Finish agnostic finite PAC + no free lunch + start of VC dimension

CPSC 532S: Modern Statistical Learning Theory 19 January 2022 <u>cs.ubc.ca/~dsuth/532S/22/</u>

Admin

- We're now under the cap

 - If you aren't officially registered but want to be, email me your form ASAP If you want to audit, email me your form ASAP
 - To audit: come to at least 75% of classes or a brief writeup at end of term (details TBD but it'll be short)
- A1 due tomorrow night
 - It's maybe harder than I intended will do a calibration poll afterwards
 - Future assignments will allow groups
 - Might be shorter / longer to work on them / more hints available

 - For 1b in particular, Exercise 2.3 or Example 6.1 might give good inspiration Office hours immediately after class today (until 3:55) and tomorrow 4-5

Last time: ERM with uniform convergence

- Want h_S to compete with best predictor in \mathcal{H} with high probability
- First step: "good" S are ε -representative, $|L_S(h) L_{\mathcal{D}}(h)| \leq \varepsilon$ for all h • The generalization gap is small, for all *h*
- Lemma: If S is $\varepsilon/2$ -representative, then for any $h \in \mathcal{H}$, $L_{\mathcal{D}}(h_{S}) \leq L_{S}(h_{S}) + \frac{1}{2}\varepsilon \leq L_{S}(h) + \frac{1}{2}\varepsilon \leq L_{\mathcal{D}}(h) + \varepsilon \text{ and so } L_{\mathcal{D}}(h_{S}) \leq \inf_{h \in \mathcal{H}} L_{\mathcal{D}}(h) + \varepsilon$
- \mathscr{H} has the uniform convergence property w.r.t. \mathscr{X} and \mathscr{C} if, with $n \ge n_{\mathscr{W}}^{UC}(\varepsilon, \delta)$ samples from any distribution \mathscr{D} over \mathscr{Z} , $S \sim \mathcal{D}^n$ is ε representative with probability at least $1 - \delta$

• So: sufficient to show that finite \mathscr{H} have the uniform convergence property

Last time: Finite \mathscr{H} have the uniform convergence property

 $\Pr_{S} \left(\exists h \in \mathscr{H} . |L_{S}(h) - L_{\mathfrak{D}}(h)| > \varepsilon \right) \quad \text{(we want to show it's < \delta)}$ $= \mathscr{D}^{n} \left(\bigcup_{h \in \mathscr{H}} \{S : |L_{S}(h) - L_{\mathfrak{D}}(h)| > \varepsilon \} \right) \quad \leq \sum_{h \in \mathscr{H}} \mathscr{D}^{n} \left(\{S : |L_{S}(h) - L_{\mathfrak{D}}(h)| > \varepsilon \} \right)$

assume $A \leq \ell(h, z) \leq A + B$

Hoeffding Bound (1963)

If $X_1, \ldots, X_n \in \mathbb{R}$ then $\Pr\left(\left|\frac{1}{n}\sum_{n}\right|\right)$

Wassily Hoeffding

$$\leq \sum_{h \in \mathcal{H}} \mathcal{D}^n \left(\{ S : |L_S(h) - L_{\mathcal{D}}(h)| > \varepsilon \} \right)$$

$$\leq \sum_{h \in \mathcal{H}} 2 \exp\left(-\frac{2}{B^2} n \varepsilon^2\right) = 2|\mathcal{H}| \exp\left(-\frac{2}{B^2} n \varepsilon^2\right)$$

independent,
$$\mathbb{E}[X_i] = \mu$$
, $\Pr(a \le X_i \le b)$
 $X_i - \mu > \varepsilon \le 2 \exp\left(\frac{-2n\varepsilon^2}{(b-a)^2}\right)$

Last time: Finite \mathscr{H} have the uniform convergence property

$$\Pr_{S} \left(\exists h \in \mathcal{H} . |L_{S}(h) - L_{\mathcal{D}}(h)| > \varepsilon \right)$$
$$= \mathcal{D}^{n} \left(\bigcup_{h \in \mathcal{H}} \{S : |L_{S}(h) - L_{\mathcal{D}}(h)| > \varepsilon \} \right)$$

assume $A \leq \ell(h, z) \leq A + B$

$$2|\mathscr{H}|\exp\left(-\frac{2}{B^2}n\varepsilon^2\right) < \delta \text{ iff } -\frac{2}{B^2}n\varepsilon^2 < \log\frac{\delta}{2|\mathscr{H}|} \text{ iff } n > \frac{B^2}{2\varepsilon^2}\left[\log(2|\mathscr{H}|) + \log\frac{1}{\delta}\right]$$

