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Admin
• FYI, I’ve been updating slides after class to stop where we actually stop + minor clarifications  

• Office hours: Tuesdays 10-11am; Thursdays 4-5pm

• Online for now (same Zoom link); at least one hybrid when we go to hybrid mode

• Feel free to ask to schedule another time on Piazza

• My potential available calendar is on my.cs.ubc.ca (if you have a CS account) 

• A1 due Thursday 11:59pm

• Do alone; cite sources in the question for anything you look up

• Submit on Gradescope; if there’s an issue, email your PDF to me

• It’s not short; make sure you’ve started! Might require brushing up on linear algebra 

• We’re making good progress towards fitting in the 40-person cap!

• Will give instructions (on Piazza) to help prioritize waitlist soon, if still needed

• If you’re not on the official waitlist but want to register, or want to officially audit, 

follow instructions on Piazza 2

https://www.cs.ubc.ca/local/phpicalendar/day.php?cal%5B%5D=Danica_Sutherland
https://piazza.com/class/ky0u4qahwdn2xj?cid=21


Briefly
• Obviously not a Canadian holiday, 

but want to acknowledge Martin Luther King, Jr day 

• Letter from a Birmingham Jail (and other writings/speeches) 
still extremely relevant today, including in Canada (and around the world)
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https://www.csuchico.edu/iege/_assets/documents/susi-letter-from-birmingham-jail.pdf


First: Probability overview
• A quick overview of probability as we’ll mostly talk about it in this class

• “measure-theoretic probability from someone who audited 

  one measure-theoretic probability course in grad school 
  (but got busy and and mostly stopped going halfway through)” 

• We won’t need to know “real” measure theory in this course

• But the way I (and the Shais, and lots of work in the field) talk about 

probability is apparently more unintuitive than I thought to people who 
haven’t learned it! 

• There are links on the course page to sources to learn it “for real”
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Why measure theoretic probability?

• Can handle discrete and continuous distributions in the same framework

• Can handle things that are neither discrete nor continuous

• e.g. “spike-and-slab” prior: exactly 0 60% of the time,  o.w.

• Joint distribution of  if  for a deterministic 


• Easier to handle things like random functions rigorously 

• The idea: we instead focus on probabilities of events

𝒩(1, σ2)
(x, y) y = f(x) f
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Probability spaces
• Underlying sample space  – everything that might happen 
• If we roll a die once: 

• If we roll a die three times: 

• If we roll a die forever:  

• An event space  containing possible events 

• “I rolled a 3”: 

• “My first two rolls were odd numbers”: 

• “I didn’t roll a four until my twenty-third roll” 

• A probability measure 

Ω
Ω = {1,2,3,4,5,6} = [6]

Ω = [6] × [6] × [6]
Ω = [6]∞

ℱ E ⊆ Ω
{3}

{(1,1,1), (1,1,2), …, (5,5,6)}

P : ℱ → [0,1]
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Non-measurable sets (beware)
• We don’t allow ourselves to measure some things (avoid Banach-Tarski paradox)

• i.e. some  aren’t in 

• Require  is a -algebra:

• Contains 

• Closed under complements

• Closed under countable unions

E ⊂ Ω ℱ
ℱ σ

Ω
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Probability axioms
• Kolmogorov axioms: a probability measure  needs 

1.  for all measurable events  

2. , where : something happens with probability 1 

3. If  is a countable sequence of disjoint sets, 

    

P

P(E) ≥ 0 E

P(Ω) = 1 Ω = ∪E E

E1, E2, …

P (
∞

⋃
i=1

Ei) =
∞

∑
i=1

P(Ei)
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Probability

• These axioms imply the kind of things you’d expect:

• 

• Monotonicity: If  then 

• 

• 

•

P({}) = 0
E1 ⊆ E2 P(E1) ≤ P(E2)

0 ≤ P(E) ≤ 1
P(Ec) = 1 − P(E)
P(A ∪ B) = P(A) + P(B) − P(A ∩ B)
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Random variables
• Formally: a random variable is a function from  to some other 

measurable space, e.g.  –  is the Borel -algebra on  

• X induces a probability measure: 

• Personally: usually don’t talk about ; I use , or write  to mean roughly  

• Discrete probability distributions:

