A whirlwind tour of probability + agnostic PAC / uniform convergence + no free lunch

CPSC 532S: Modern Statistical Learning Theory 17 January 2022 cs.ubc.ca/~dsuth/532S/22/

Admin

- Office hours: Tuesdays 10-11am; Thursdays 4-5pm
 - Online for now (same Zoom link); at least one hybrid when we go to hybrid mode
 - Feel free to ask to schedule another time on Piazza
 - My potential available calendar is on my.cs.ubc.ca (if you have a CS account)
- A1 due Thursday 11:59pm
 - Do alone; cite sources in the question for anything you look up
 - Submit on Gradescope; if there's an issue, email your PDF to me
- We're making good progress towards fitting in the 40-person cap!
 - Will give instructions (on Piazza) to help prioritize waitlist soon, if still needed
 - follow instructions on Piazza

• FYI, I've been updating slides after class to stop where we actually stop + minor clarifications

• It's not short; make sure you've started! Might require brushing up on linear algebra

If you're not on the official waitlist but want to register, or want to officially audit,

Briefly

- Obviously not a Canadian holiday, but want to acknowledge Martin Luther King, Jr day
- Letter from a Birmingham Jail (and other writings/speeches)

still extremely relevant today, including in Canada (and around the world)

First: Probability overview

- - "measure-theoretic probability from someone who audited one measure-theoretic probability course in grad school
- We won't need to know "real" measure theory in this course
 - haven't learned it!
- There are links on the course page to sources to learn it "for real"

• A quick overview of probability as we'll mostly talk about it in this class (but got busy and and mostly stopped going halfway through)"

• But the way I (and the Shais, and lots of work in the field) talk about probability is apparently more unintuitive than I thought to people who

Why measure theoretic probability?

- Can handle discrete and continuous distributions in the same framework Can handle things that are neither discrete nor continuous
- - e.g. "spike-and-slab" prior: exactly 0 60% of the time, $\mathcal{N}(1, \sigma^2)$ o.w.
 - Joint distribution of (x, y) if y = f(x) for a deterministic f
- Easier to handle things like random functions rigorously
- The idea: we instead focus on probabilities of events

Probability spaces

- Underlying sample space Ω everything that might happen • If we roll a die once: $\Omega = \{1, 2, 3, 4, 5, 6\} = [6]$ • If we roll a die three times: $\Omega = [6] \times [6] \times [6]$

 - If we roll a die forever: $\Omega = [6]^{\infty}$
- An event space \mathcal{F} containing possible events $E \subseteq \Omega$
 - "I rolled a 3": {3}
 - "My first two rolls were odd numbers": $\{(1,1,1), (1,1,2), \dots, (5,5,6)\}$ "I didn't roll a four until my twenty-third roll"
- A probability measure $P: \mathcal{F} \to [0,1]$

Non-measurable sets (beware)

....but

I found a

cure.

- i.e. some $E \subset \Omega$ aren't in \mathcal{F}
- Require \mathcal{F} is a σ -algebra:
 - Contains Ω
 - Closed under complements
 - Closed under countable unions

Die #16 (Gillen/Hans/Cowles, 2021)

Probability axioms

- Kolmogorov axioms: a probability measure P needs
 - 1. $P(E) \ge 0$ for all measurable events E
 - 2. $P(\Omega) = 1$, where $\Omega = \bigcup_E E$: something happens with probability 1
 - 3. If $E_1, E_2, ...$ is a countable sequence of *disjoint* sets, $P\left(\bigcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} P(E_i)$

Probability

- These axioms imply the kind of things you'd expect:
 - $P(\{\}) = 0$
 - Monotonicity: If $E_1 \subseteq E_2$ then $P(E_1) \leq P(E_2)$
 - $0 \leq P(E) \leq 1$
 - $P(E^{c}) = 1 P(E)$
 - $P(A \cup B) = P(A) + P(B) P(A \cap B)$

