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Admin

FYI, I’ve been updating slides after class to stop where we actually stop + minor clarifications

Office hours: Tuesdays 10-11am; Thursdays 4-5pm
e Online for now (same Zoom link); at least one hybrid when we go to hybrid mode
* Feel free to ask to schedule another time on Piazza

My potential available calendar is on my.cs.ubc.ca (if you have a CS account)

A1 due Thursday 11:59pm

Do alone; cite sources in the question for anything you look up

e Submit on Gradescope; If there’s an issue, email your PDF to me

e It's not short; make sure you’ve started! Might require brushing up on linear algebra

We’re making good progress towards fitting in the 40-person cap!
* Will give instructions (on Piazza) to help prioritize waitlist soon, if still needed

e |[fyou’re , Or ,
follow instructions on Piazza 5



https://www.cs.ubc.ca/local/phpicalendar/day.php?cal%5B%5D=Danica_Sutherland
https://piazza.com/class/ky0u4qahwdn2xj?cid=21

Briefly

* Obviously not a Canadian holiday,
but want to acknowledge Martin Luther King, Jr day

e |etter from a Birmingham Jail (and other writings/speeches)
still extremely relevant today, including in Canada (and around the world)

T\ en Rosen
| A giabucchi

“Be nice to racist people — MLK” big day for MLK quotes with
— white people on mlk day weird ellipses in the middle



https://www.csuchico.edu/iege/_assets/documents/susi-letter-from-birmingham-jail.pdf

First: Probability overview

* A quick overview of probability as we’ll mostly talk about it in this class

* “measure-theoretic probability from someone who audited
one measure-theoretic probability course in grad school
(but got busy and and mostly stopped going halfway through)”

 We won’t need to know “real” measure theory In this course

 But the way | (and the Shais, and lots of work in the field) talk about
probability is apparently more unintuitive than | thought to people who
haven’t learned it!

* There are links on the course page to sources to learn it “for real”



Why measure theoretic probability?

 Can handle discrete and continuous distributions in the same framework
 Can handle things that are neither discrete nor continuous

. e.g. “spike-and-slab” prior: exactly 0 60% of the time, ./ (1, 6°) o.w.

» Joint distribution of (x, y) if y = f(x) for a deterministic f
» Easier to handle things like random functions rigorously

 The idea: we instead focus on probabilities of events



Probability spaces

» Underlying sample space €2 — everything that might happen
 If we roll a die once: Q = {1,2,3,4,5,6} = [6]
o |f we roll a die three times: Q = [6] X [6] X [6]
o |f we roll a die forever: Q = [6]®°

» An event space F containing possible events £ C €2
e “Irolleda3”: {3}

e« “Mly first two rolls were odd numbers”: {(1,1,1),(1,1,2), ...,(5,5,6)}
o “| didn’t roll a four until my twenty-third roll”

e A probability measure P : & — [0,1]

0



Non-measurable sets (beware)

 \We don’t allow ourselves to measure some things (avoid Banach-Tarski paradox)

Lout N
I found a )
cure.

e i.e.some E C Q aren’tin &

» Require & is a o-algebra: ”

Contains €2
Closed under complements u
Closed under countable \& |

Your tremulous
voice may attract
eldriteh forces! Beings
that deny the
laws of Euclid

haunt us. You can

call me “"Howard".

Welcome to hell. T
have seen such
awful things...

One cannot :
remove the memories, \
but one can remove the \
offending organs to ensure /.
they do not betray
you again... £ =

Die #16 (Gillen/Hans/Cowles, 2021)



Probability axioms

« Kolmogorov axioms: a probability measure P needs
1. P(E) > 0O for all measurable events E
2. P(QQ) =1, where Q = U E: something happens with probability 1

3. If £y, &, ... is a countable sequence of disjoint sets,

P OEi = iP(Ei)
=1 =1



Probability

 These axioms imply the kind of things you’d expect:
- P({}) =0
» Monotonicity: If £, C E, then P(E,) < P(E,)
. 0<PE)L1
« P(EY)=1— P(E)
.+ P(AUB) = P(A) + P(B) — P(A N B)



Random variables

Formally: a random variable is a function from (£2, &) to some other
measurable space, e.g. (R, &) - &£ is the Borel o-algebra on |

X induces a probability measure: P(A) = P({w € Q : X(w) € A})
Personally: usually don’t talk about €2; | use [P, or write Pr to mean roughly P

Discrete probability distributions:
» Probability mass function: Pr(X = a), if X ~ P, is just P({a})
Continuous probability distributions:
« P(A) =Pr(X € A)
» Note that P({a}) = O for any a; we’ll come back to densities in a minute
. But the CDF is P((—00,4a]) = Pr(X < a)
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So what was &Y' about?

If X and Y are independent random variables,
then Pr(X € A,Y € B) = Pr(X € A) Pr(Y € B) by definition
That is: Py (A X B) = Py(A) Py(B)

Write Iy = Iy X [Py @ product measure

Also abbreviate P? = P X [P for an i.i.d. pair

In the proof of (realizable) PAC learnability for finite #,

wehad x ~ 2, y = f(x), S = ((X1»Y1)a coes (X0 yn))

Book: probability of §|, = (xy, ..., x,) ~ &" falling in set of “bad samples”
Today: we'lluse (x,y) ~ ,s0 5 ~ Y" (and do the same kind of thing)
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Building the Lebesgue integral

If 1 is a measure (like a probability measure, but doesn’t require 1(£2) = 1)
we can build up Lebesgue integral starting with

[ du(x) = [I]A(x) du(x) = u(A) where [,(x) = {1 fx e A
A

0 otherwise

Expand to simple functions f = Z a;l A, by J fdu = Z a;u(A,)
i i
Nonnegative functions by taking supremum of smaller simple functions