ERM agnostically PAC-learns \mathcal{H} with n

(we want to show it's $< \delta$)

$$\leq \sum_{h \in \mathcal{H}} \mathcal{D}^n \left(\{ S : |L_S(h) - L_{\mathcal{D}}(h)| > \varepsilon \} \right)$$

$$\leq \sum_{h \in \mathcal{H}} 2 \exp\left(-\frac{2}{B^2} n\varepsilon^2\right) = 2|\mathcal{H}| \exp\left(-\frac{2}{B^2} n\varepsilon^2\right)$$

$$n > \frac{2B^2}{\varepsilon^2} \left[\log(2|\mathcal{H}|) + \log \frac{1}{\delta} \right]$$
 samples

Last time: Finite \mathscr{H} have the uniform convergence property

 $\Pr_{S} \left(\exists h \in \mathscr{H} . |L_{S}(h) - L_{\mathfrak{D}}(h)| > \varepsilon \right) \quad \text{(we want to show it's < \delta)}$ $= \mathscr{D}^{n} \left(\bigcup_{h \in \mathscr{H}} \left\{ S : |L_{S}(h) - L_{\mathfrak{D}}(h)| > \varepsilon \right\} \right) \quad \leq \sum_{h \in \mathscr{H}} \mathscr{D}^{n} \left(\left\{ S : |L_{S}(h) - L_{\mathfrak{D}}(h)| > \varepsilon \right\} \right)$

assume $A \leq \ell(h, z) \leq A + B$

Equivalently: error of ERM over \mathcal{H} is a

$$\leq \sum_{h \in \mathcal{H}} \mathcal{D}^n \left(\{ S : |L_S(h) - L_{\mathcal{D}}(h)| > \varepsilon \} \right)$$

$$\leq \sum_{h \in \mathcal{H}} 2 \exp\left(-\frac{2}{B^2} n\varepsilon^2\right) = 2|\mathcal{H}| \exp\left(-\frac{2}{B^2} n\varepsilon^2\right)$$

at most
$$\sqrt{\frac{2B^2}{n}} \left[\log(2|\mathcal{H}|) + \log\frac{1}{\delta} \right]$$

ERM agnostically PAC-learns \mathscr{H} with $n > \frac{2B^2}{\varepsilon^2} \left[\log(2|\mathscr{H}|) + \log \frac{1}{\delta} \right]$ samples

We need uniform convergence

A tempting, but wrong argument:

"

- Just apply a Hoeffding bound to h_S and $h^* = \operatorname{argmin} L_{\mathscr{D}}(h)$ $h \in \mathcal{H}$ – then we'd only have to union two bounds instead of $|\mathcal{H}|$ in $L_{\mathcal{D}}(h_S) \leq L_S(h_S) + \frac{1}{2}\varepsilon \leq L_S(h^*) + \frac{1}{2}\varepsilon \leq L_{\mathcal{D}}(h^*) + \varepsilon$ and would get PAC learning with $n > \frac{2B^2}{\epsilon^2} \log \frac{4}{\delta} - \operatorname{no} |\mathcal{H}|!$
- The $\ell(h_S, z_i)$ terms here are *not* independent:
- the identity of h_S depends on those same terms!

Realizable vs agnostic case

- High probability bounds on error for finite \mathcal{H} , 0-1 loss:
 - Realizable case: $\frac{1}{n} \left(\log |\mathcal{H}| + \log \frac{1}{\delta} \right)$
 - Agnostic case: $\sqrt{\frac{1}{2n}} \left(\log |\mathcal{H}| + \log \frac{2}{\delta} \right)$
- Possible to interpolate between them: "optimistic rates" and Regularization in Linear Regression
 - (maybe on assignment 2...)

Optimistic Rates: A Unifying Theory for Interpolation Learning

Lijia Zhou^{*} Department of Statistics, University of Chicago ZLJ@UCHICAGO.EDU **Frederic Koehler**^{*} Simons Institute, University of California at Berkeley FKOEHLER@BERKELEY.EDU Danica J. Sutherland University of British Columbia; Alberta Machine Intelligence Institute DSUTH@CS.UBC.CA Nathan Srebro Toyota Technological Institute at Chicago NATI@TTIC.EDU Collaboration on the Theoretical Foundations of Deep Learning (deepfoundations.ai)

(pause)

No free unch David H. Wolpert The Santa Fe Institute, 1399 Hyde Park Rd.,

- Theorem: For any learning algorithm A for binary classification (0-1 loss) on ${\mathscr X}$
 - Let $n < \frac{1}{2}|\mathcal{X}|$ be a training set size
 - Then there exists a \mathcal{D} over $\mathcal{X} \times \{0,1\}$ such that: • There exists an $f: \mathcal{X} \to \{0,1\}$ with $L_{\mathcal{D}}(f) = 0$ • With probability at least $\frac{1}{7}$ over the choice of $S \sim \mathcal{D}^n$, $L_{\mathcal{D}}(A(S)) \geq \frac{1}{8}$

The Lack of A Priori Distinctions Between Learning Algorithms

(1996)

Santa Fe, NM. 87501. USA

• Corollary: If $|\mathcal{X}| = \infty$, the set of all functions from \mathcal{X} to $\{0,1\}$ is not PAC learnable.