Random variables

- Formally: a random variable is a function from (Ω, \mathcal{F}) to some other measurable space, e.g. $(\mathbb{R}, \mathscr{R}) - \mathscr{R}$ is the Borel σ -algebra on \mathbb{R}
- X induces a probability measure: $\mathbb{P}(A) = P(\{\omega \in \Omega : X(\omega) \in A\})$
- Personally: usually don't talk about Ω ; I use \mathbb{P} , or write \Pr to mean roughly P
- Discrete probability distributions:
- Probability mass function: Pr(X = a), if $X \sim \mathbb{P}$, is just $\mathbb{P}(\{a\})$ Continuous probability distributions:
 - $\mathbb{P}(A) = \Pr(X \in A)$

 - But the CDF is $\mathbb{P}((-\infty, a]) = \Pr(X \le a)$

• Note that $\mathbb{P}(\{a\}) = 0$ for any a; we'll come back to densities in a minute

So what was \mathfrak{D}^n about?

- If X and Y are independent random variables, then $Pr(X \in A, Y \in B) = Pr(X \in A) Pr(Y \in B)$ by definition
- That is: $\mathbb{P}_{XY}(A \times B) = \mathbb{P}_{X}(A) \mathbb{P}_{Y}(B)$
- Write $\mathbb{P}_{XY} = \mathbb{P}_X \times \mathbb{P}_Y$: a product measure
- Also abbreviate $\mathbb{P}^2 = \mathbb{P} \times \mathbb{P}$ for an i.i.d. pair
- In the proof of (realizable) PAC learnability for finite \mathcal{H} , we had $x \sim \mathcal{D}_x, y = f(x), S = ((x_1, y_1), \dots, (x_n, y_n))$
- Book: probability of $S|_x = (x_1, \dots, x_n) \sim \mathcal{D}^n$ falling in set of "bad samples" • Today: we'll use $(x, y) \sim \mathcal{D}$, so $S \sim \mathcal{D}^n$ (and do the same kind of thing)

Building the Lebesgue integral

• If μ is a measure (like a probability measure, but doesn't require $\mu(\Omega) = 1$) we can build up Lebesgue integral starting with $\int d\mu(x) = \int \mathbb{I}_A(x) d\mu(x) = \mu(x)$

Expand to simple functions f =

- Nonnegative functions by taking sup
- Signed functions by taking $f = f^+ f^-$

(A) where
$$\mathbb{I}_{A}(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{otherwise} \end{cases}$$

$$\sum_{i} a_{i} \mathbb{I}_{A_{i}} \text{ by } \int f d\mu = \sum_{i} a_{i} \mu(A_{i})$$
upremum of smaller simple functions

Agrees with Riemann integral when it exists, but Lebesgue is more general

- Define $\mathbb{E}f(x) = \int f d\mathbb{P}$ For discrete X, $f = \text{simple func } \sum f(a) \mathbb{I}_{\{a\}}$ on its support, • Thus $\mathbb{E}f(X) = \sum f(x_i) \mathbb{P}(\{x_i\})$
- If f is zero almost surely, $\mathbb{P}(\{x: f \in \mathcal{X}\})$

 - Continuous data distribution has
 - But empirical distribution has

Expectations

E $E \in \mathscr{F}: \mathbb{P}(E) > 0$

$$f(x) = 0\}) = 1$$
, then $\int f d\mathbb{P} = 0$

• Book example: $h(x) = \begin{cases} y_i & \text{if } x = x_i, (x, y) \in S \\ 0 & \text{otherwise} \end{cases}$ (pure memorization)

s
$$\mathscr{D}(S|_x) = 0$$
: $L_{\mathscr{D}_x, f}(h) = L_{\mathscr{D}_x, f}(x \mapsto 0)$
 $\hat{\mathscr{D}}(S|_x) = 1$, so $L_S(h) = L_S(f)$

Probability densities

- Lebesgue measure (often λ) is the usual measure for volume on \mathbb{R}^d
 - e.g. $\lambda([a, b]) = b a$ for $b \ge a \in \mathbb{R}$

