - Proof by induction
 - Base case: n = 1, so $C = \{c_1\}$

 - If $d \ge 1$: LHS is 2 ($\mathcal{H}_C = \{0,1\}$),

• \mathcal{H} doesn't shatter anything bigger than d: RHS \leq (total # of subsets of size $\leq d$)

• If d = 0: LHS is 1 (\mathcal{H}_C always $\{0\}$ or $\{1\}$), RHS is just the empty set: 1 RHS has empty set and C: 2



- - Take $C = (x_1, ..., x_n)$, and let $C' = (x_2, ..., x_n)$

- - Take $C = (x_1, ..., x_n)$, and let $C' = (x_2, ..., x_n)$

• Supposing for all *C* with |C| < n, for all $\mathcal{H}, |\mathcal{H}_C| \le |\{B \subseteq C : \mathcal{H} \text{ shatters } B\}|$

• Let $Y_1 = \{(y_2, \dots, y_n) : (0, y_2, \dots, y_n) \in \mathcal{H}_C \lor (1, y_2, \dots, y_n) \in \mathcal{H}_C \} = \mathcal{H}_C'$

- - Take $C = (x_1, ..., x_n)$, and let $C' = (x_2, ..., x_n)$

• Let $Y_1 = \{(y_2, \dots, y_n) : (0, y_2, \dots, y_n) \in \mathcal{H}_C \lor (1, y_2, \dots, y_n) \in \mathcal{H}_C\} = \mathcal{H}_{C'}$ • $|\mathscr{H}_{C'}| \leq |\{B \subseteq C' : \mathscr{H} \text{ shatters } B\}| = |\{B \subseteq C : c_1 \notin B, \mathscr{H} \text{ shatters } B\}|$

- Supposing for all *C* with |C| < n, for all $\mathcal{H}, |\mathcal{H}_C| \le |\{B \subseteq C : \mathcal{H} \text{ shatters } B\}|$ • Take $C = (x_1, ..., x_n)$, and let $C' = (x_2, ..., x_n)$

 - Let $Y_1 = \{(y_2, \dots, y_n) : (0, y_2, \dots, y_n) \in \mathcal{H}_C \lor (1, y_2, \dots, y_n) \in \mathcal{H}_C\} = \mathcal{H}_C'$ • $|\mathscr{H}_{C'}| \leq |\{B \subseteq C' : \mathscr{H} \text{ shatters } B\}| = |\{B \subseteq C : c_1 \notin B, \mathscr{H} \text{ shatters } B\}|$
 - Let $\mathscr{H}' = \{h \in \mathscr{H} : \exists h' \in \mathscr{H} . h \text{ and } h' \text{ agree on } C', \text{ disagree on } c_1\}$

- Supposing for all *C* with |C| < n, for all $\mathcal{H}, |\mathcal{H}_C| \le |\{B \subseteq C : \mathcal{H} \text{ shatters } B\}|$ • Take $C = (x_1, ..., x_n)$, and let $C' = (x_2, ..., x_n)$
- - Let $Y_1 = \{(y_2, \dots, y_n) : (0, y_2, \dots, y_n) \in \mathcal{H}_C \lor (1, y_2, \dots, y_n) \in \mathcal{H}_C\} = \mathcal{H}_C'$ • $|\mathscr{H}_{C'}| \leq |\{B \subseteq C' : \mathscr{H} \text{ shatters } B\}| = |\{B \subseteq C : c_1 \notin B, \mathscr{H} \text{ shatters } B\}|$
 - Let $\mathscr{H}' = \{h \in \mathscr{H} : \exists h' \in \mathscr{H} . h \text{ and } h' \text{ agree on } C', \text{ disagree on } c_1\}$ • Let $Y_2 = \{(y_2, ..., y_n) : (0, y_2, ..., y_n) \in \mathcal{H}_C \land (1, y_2, ..., y_n) \in \mathcal{H}_C\} = \mathcal{H}'_C \lor$

- Supposing for all *C* with |C| < n, for all $\mathcal{H}, |\mathcal{H}_C| \le |\{B \subseteq C : \mathcal{H} \text{ shatters } B\}|$ • Take $C = (x_1, ..., x_n)$, and let $C' = (x_2, ..., x_n)$