No free lunch: basic proof idea

- Let $C \subseteq \mathscr{X}$ with |C| = 2n
- If we only care about C, there are 2^{2n} functions $f: C \to \{0,1\}$ • Call them f_1, f_2, \dots, f_T ; let \mathcal{D}_i have x uniform over C and $y = f_i(x)$
- Seeing n samples from C, there are at least n points in C we haven't seen • The algorithm needs to pick one of the f_i , but it's just as likely to be wrong as right
- We need prior information to learn anything

So how do we pick an \mathcal{H} ?

- $\varepsilon_{\text{approx}} = \inf_{h \in \mathscr{H}} L_{\mathscr{D}}(h)$ Approximation error: how good is \mathcal{H} at the concept we're trying to learn?
 - Sometimes ε_{approx} is defined as
- $\varepsilon_{\text{est}} = L_{\mathcal{D}}(h_S) \varepsilon_{\text{approx}}$ Estimation error: how good are we at learning in \mathcal{H} ?
 - Note: what 340 called "approximation error" is something different $-L_{\mathcal{D}}(h) - L_{\mathcal{S}}(h)$, the generalization gap (more like estimation error)!

Key decomposition: $L_{\mathcal{D}}(h_S) = \varepsilon_{approx} + \varepsilon_{est}$ Bigger \mathcal{H} : smaller ε_{approx} , bigger ε_{est}

$$\inf_{h \in \mathcal{H}} L_{\mathcal{D}}(h) - \varepsilon_{\mathsf{Bayes}}$$

(pause)

Infinite classes

- So far (in class) we've only proved PAC learning for finite $|\mathcal{H}|$
- But homework problem 1b has infinitely many hypotheses, and it PAC learns • Another example: threshold functions $h_a(x) = \mathbb{I}_{[x < a]}$ on \mathbb{R} (Example 6.1)
- So: finite $|\mathcal{H}|$ is sufficient, but not necessary

Shattering

- No-free-lunch theorem relied on being able to choose any function on C• So, to dodge it, we need to make sure that \mathcal{H} can't do everything on C
- Restriction of \mathcal{H} to C is $\mathcal{H}_C = \langle \mathcal{H}_C \rangle$
- Say \mathscr{H} shatters $C \subseteq \mathscr{X}$ if \mathscr{H}_C contains all functions from C to $\{0,1\}$ • Equivalent: $|\mathcal{H}_C| = 2^{|C|}$

$$\left\{ \left(h(c_1), \dots, h(c_{|C|}) \right) : h \in \mathcal{H} \right\}$$

• Corollary to no free lunch: if there is a $C \subseteq \mathcal{X}$ of size 2n shattered by \mathcal{H} , then there is a \mathcal{D} over $\mathcal{X} \times \{0,1\}$ where there is a perfect predictor, but any learning algorithm A has probability at least 1/7 of error at least 1/8

VC dimension

- The VC dimension of \mathcal{H} , is the size of the largest set that \mathcal{H} can shatter (or ∞ if it can shatter arbitrarily large sets)
- Doesn't need that all sets of size VCdim can be shattered it's worst-case • There is a C with |C| = VCdim that can be shattered • There is **no** C with |C| = VCdim + 1 that can be shattered

- We'll cover some non-worst-case analyses soon

• **Corollary** of no-free-lunch: if VCdim(\mathcal{H}) = ∞ , \mathcal{H} is not PAC learnable

"Fundamental Theorem" of Learning

For binary classification with 0-1 loss, these are all equivalent:

- 3. \mathscr{H} is agnostic PAC learnable 4. Any ERM rule PAC learns \mathscr{H}

 - 5. \mathcal{H} is PAC learnable 6. $VCdim(\mathcal{H}) < \infty$

H has the uniform convergence property
 Any ERM rule agnostically PAC learns *H* 2 saw today
 H is agnostic PAC learnable, *immediate*

And with some numbers:

- For a binary classification problem with
 - \mathcal{H} has uniform convergence property
 - . ${\mathscr H}$ is agnostic PAC learnable,
 - \mathcal{H} is PAC learnable,

0-1 loss, if VCdim(
$$\mathscr{H}$$
) = d:
y, $\frac{C_1}{\varepsilon^2} \left[d + \log \frac{1}{\delta} \right] \le n_{\mathscr{H}}^{UC} \le \frac{C_2}{\varepsilon^2} \left[d + \log \frac{1}{\delta} \right]$
 $\frac{C_1}{\varepsilon^2} \left[d + \log \frac{1}{\delta} \right] \le n_{\mathscr{H}} \le \frac{C_2}{\varepsilon^2} \left[d + \log \frac{1}{\delta} \right]$
 $\frac{C_1}{\varepsilon} \left[d + \log \frac{1}{\delta} \right] \le n_{\mathscr{H}} \le \frac{C_2}{\varepsilon} \left[d \log \frac{1}{\varepsilon} + \log \frac{1}{\delta} \right]$