Signed functions by taking f = f™ — f~ (e —

Agrees with Riemann integral when it exists, but Lebesgue is more general
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Expectations
. Define [E f(x) = det

For discrete X, f = simple func Zf(a) I]{a} on its support, U E
EFeF: P(E)>0

~ Thus EAX) = Zf(xi)t ({x; )

. If fis zero almost surely, P({x : f(x) = 0}) = 1, then det =0

y, ifx=x,x,y)€S

. Book example: h(x) = { (pure memorization)

0 otherwise
. Continuous data distribution has Z($],) = 0: Ly Ah) = Ly Ax — 0)

» But empirical distribution has ?Z(S\x) = 1,so0 Li(h) = Ly(f)



Probability densities

» Lebesgue measure (often A) is the usual measure for volume on R4
e eg.AM(la,b])) =b—aforb>a €l

. If we just write J f(x) dx, we usually mean [ f(x) dA(x)

» Usual probability density exists only if [P is absolutely continuous wrt 4, P << /A
e If A(A) = 0, then we also have P(A) =
 Discrete distributions are not dominated by (absolutely continuous wrt) A

 Are dominated by counting measure, u(A) = |A|

dl
If P << u, there is a measurable p = taking values in [0,00) with [P(A) = j p(x)du(x)
A

du
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To learn this stuff for real

From the course site:

Resources on learning measure-theoretic probability (nof required to know this stuff in detail, but you might find it helpful):

e A Measure Theory Tutorial (Measure Theory for Dummies) (Maya Gupta) — 5 pages, just the basics
e Measure Theory, 2010 (Greg Hjorth) — 110 pages but comes recommended as both thorough and readable

e A Probability Path (Sidney Resnick) — frequently recommended textbook aimed at non-mathematicians to learn it in
detail, but 1it's a full-semester textbook scale of detail; available if you log in via UBC

e There are also lots of other places, of course; e.g. the probability textbooks by Billingsley, Klenke, and Williams are (I
think) classics.

Or Math 418/544 (probability)
Math 420 (real analysis - includes some measure theory)

15


https://www.cs.ubc.ca/~dsuth/532S/22/#resources

(pause)
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ERM on finite &7

e Last time,
we showed that ERM algorithms PAC-learn finite # in the realizable setting

. Probability of a “bad” hypothesis (one with L@x,f(h) > €) being an ERM is low
 Union bound over all “bad” hypotheses

« Today: do ERM algorithms PAC-learn finite # in the agnostic setting?
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ERM with uniform convergence

» Want A to compete with best predictor in #Z with high probability

» First step: “good” § are e-representative, |L¢(h) — Lg(h)| < € for all h
e The generalization gap is small, for all A
o Lemma: If S is €/2-representative, then forany h € #,

Lo(hg) < Ly(hg)+~e < Ly(h)+5e < Ly(h) + ¢ and so Lg,(hg) < hinyf/ Lo,(h) + ¢
<

e / has the uniform convergence property w.r.t. # and ¢ if,
with n > ngfc(e, 0) samples from any distribution & over £,

S ~ D" is e representative with probability at least 1 — 6

» So: sufficient to show that finite # have the uniform convergence property



Finite # have the uniform convergence property

Pr ( dh € A . |Ly(h) — Lg(h)| > 8) (we want to show it’s < 0)
S

= QZ”( [ ) (S L) = Loy > e}> < ) D" ({S: |Lh) — Lo(h)| > €})

he# he#

2 2\ _ 2 2
assume A < 7(h,z) <A+B < 2 2 exp (—Ene ) = 2\%\6}(]@( = NE )
he#

Hoeffding If X, ....,X € Rindependent, E[X.] = u, Pr(a < X. < b) =1,

Bound \ ’/. | —2n82
(1963) Yy I'™= Pr( 1V x _ \ > g) < Dex
4 n Z l ) //l p (b _ a)z

Wassily Hoeffding




Finite # have the uniform convergence property

Pr ( dh € Z . |L(h) — Lg(h)| > 8) (we want to show it’s < 0)
S

— 9"( U (S : |Ly(h) — Lo,(h)| > g}> < Z D" ({S : |Lg(h) — Lyy(h)| > €})

he# heH
2 2 2 9
assume A <?¢(h,z7) <A+ B < Z 2 exp (—Ene ) = 2|# |exp (—Ene )
heH
0 B2
2 ) . 2 9) .
21 lexp (~gne?) <6 it —gone® <log s iff n> 2 [log2I]) +log 4

2B?

ERM agnostically PAC-learns # with n > — [log(Z\%D + log %] samples
£
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Finite # have the uniform convergence property

Pr ( dh € Z . |L(h) — Lg(h)| > 8) (we want to show it’s < 0)
S

— gz"( U (S : |Ly(h) — Lo,(h)| > g}> < Z D" ({S : |Lg(h) — Lyy(h)| > €})

he# hex
assume A <?¢(h,z7) <A+ B < Z 2 exp (—%n&@) = 2| A |exp (_%HSZ)
hex
[2B2 |
Equivalently: error of ERM over # is at most\ — |log(2|#|) + log r
n

2B?

ERM agnostically PAC-learns # with n > — [log(Z\%D + log %] samples
£
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Summary

Measure-theoretic probability
 Hope that was helpful? But again, we won’t need details.

Finite classes are PAC learnable, both in realizable and agnostic settings
e but rate Is different

Uniform convergence of L¢(h) to Lg,(h) over Z
» Key tool: Hoeffding bound (a concentration inequality)

Next time: choosing #; what about infinite hypothesis classes?
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