 - Let $Y_1 = \{(y_2, \dots, y_n) : (0, y_2, \dots, y_n) \in \mathcal{H}_C \lor (1, y_2, \dots, y_n) \in \mathcal{H}_C\} = \mathcal{H}_C'$ • $|\mathscr{H}_{C'}| \leq |\{B \subseteq C' : \mathscr{H} \text{ shatters } B\}| = |\{B \subseteq C : c_1 \notin B, \mathscr{H} \text{ shatters } B\}|$

• Let
$$\mathscr{H}' = \{h \in \mathscr{H} : \exists h' \in \mathscr{H} . h \in \mathscr{H}\}$$

- and h' agree on C', disagree on c_1 • Let $Y_2 = \{(y_2, ..., y_n) : (0, y_2, ..., y_n) \in \mathcal{H}_C \land (1, y_2, ..., y_n) \in \mathcal{H}_C\} = \mathcal{H}'_C I$ • \mathscr{H}' shatters $B \subseteq C'$ iff it shatters $B \cup \{c_1\}$ – happens if \mathscr{H} shatters $B \cup \{c_1\}$

- - Take $C = (x_1, ..., x_n)$, and let $C' = (x_2, ..., x_n)$
 - Let $Y_1 = \{(y_2, \dots, y_n) : (0, y_2, \dots, y_n)\}$ • $|\mathscr{H}_{C'}| \leq |\{B \subseteq C' : \mathscr{H} \text{ shatters } B\}| = |\mathcal{H}_{C'}|$

• Let
$$\mathscr{H}' = \{h \in \mathscr{H} : \exists h' \in \mathscr{H} . h \in \mathscr{H}\}$$

$$(E \in \mathcal{H}_C \lor (1, y_2, \dots, y_n) \in \mathcal{H}_C) = \mathcal{H}_{C'}$$
$$B \} = \{B \subseteq C : c_1 \notin B, \mathcal{H} \text{ shatters } B \}$$

and h' agree on C', disagree on c_1 • Let $Y_2 = \{(y_2, \dots, y_n) : (0, y_2, \dots, y_n) \in \mathcal{H}_C \land (1, y_2, \dots, y_n) \in \mathcal{H}_C\} = \mathcal{H}'_C \lor$ • \mathscr{H}' shatters $B \subseteq C'$ iff it shatters $B \cup \{c_1\}$ – happens if \mathscr{H} shatters $B \cup \{c_1\}$ • $|\mathscr{H}'_{C'}| \leq |\{B \subseteq C' : \mathscr{H}' \text{ shatters } B\}| \leq |\{B \subseteq C : c_1 \in B, \mathscr{H} \text{ shatters } B\}|$

- - Take $C = (x_1, ..., x_n)$, and let $C' = (x_2, ..., x_n)$
 - Let $Y_1 = \{(y_2, \dots, y_n) : (0, y_2, \dots, y_n)\}$ • $|\mathscr{H}_{C'}| \leq |\{B \subseteq C' : \mathscr{H} \text{ shatters } B\}| = |$

• Let
$$\mathscr{H}' = \left\{ h \in \mathscr{H} : \exists h' \in \mathscr{H} . h \text{ and } H' \in \mathscr{H} \right\}$$

- Have $|\mathcal{H}_{C}| = |Y_{1}| + |Y_{2}|$

$$(E \in \mathscr{H}_C \lor (1, y_2, \dots, y_n) \in \mathscr{H}_C) = \mathscr{H}_{C'}$$
$$B \} = \{B \subseteq C : c_1 \notin B, \mathscr{H} \text{ shatters } B \}$$

and h' agree on C', disagree on c_1 • Let $Y_2 = \{(y_2, \dots, y_n) : (0, y_2, \dots, y_n) \in \mathcal{H}_C \land (1, y_2, \dots, y_n) \in \mathcal{H}_C\} = \mathcal{H}'_C$ • \mathscr{H}' shatters $B \subseteq C'$ iff it shatters $B \cup \{c_1\}$ – happens if \mathscr{H} shatters $B \cup \{c_1\}$ • $|\mathscr{H}'_{C'}| \leq |\{B \subseteq C' : \mathscr{H}' \text{ shatters } B\}| \leq |\{B \subseteq C : c_1 \in B, \mathscr{H} \text{ shatters } B\}|$

