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+ no free lunch
+ start of VC dimension
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Admin

 We’re now under the cap
* |f you aren’t officially registered but want to be, email me your form ASAP
* |f you want to audit, email me your form ASAP

 To audit: come to at least 75% of classes
or a brief writeup at end of term (details TBD but it’ll be short)

* A1 due tomorrow night
* |[t's maybe harder than | intended — will do a calibration poll afterwards
* Future assignments will allow groups
 Might be shorter / longer to work on them / more hints available
 For 1b in particular, Exercise 2.3 or Example 6.1 might give good inspiration
o Office hours immediately after class today (until 3:55) and tomorrow 4-5



Last time: ERM with uniform convergence

» Want A to compete with best predictor in #Z with high probability

» First step: “good” § are e-representative, |L¢(h) — Lg(h)| < € for all h
e The generalization gap is small, for all A
o Lemma: If S is €/2-representative, then forany h € #,

Lo(hg) < Ly(hg)+~e < Ly(h)+5e < Ly(h) + ¢ and so Lg,(hg) < hinyf/ Lo,(h) + ¢
<

e / has the uniform convergence property w.r.t. # and ¢ if,
with n > ngfc(e, 0) samples from any distribution & over £,

S ~ D" is e representative with probability at least 1 — 6

» So: sufficient to show that finite # have the uniform convergence property



Last time: Finite # have the uniform convergence property

Pr ( dh € A . |Ly(h) — Lg(h)| > 8) (we want to show it’s < 0)
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Last time: Finite # have the uniform convergence property

Pr ( dh € Z . |L(h) — Lg(h)| > 8) (we want to show it’s < 0)
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ERM agnostically PAC-learns # with n > — [log(Z\%D + log %] samples
£
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Last time: Finite # have the uniform convergence property

Pr ( dh € Z . |L(h) — Lg(h)| > 8) (we want to show it’s < 0)
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Equivalently: error of ERM over # is at most 4 | —— [log(Z\% ) + log g]
n
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We need uniform convergence

A tempting, T
but wrong argument: ,
g ar Just apply a Hoeffding bound to /g and h* = argmin Lg,(h)
B - hex
__w\» " — then we’d only have to union two bounds instead of |#| in

2 1 1
7-5-3' — Lo(hg) < Ly(hg)+~e < L(h*)+~¢e < Lo(h*) + ¢
“ 2B° 2

and would get PAC learning with n > » log % -no |AZ|!
€

The £ (hg, z;) terms here are not independent:
the identity of 1 depends on those same terms!

v



Realizable vs agnostic case

» High probability bounds on error for finite 7, 0-1 loss:

1
. Realizable case: — (log‘%‘ + log %)
n

1
. Agnostic case: 1/ — (log\%\ + log 3)
2n 2

Optimistic Rates: A Unifying Theory for Interpolation Learning

* Possible to interpolate between them: “optimistic rateg™ fiesularization in Lincar Regression

° b . .t 2 Lijia Zhou* Department of Statistics, University of Chicago ZLJQUCHICAGO.EDU
maybe on assignment 2... ,

Frederic Koehler* Simons Institute, University of California at Berkeley FKOEHLER @BERKELEY .EDU

Danica J. Sutherland University of British Columbia; Alberta Machine Intelligence Institute DSUTHQCS.UBC.CA

Nathan Srebro Toyota Technological Institute at Chicago NATIQTTIC.EDU

S Collaboration on the Theoretical Foundations of Deep Learning (deepfoundations.ai)



(pause)



The Lack of A Priori Distinctions Between Learning
Algorithms
(1996)

David H. Wolpert
The Santa Fe Institute, 1399 Hyde Park Rd.,

Santa Fe, NM, 87501, USA

» Theorem: For any learning algorithm A for binary classification (0-1 loss) on &
. Letn < %\ﬁl"\ be a training set size

e Then there exists a & over X X {0,1} such that:
e Thereexistsanf: 2 — {0,1} with L;,(f) =0
. With probability at least % over the choice of § ~ D", L;,(A(S)) > %

e Corollary: If | 2| = o0, the set of all functions from 2 to {0,1} is not PAC learnable.
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No free lunch: basic proof idea

Let C C X with |C| = 2n

If we only care about C, there are 2°" functions f: C — {0,1}
» Callthem fi, /5, ..., [f7; let D . have x uniform over C and y = f.(x)

Seeing n samples from C, there are at least n points in C we haven’t seen
The algorithm needs to pick one of the f, but it’s just as likely to be wrong as right

We need prior information to learn anything
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So how do we pick an #Z?

Key decomposition: Lg(hg) = €,,,.0xFéest  Bigger % smaller Eapprox: PIgger &y

Eapprox = hlél?f/ Lo, (h) Approximation error: how good is £

at the concept we’re trying to learn?

Sometimes ¢, .. is defined as hlélyf/ Lo (h) — eBayes

€t = Lg(hg) — € approx Estimation error: how good are we at learning in #Z°?

Note: what 340 called “approximation error” is something different
— Lg(h) — Lg(h), the generalization gap (more like estimation error)!

12



(pause)
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Infinite classes

So far (in class) we’ve only proved PAC learning for finite |#]

But homework problem 1b has infinitely many hypotheses, and it PAC learns

Another example: threshold functions /,(x) = [, ., on R (Example 6.1)

So: finite || is sufficient, but not necessary
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Shattering

No-free-lunch theorem relied on being able to choose any function on C
So, to dodge it, we need to make sure that # can’t do everything on C

Restriction of 7 to Cis # - = { (h(cl), - h(c‘c‘)) h € ?/}

Say # shatters C C X if Z - contains all functions from C to {0,1}
» Equivalent: |Z | = 21C]

Corollary to no free lunch: if there is a C C X of size 2n shattered by #,
then there is a & over & X {0,1} where there is a perfect predictor, but
any learning algorithm A has probability at least 1/7 of error at least 1/8

15



VC dimension

e The VC dimension of #Z, is the size of the largest set that #Z can shatter
(or oo if it can shatter arbitrarily large sets)

e Doesn’t need that all sets of size VCdim can be shattered — it's worst-case
e Thereis a C with |C| = VCdim that can be shattered

* There is no C with |C| = VCdim + 1 that can be shattered
 We’ll cover some non-worst-case analyses soon

 Corollary of no-free-lunch: if VCdim(#) = oo, # is not PAC learnable
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“Fundamental Theorem”™ of Learning

For binary classification with 0-1 loss, these are all equivalent:
51. A has the uniform c?nvergence property ) Sars todoy
2. Any ERM rule agnostically PAC learns # &
w0 3. # is agnostic PAC learnable
ew”* 4. Any ERM rule PAC learns A,
5. # is PAC learnable
6. VCAdim(#) < o0
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And with some numbers:

» For a binary classification problem with O- 1 loss, if VCAIm(AZ) =

. # has uniform convergence property, — [d + log ] < n%c < — [d + log ]

C C

. 7 is agnostic PAC learnable, 52 [d + log ] < ng < ~ [d + log 3]

. /# is PAC learnable, ? [d + log E] <ng < % [a’ log %+log %]
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