• Probability mass function: , if , is just 


• Continuous probability distributions:

• 

• Note that  for any ; we’ll come back to densities in a minute

• But the CDF is 

(Ω, ℱ)
(ℝ, ℛ) ℛ σ ℝ

ℙ(A) = P({ω ∈ Ω : X(ω) ∈ A})
Ω ℙ Pr P

Pr(X = a) X ∼ ℙ ℙ({a})

ℙ(A) = Pr(X ∈ A)
ℙ({a}) = 0 a

ℙ((−∞, a]) = Pr(X ≤ a)
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So what was  about?𝒟n

• If  and  are independent random variables, 
then  by definition


• That is: 

• Write : a product measure

• Also abbreviate  for an i.i.d. pair  

• In the proof of (realizable) PAC learnability for finite , 
we had , , 


• Book: probability of  falling in set of “bad samples”

• Today: we’ll use , so  (and do the same kind of thing)

X Y
Pr(X ∈ A, Y ∈ B) = Pr(X ∈ A) Pr(Y ∈ B)

ℙXY(A × B) = ℙX(A) ℙY(B)
ℙXY = ℙX × ℙY

ℙ2 = ℙ × ℙ

ℋ
x ∼ 𝒟x y = f(x) S = ((x1, y1), …, (xn, yn))

S|x = (x1, …, xn) ∼ 𝒟n

(x, y) ∼ 𝒟 S ∼ 𝒟n
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Building the Lebesgue integral
• If  is a measure (like a probability measure, but doesn’t require ) 

we can build up Lebesgue integral starting with 

        where 


• Expand to simple functions  by 


• Nonnegative functions by taking supremum of smaller simple functions

• Signed functions by taking  

 

• Agrees with Riemann integral when it exists, but Lebesgue is more general

μ μ(Ω) = 1

∫A
dμ(x) = ∫ 𝕀A(x) dμ(x) = μ(A) 𝕀A(x) = {1 if x ∈ A

0 otherwise

f = ∑
i

ai𝕀Ai ∫ f dμ = ∑
i

aiμ(Ai)

f = f + − f −
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Expectations
• Define 


• For discrete X,   = simple func  on its support, 


• Thus 


• If  is zero almost surely, , then 


• Book example:   (pure memorization)


• Continuous data distribution has : 


• But empirical distribution has , so 

𝔼 f(x) = ∫ f dℙ

f ∑
a

f(a) 𝕀{a} ⋃
E∈ℱ: ℙ(E)>0

E

𝔼 f(X) = ∑
i

f(xi) ℙ({xi})

f ℙ({x : f(x) = 0}) = 1 ∫ f dℙ = 0

h(x) = {yi if x = xi, (x, y) ∈ S
0 otherwise

𝒟(S|x) = 0 L𝒟x, f(h) = L𝒟x, f(x ↦ 0)
𝒟̂(S|x) = 1 LS(h) = LS( f )
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Probability densities
• Lebesgue measure (often ) is the usual measure for volume on 

• e.g.  for 


• If we just write , we usually mean  

• Usual probability density exists only if  is absolutely continuous wrt , 

• If , then we also have 

• Discrete distributions are not dominated by (absolutely continuous wrt) 

• Are dominated by counting measure,  

• If , there is a measurable  taking values in  with 

λ ℝd

λ([a, b]) = b − a b ≥ a ∈ ℝ

∫ f(x) dx ∫ f(x) dλ(x)

ℙ λ ℙ ≪ λ
λ(A) = 0 ℙ(A) = 0

λ
μ(A) = |A|

ℙ ≪ μ p =
dℙ
dμ

[0,∞) ℙ(A) = ∫A
p(x) dμ(x)
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To learn this stuff for real
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From the course site:

Or Math 418/544 (probability) 
     Math 420 (real analysis - includes some measure theory)

https://www.cs.ubc.ca/~dsuth/532S/22/#resources


(pause)
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ERM on finite ℋ

• Last time, 
we showed that ERM algorithms PAC-learn finite  in the realizable setting


• Probability of a “bad” hypothesis (one with ) being an ERM is low

• Union bound over all “bad” hypotheses 

• Today: do ERM algorithms PAC-learn finite  in the agnostic setting?