since things in Y_2 "show up twice" in \mathcal{H}_C

- Supposing for all *C* with |C| < n, for all $\mathcal{H}, |\mathcal{H}_C| \le |\{B \subseteq C : \mathcal{H} \text{ shatters } B\}|$ • Take $C = (x_1, ..., x_n)$, and let $C' = (x_2, ..., x_n)$
- - Let $Y_1 = \{(y_2, ..., y_n) : (0, y_2, ..., y_n) \in \mathcal{H}_C \lor (1, y_2, ..., y_n) \in \mathcal{H}_C\} = \mathcal{H}_{C'}$ • $|\mathscr{H}_{C'}| \leq |\{B \subseteq C' : \mathscr{H} \text{ shatters } B\}| = |\{B \subseteq C : c_1 \notin B, \mathscr{H} \text{ shatters } B\}|$

• Let
$$\mathscr{H}' = \left\{ h \in \mathscr{H} : \exists h' \in \mathscr{H} . h \text{ and } H' \in \mathscr{H} \right\}$$

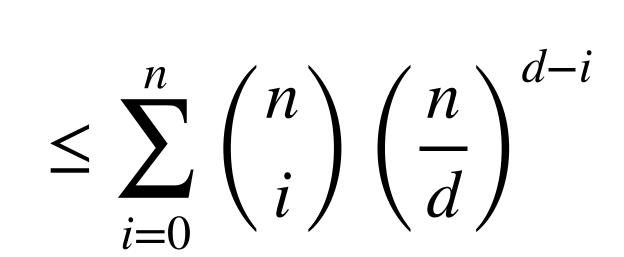
- and h' agree on C', disagree on c_1 • Let $Y_2 = \{(y_2, ..., y_n) : (0, y_2, ..., y_n) \in \mathcal{H}_C \land (1, y_2, ..., y_n) \in \mathcal{H}_C\} = \mathcal{H}'_C$ • \mathscr{H}' shatters $B \subseteq C'$ iff it shatters $B \cup \{c_1\}$ – happens if \mathscr{H} shatters $B \cup \{c_1\}$ • $|\mathscr{H}'_{C'}| \leq |\{B \subseteq C' : \mathscr{H}' \text{ shatters } B\}| \leq |\{B \subseteq C : c_1 \in B, \mathscr{H} \text{ shatters } B\}|$

- Have $|\mathcal{H}_C| = |Y_1| + |Y_2|$ since things in Y_2 "show up twice" in \mathcal{H}_C • So $|\mathcal{H}_C| \leq |B \subseteq C : \mathcal{H}$ shatters $B|_{\mathcal{L}}$

Proof: corollary to Sauer's lemma If $n \ge d$, $\sum_{i=0}^{d} \binom{n}{i}$

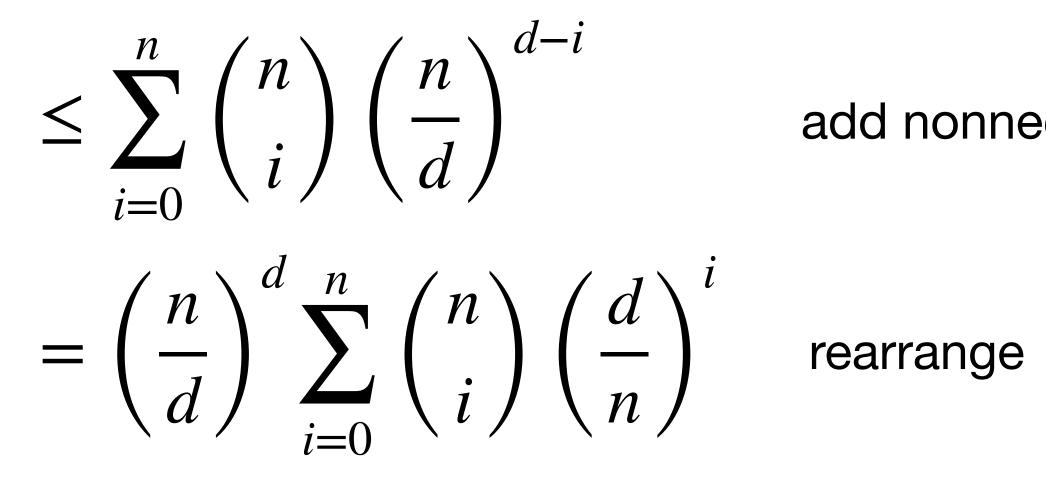
Proof: corollary to Sauer's lemma If $n \ge d$, $\sum_{i=0}^{d} \binom{n}{i} \le \sum_{i=0}^{d} \binom{n}{i} \binom{n}{i} \binom{n}{d}^{d-i}$ multiply each term by sth ≥ 1

