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Admin
• A1 solutions are posted (just publicly on the course site)

• Also see the post-mortem poll on Piazza

• Grading: probably next week sometime (ICML deadline…)  

• A2 will come probably next week + allow (encourage) groups  

• No office hours this week (ICML…)

• Piazza / schedule a meeting if needed  

https://www.cs.ubc.ca/~dsuth/532S/22/assignments/a1sol.pdf
https://piazza.com/class/ky0u4qahwdn2xj?cid=36
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• Grading: probably next week sometime (ICML deadline…)  

• A2 will come probably next week + allow (encourage) groups  

• No office hours this week (ICML…)

• Piazza / schedule a meeting if needed  

• FYI, now presenting from a different app

• Going to try out some live scribbles for part of this lecture

• Will save stuff I write on slides and post after class

• (Let me know if you hate it)
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Last time: shattering / VC dimension

• Restriction of  to  is 


•  shatters  if  contains all functions from  to : 

•  is size of the largest set that  can shatter, or  

• Doesn’t need that all sets of size VCdim can be shattered – it’s worst-case 
• There is a  with  that can be shattered

• There is no  with  that can be shattered 

ℋ C ℋC = {(h(c1), …, h(c|C|)) : h ∈ ℋ}
ℋ C ⊆ $ ℋC C {0,1} |ℋC| = 2|C|

VCdim(ℋ) ℋ ∞

C |C| = VCdim
C |C| = VCdim + 1
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Last time: “Fundamental Theorem of Learning”
   These are all equivalent:


1.  has the uniform convergence property

2. Any ERM rule agnostically PAC learns 

3.  is agnostic PAC learnable

4. Any ERM rule PAC learns 

5.  is PAC learnable

6.

ℋ
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ℋ
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ℋ
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• If :
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(actually will show something worse today)



Finite VCdim implies uniform convergence
• Uniform convergence:  with probability at least  sup

h∈ℋ
|L'(h) − LS(h)| ≤ ε 1 − δ
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We’ll come back for a much better rate in  –  instead of  – pretty soonδ log 1
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1
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Sauer-Shelah lemma
• Independently proved by, at least:

• Sauer 1972 (to solve a combinatorical problem posed by Erdős)

• Shelah 1972 (with Perles) as a lemma about “stable models”

• Perles, later on, in ergodic theory

• Vapnik+Chervonenkis, also in the 70s, to make VC theory work 

• Sauer-Shelah lemma: Let . Then .


• Corollary: for , 

VCdim(ℋ) ≤ d < ∞ τℋ(n) ≤
d

∑
i=0

(n
i )

n ≥ d τℋ(n) ≤ ( 1
d en)

d
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Proof of Sauer’s lemma
• Want to prove τℋ(n) = max

C⊆$: |C|=n
|ℋC| ≤

d

∑
i=0

(n
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• Proof by induction
• Base case: , so n = 1 C = {c1}
• If : LHS is 1 (  always  or ),  RHS is just the empty set: 1d = 0 ℋC {0} {1}
• If : LHS is 2 ( ),                  RHS has empty set and : 2d ≥ 1 ℋC = {0,1} C
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i=0

(n
i ) ( n

d )
d−i

add nonnegative terms to the sum

= ( n
d )

d n

∑
i=0

(n
i ) ( d

n )
i

rearrange

= ( n
d )

d

(1 + d
n )

n
binomial theorem

≤ ( n
d )

d

ed e.g. from 1 − x ≤ exp(−x)



(pause)
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VC dimension of thresholds
• Thresholds on : ℝ ha(x) = 2[x≤a]
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VC dimension of circles
• From the homework:  given by  

 
 
 

• What if we can place our circle arbitrarily?  
 
 

hr : ℝd → ℝ 2(∥x∥ ≤ r)

hr,c = 2(∥x − c∥ ≤ r)
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VC dimension of arbitrary circles
• What if we can place our circle arbitrarily?  

 
 

hr,c = 2(∥x − c∥ ≤ r)

13

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User



VC dimension of finite classes
• Any  with ℋ |ℋ| < ∞

14

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User



VC dimension of sign(sine)
• Let  on  hw(x) = 2(sin(wx) ≥ 0) ℝ
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Infinite VC dimension but can barely shatter anything

• Let  on  hw(x) = 2(sin(wx1) ≥ 0) ℝd
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Recap
• The growth function, , bounds effective # of hypsτℋ(n) = max

C:|C|=n
|ℋC|
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Recap
• The growth function, , bounds effective # of hypsτℋ(n) = max

C:|C|=n
|ℋC|

• Sauer-Shelah lemma: when , n > d τℋ(n) ≤ (en/d)d = * (nd)

• A generalization bound: sup
h∈ℋ

|L'(h) − LS(h)| ≤
4 + log(τℋ(2n))

δ 2n
• Plugging together, get uniform convergence property for finite VCdim

• and hence the “Fundamental Theorem of Learning”  

• Saw a bunch of VC calculations

• Linear classifiers are  without intercept,  with

• Even stupid function classes can have infinite VC dim

d d + 1
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