ℋ
L𝒟x,f(h) > ε

ℋ
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ERM with uniform convergence
• Want  to compete with best predictor in  with high probability 

• First step: “good”  are -representative,  for all 

• The generalization gap is small, for all 


• Lemma: If  is -representative, then for any , 
             
 

•  has the uniform convergence property w.r.t.  and  if, 
with  samples from any distribution  over , 

 is  representative with probability at least  

• So: sufficient to show that finite  have the uniform convergence property

hS ℋ

S ε |LS(h) − L𝒟(h)| ≤ ε h
h

S ε/2 h ∈ ℋ

ℋ 𝒵 ℓ
n ≥ nUC

ℋ (ε, δ) 𝒟 𝒵
S ∼ 𝒟n ε 1 − δ

ℋ 18

≤ L𝒟(h) + ε≤ LS(h)+ 1
2 ε≤ LS(hS)+

1
2 εL𝒟(hS) and so L𝒟(hS) ≤ inf

h∈ℋ
L𝒟(h) + ε



Wassily Hoeffding

Hoeffding 
Bound 
(1963)

Finite  have the uniform convergence propertyℋ
         (we want to show it’s )
Pr

S
(∃h ∈ ℋ . |LS(h) − L𝒟(h)| > ε) < δ
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≤ ∑
h∈ℋ

𝒟n ({S : |LS(h) − L𝒟(h)| > ε})= 𝒟n ( ⋃
h∈ℋ

{S : |LS(h) − L𝒟(h)| > ε})

If  independent, , ,X1, …, Xn ∈ ℝ 𝔼[Xi] = μ Pr(a ≤ Xi ≤ b) = 1

then Pr ( 1
n ∑ Xi − μ > ε) ≤ 2 exp ( −2nε2

(b − a)2 )

≤ ∑
h∈ℋ

2 exp (− 2
B2 nε2) = 2|ℋ|exp (− 2

B2 nε2)assume A ≤ ℓ(h, z) ≤ A + B



Finite  have the uniform convergence propertyℋ
         (we want to show it’s )
Pr

S
(∃h ∈ ℋ . |LS(h) − L𝒟(h)| > ε) < δ
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≤ ∑
h∈ℋ

𝒟n ({S : |LS(h) − L𝒟(h)| > ε})= 𝒟n ( ⋃
h∈ℋ

{S : |LS(h) − L𝒟(h)| > ε})
≤ ∑

h∈ℋ

2 exp (− 2
B2 nε2) = 2|ℋ|exp (− 2

B2 nε2)
2|ℋ|exp (− 2

B2 nε2) < δ − 2
B2 nε2 < log

δ
2|ℋ| n >

B2

2ε2 [log(2|ℋ|) + log 1
δ ]if if

ERM agnostically PAC-learns  with  samples
ℋ n >
2B2

ε2 [log(2|ℋ|) + log 1
δ ]

assume A ≤ ℓ(h, z) ≤ A + B



Finite  have the uniform convergence propertyℋ
         (we want to show it’s )
Pr

S
(∃h ∈ ℋ . |LS(h) − L𝒟(h)| > ε) < δ
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≤ ∑
h∈ℋ

𝒟n ({S : |LS(h) − L𝒟(h)| > ε})= 𝒟n ( ⋃
h∈ℋ

{S : |LS(h) − L𝒟(h)| > ε})
≤ ∑

h∈ℋ

2 exp (− 2
B2 nε2) = 2|ℋ|exp (− 2

B2 nε2)

ERM agnostically PAC-learns  with  samples
ℋ n >
2B2

ε2 [log(2|ℋ|) + log 1
δ ]

assume A ≤ ℓ(h, z) ≤ A + B

Equivalently: error of ERM over  is at most ℋ
2B2

n [log(2|ℋ|) + log
1
δ ]



Summary
• Measure-theoretic probability

• Hope that was helpful? But again, we won’t need details. 

• Finite classes are PAC learnable, both in realizable and agnostic settings

• but rate is different 

• Uniform convergence of  to  over 

• Key tool: Hoeffding bound (a concentration inequality) 

• Next time: choosing ; what about infinite hypothesis classes?

LS(h) L𝒟(h) ℋ

ℋ
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