Proof: corollary to Sauer's lemma If $n \ge d$, $\sum_{i=0}^{d} \binom{n}{i} \le \sum_{i=0}^{d} \binom{n}{i} \binom{n}{d}^{d-i}$ multiply each term by sth ≥ 1



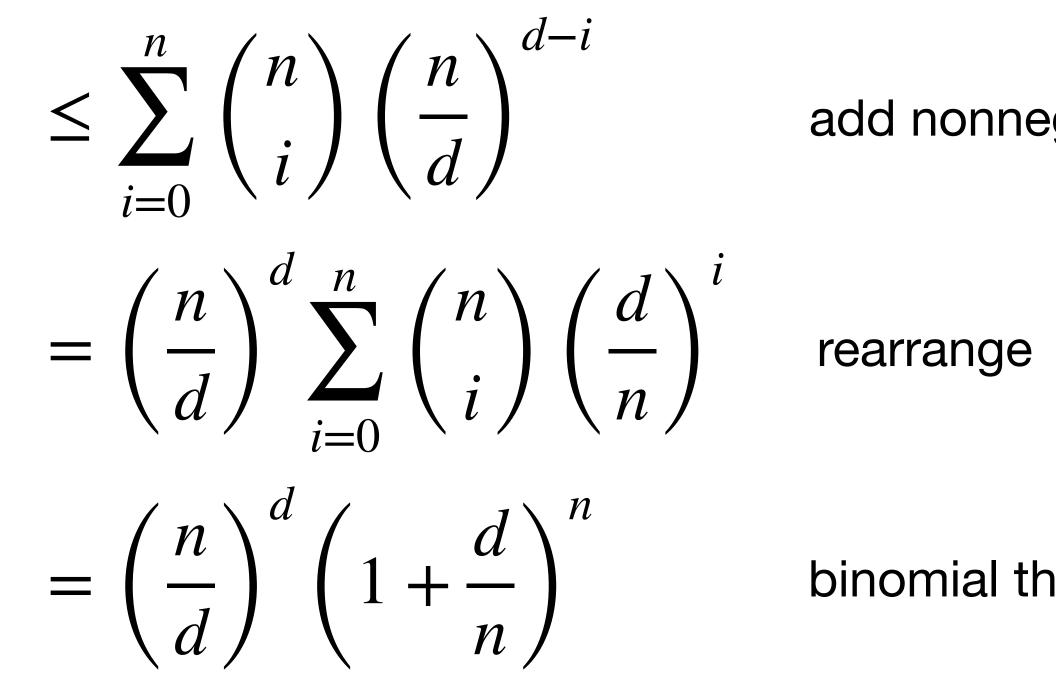
add nonnegative terms to the sum

Proof: corollary to Sauer's lemma If $n \ge d$, $\sum_{i=0}^{d} \binom{n}{i} \le \sum_{i=0}^{d} \binom{n}{i} \binom{n}{i} \binom{n}{d^{-i}}^{d-i}$ multiply each term by sth ≥ 1



add nonnegative terms to the sum

Proof: corollary to Sauer's lemma If $n \ge d$, $\sum_{i=0}^{d} \binom{n}{i} \le \sum_{i=0}^{d} \binom{n}{i} \binom{n}{i} \binom{n}{d^{-i}}^{d-i}$ multiply each term by sth ≥ 1



add nonnegative terms to the sum

binomial theorem

Proof: corollary to Sauer's lemma If $n \ge d$, $\sum_{i=0}^{d} \binom{n}{i} \le \sum_{i=0}^{d} \binom{n}{i} \binom{n}{i} \binom{n}{d^{-i}}^{d-i}$ multiply each term by sth ≥ 1 $\leq \sum_{i=0}^{n} \binom{n}{i} \left(\frac{n}{d}\right)^{d-i}$