• If we just write $\int f(x) dx$, we usually means

- Usual probability density exists only if \mathbb{P} is absolutely continuous wrt λ , $\mathbb{P} \ll \lambda$ • If $\lambda(A) = 0$, then we also have $\mathbb{P}(A) = 0$
- - Discrete distributions are *not* dominated by (absolutely continuous wrt) λ • Are dominated by counting measure, $\mu(A) = |A|$

$$an \int f(x) \, \mathrm{d}\lambda(x)$$

• If $\mathbb{P} \ll \mu$, there is a measurable $p = \frac{\mathrm{d}\mathbb{P}}{\mathrm{d}\mu}$ taking values in $[0,\infty)$ with $\mathbb{P}(A) = \int_A p(x) \,\mathrm{d}\mu(x)$

To learn this stuff for real

From the course site:

- <u>A Measure Theory Tutorial (Measure Theory for Dummies)</u> (Maya Gupta) 5 pages, just the basics • Measure Theory, 2010 (Greg Hjorth) – 110 pages but comes recommended as both thorough and readable • <u>A Probability Path</u> (Sidney Resnick) – frequently recommended textbook aimed at non-mathematicians to learn it in detail, but it's a full-semester textbook scale of detail; available if you log in via UBC • There are also lots of other places, of course; e.g. the probability textbooks by Billingsley, Klenke, and Williams are (I

- think) classics.

Or Math 418/544 (probability) Math 420 (real analysis - includes some measure theory)

Resources on learning measure-theoretic probability (*not* required to know this stuff in detail, but you might find it helpful):

(pause)

- Last time,

 - we showed that ERM algorithms PAC-learn finite \mathscr{H} in the realizable setting • Probability of a "bad" hypothesis (one with $L_{\mathcal{D}_r,f}(h) > \varepsilon$) being an ERM is low Union bound over all "bad" hypotheses
- Today: do ERM algorithms PAC-learn finite \mathscr{H} in the agnostic setting?

ERM on finite *X*

ERM with uniform convergence • Want h_{S} to compete with best predictor in \mathscr{H} with high probability

- First step: "good" *S* are ε -representative, $|L_S(h) L_O(h)| \le \varepsilon$ for all *h* • The generalization gap is small, for all h
- Lemma: If S is $\varepsilon/2$ -representative, then for any $h \in \mathcal{H}$, $L_{\mathcal{D}}(h_{S}) \leq L_{S}(h_{S}) + \frac{1}{2}\varepsilon \leq L_{S}(h) + \frac{1}{2}\varepsilon \leq L_{\mathcal{D}}(h) + \varepsilon \text{ and so } L_{\mathcal{D}}(h_{S}) \leq \inf_{h \in \mathcal{H}} L_{\mathcal{D}}(h) + \varepsilon$
- \mathscr{H} has the uniform convergence property w.r.t. \mathscr{X} and \mathscr{C} if, with $n \ge n_{\mathscr{W}}^{UC}(\varepsilon, \delta)$ samples from any distribution \mathscr{D} over \mathscr{Z} , $S \sim \mathcal{D}^n$ is ε representative with probability at least $1 - \delta$

• So: sufficient to show that finite \mathscr{H} have the uniform convergence property

Finite \mathcal{H} have the uniform convergence property

 $\Pr_{S} \left(\exists h \in \mathscr{H} . |L_{S}(h) - L_{\mathfrak{D}}(h)| > \varepsilon \right) \quad \text{(we want to show it's < \delta)}$ $= \mathscr{D}^{n} \left(\bigcup_{h \in \mathscr{H}} \{S : |L_{S}(h) - L_{\mathfrak{D}}(h)| > \varepsilon \} \right) \leq \sum_{h \in \mathscr{H}} \mathscr{D}^{n} \left(\{S : |L_{S}(h) - L_{\mathfrak{D}}(h)| < \varepsilon \} \right)$

assume $A \leq \ell(h, z) \leq A + B$

Hoeffding Bound (1963)

If $X_1, \ldots, X_n \in \mathbb{R}$ then $\Pr\left(\left|\frac{1}{n}\sum_{n}\right|\right)$