 $= \left(\frac{n}{d}\right)^{d} \sum_{i=0}^{n} \binom{n}{i} \left(\frac{d}{n}\right)^{i} \quad \text{rearrange}$

 $= \left(\frac{n}{d}\right)^d \left(1 + \frac{d}{n}\right)^n$

 $\leq \left(\frac{n}{d}\right)^{a} e^{d}$

add nonnegative terms to the sum

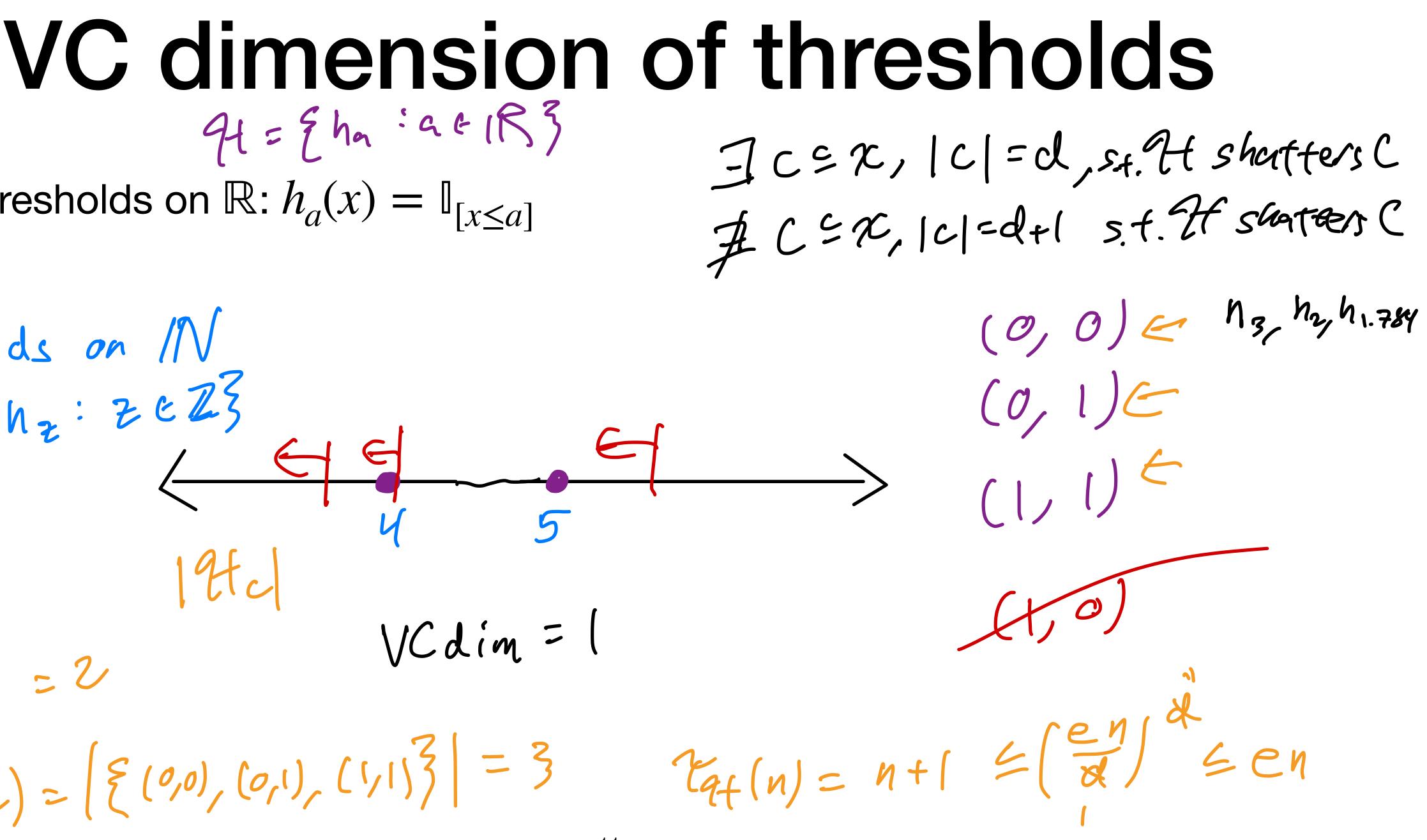
binomial theorem

e.g. from $1 - x \le \exp(-x)$

(pause)

91 = 9 ha : a & 183 • Thresholds on \mathbb{R} : $h_a(x) = \mathbb{I}_{[x \le a]}$

foresholds on IN $q_1' = \xi h_z : z \in \mathbb{Z}_z^3$ VCdim = $\chi_{4}(1) = 2$ $\gamma_{4}(z) = \left[\xi(0,0), (0,1), (1,1) \right]^{2} = 3$



VC dimension of circles

• From the homework: $h_r : \mathbb{R}^d \to \mathbb{R}$ given by $\|(\|x\| \le r)\|$

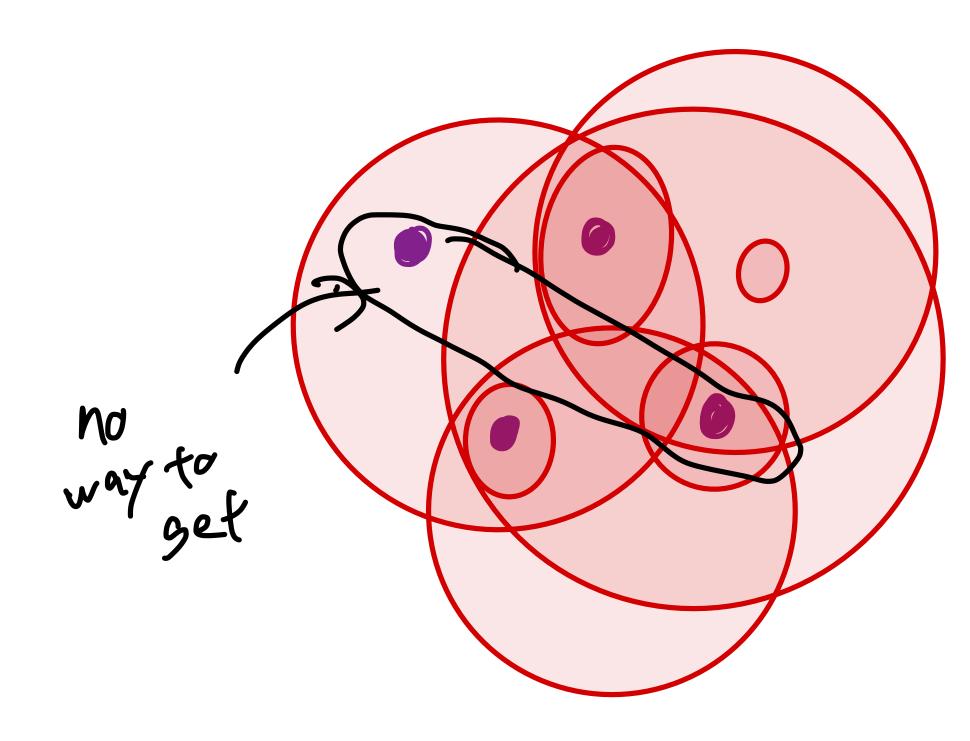
• What if we can place our circle arbitrarily? $h_{r,c} = \mathbb{I}(||x - c|| \le r)$

(0,0)

(1,0)

VC dimension of arbitrary circles

• What if we can place our circle arbitrarily? $h_{r,c} = \mathbb{I}(||x - c|| \le r)$ in \mathbb{R}^{z}



0,0,1 1/1/

can shatter 3 can't shatter U

VC dimension of finite classes

• Any \mathscr{H} with $|\mathscr{H}| < \infty$

[97c] 4 [97]

to short-ter $|2f_c| = 2^n$ at size n, $2^d \leq |2f_c| \leq |2f|$ $d \leq |2f_c| \leq |2f|$

• Let $h_w(x) = \mathbb{I}(\sin(wx) \ge 0)$ on \mathbb{R}

 $W = -\mathcal{H}\left(O, Y_{1}, Y_{2}, Y_{3}, Y_{4}\right) = -\mathcal{H}\left(\hat{\xi}, Y_{i}, 2^{-3}\right)$ $wx_i = -\mathcal{T}\left(\underbrace{\hat{z}}_{j=1}, y_j : \underbrace{z_{j-1}}_{j=1}\right)$ $Sin(WX_i) = Sin(-2KII - \pi Y_i - \pi Z_{y_j}^2)$ $Sin \left(-11 - sfh\right) = 0$ $Sin \left(-11 - sfh\right) = 0$ $Sin \left(0 - sfh\right) = 1$ 15