Wassily Hoeffding

$$\leq \sum_{h \in \mathcal{H}} \mathcal{D}^n \left(\{ S : |L_S(h) - L_{\mathcal{D}}(h)| > \varepsilon \} \right)$$

$$\leq \sum_{h \in \mathcal{H}} 2 \exp\left(-\frac{2}{B^2} n\varepsilon^2\right) = 2|\mathcal{H}| \exp\left(-\frac{2}{B^2} n\varepsilon^2\right)$$

independent,
$$\mathbb{E}[X_i] = \mu$$
, $\Pr(a \le X_i \le b)$
 $X_i - \mu \Big| > \varepsilon \Big) \le 2 \exp\left(\frac{-2n\varepsilon^2}{(b-a)^2}\right)$

Finite \mathscr{H} have the uniform convergence property

$$\Pr_{S} \left(\exists h \in \mathcal{H} . |L_{S}(h) - L_{\mathcal{D}}(h)| > \varepsilon \right)$$
$$= \mathcal{D}^{n} \left(\bigcup_{h \in \mathcal{H}} \left\{ S : |L_{S}(h) - L_{\mathcal{D}}(h)| > \varepsilon \right\} \right)$$

assume $A \leq \ell(h, z) \leq A + B$

$$2|\mathscr{H}|\exp\left(-\frac{2}{B^2}n\varepsilon^2\right) < \delta \text{ iff } -\frac{2}{B^2}n\varepsilon^2 < \log\frac{\delta}{2|\mathscr{H}|} \text{ iff } n > \frac{B^2}{2\varepsilon^2}\left[\log(2|\mathscr{H}|) + \log\frac{1}{\delta}\right]$$

ERM agnostically PAC-learns \mathcal{H} with n

(we want to show it's $< \delta$)

$$\leq \sum_{h \in \mathcal{H}} \mathcal{D}^n \left(\{ S : |L_S(h) - L_{\mathcal{D}}(h)| > \varepsilon \} \right)$$

$$\leq \sum_{h \in \mathcal{H}} 2 \exp\left(-\frac{2}{B^2} n\varepsilon^2\right) = 2|\mathcal{H}| \exp\left(-\frac{2}{B^2} n\varepsilon^2\right)$$

$$a > \frac{2B^2}{\varepsilon^2} \left[\log(2|\mathcal{H}|) + \log \frac{1}{\delta} \right]$$
 samples

Finite \mathcal{H} have the uniform convergence property

 $\Pr_{S} \left(\exists h \in \mathscr{H} . |L_{S}(h) - L_{\mathfrak{D}}(h)| > \varepsilon \right) \quad \text{(we want to show it's < \delta)}$ $= \mathscr{D}^{n} \left(\bigcup_{h \in \mathscr{H}} \{S : |L_{S}(h) - L_{\mathfrak{D}}(h)| > \varepsilon \} \right) \quad \leq \sum_{h \in \mathscr{H}} \mathscr{D}^{n} \left(\{S : |L_{S}(h) - L_{\mathfrak{D}}(h)| < \varepsilon \} \right)$

assume $A \leq \ell(h, z) \leq A + B$

Equivalently: error of ERM over \mathcal{H} is a

ERM agnostically PAC-learns *H* with n

$$\leq \sum_{h \in \mathcal{H}} \mathcal{D}^n \left(\{ S : |L_S(h) - L_{\mathcal{D}}(h)| > \varepsilon \} \right)$$

$$\leq \sum_{h \in \mathcal{H}} 2 \exp\left(-\frac{2}{B^2} n\varepsilon^2\right) = 2|\mathcal{H}| \exp\left(-\frac{2}{B^2} n\varepsilon^2\right)$$

at most
$$\sqrt{\frac{2B^2}{n}} \left[\log(2|\mathcal{H}|) + \log\frac{1}{\delta} \right]$$

$$n > \frac{2B^2}{\varepsilon^2} \left[\log(2|\mathcal{H}|) + \log \frac{1}{\delta} \right]$$
 samples

Summary

- Measure-theoretic probability
 - Hope that was helpful? But again, we won't need details.
- - but rate is different
- Uniform convergence of $L_{\mathcal{S}}(h)$ to $L_{\mathcal{D}}(h)$ over \mathscr{H}
 - Key tool: Hoeffding bound (a concentration inequality)
- Next time: choosing \mathscr{H} ; what about infinite hypothesis classes?

• Finite classes are PAC learnable, both in realizable and agnostic settings