: VC din = 00

Infinite VC dimension but can barely shatter anything

• Let $h_w(x) = \mathbb{I}(\sin(wx_1) \ge 0)$ on \mathbb{R}^d

 $(0, \cdots)$ $(0, \cdots)$

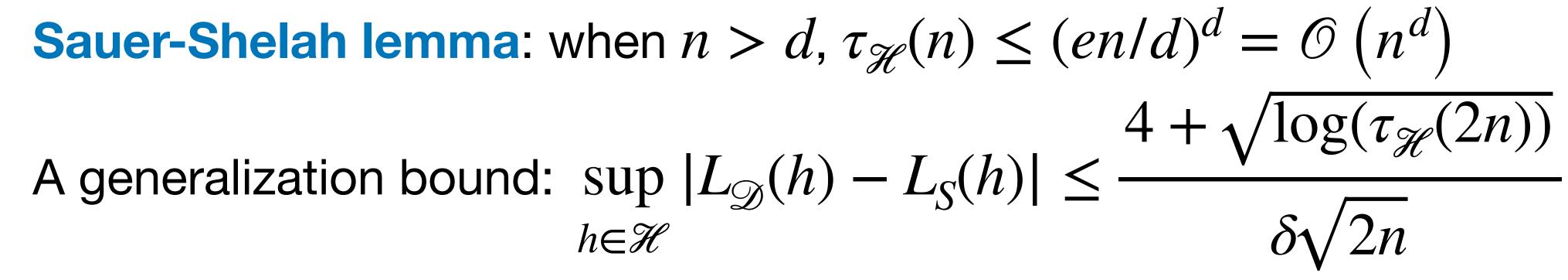
 $C_n = \xi(2^i, 0, ..., 0) : i \in En 13$

• The growth function, $\tau_{\mathcal{H}}(n) = \max_{C:|C|=n} |\mathcal{H}_C|$, bounds effective # of hyps

- The growth function, $\tau_{\mathcal{H}}(n) = \max_{C:|C|=n} |\mathcal{H}_C|$, bounds effective # of hyps

• Sauer-Shelah lemma: when n > d, $\tau_{\mathcal{H}}(n) \leq (en/d)^d = \mathcal{O}(n^d)$

- The growth function, $\tau_{\mathscr{H}}(n) = \max_{C:|C|=n} |\mathscr{H}_C|$, bounds effective # of hyps
- Sauer-Shelah lemma: when n > d, $\tau_{\mathcal{H}}(n) \leq (en/d)^d = \mathcal{O}(n^d)$



- The growth function, $\tau_{\mathcal{H}}(n) = \max_{C:|C|=n} |\mathcal{H}_C|$, bounds effective # of hyps
- Sauer-Shelah lemma: when n >
- A generalization bound: sup $|L_{\mathcal{D}}|$ $h \in \mathcal{H}$
- Plugging together, get uniform convergence property for finite VCdim and hence the "Fundamental Theorem of Learning"

$$\begin{aligned} d, \, \tau_{\mathcal{H}}(n) &\leq (en/d)^d = \mathcal{O}\left(n^d\right) \\ (h) - L_S(h) &| \leq \frac{4 + \sqrt{\log(\tau_{\mathcal{H}}(2n))}}{\delta\sqrt{2n}} \end{aligned}$$

- The growth function, $\tau_{\mathcal{H}}(n) = \max_{C:|C|=n} |\mathcal{H}_C|$, bounds effective # of hyps
- Sauer-Shelah lemma: when n >
- A generalization bound: sup $|L_{\mathcal{D}}|$ $h \in \mathcal{H}$
- Plugging together, get uniform convergence property for finite VCdim and hence the "Fundamental Theorem of Learning"
- Saw a bunch of VC calculations
 - Linear classifiers are d without intercept, d + 1 with
 - Even stupid function classes can have infinite VC dim

$$\begin{aligned} d, \, \tau_{\mathcal{H}}(n) &\leq (en/d)^d = \mathcal{O}\left(n^d\right) \\ (h) - L_S(h) &| \leq \frac{4 + \sqrt{\log(\tau_{\mathcal{H}}(2n))}}{\delta\sqrt{2n}} \end{aligned}$$