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Admin

 Now online until (at least) February 7

Al is up; get at it!
 Due 11:59pm Thursday the 20th; do alone
 Should be able to do all of it after today
* Might require brushing up on linear algebra a bit
* Submission instructions coming by this weekend

e \We’re making progress towards fitting in the cap :)

* |f you're pretty sure you’ll drop, please don’t wait until the last day,
so people on the waitlist can plan appropriately

e (But also, please don’t drop if you want to stay!)
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Last time: definitions

x ~ 9., adistributionover ;y =f(x) € ¥; S = ((xl,yl), s (X, yn))
Want  : & — % minimizing Lgx,f(h) = Pr (h(x) #f(x))

x~D,
1l & (1 ifh(x) #y,
raining loss Lg(h) . Z {O if h(x;) = y;

=1

Empirical risk minimization (ERM): choose /2 minimizing L (/)
from a hypothesis class # of functions h : X — ¥

To start with something simple, assume realizability:
there is an h* € # with L@x,f(h*) =0

» Implies (a.s.) that L¢(h™) = 0
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Realizable, finite #7

hg € argmin, _., Lg(h): realizable means Lg(hg) = 0, but maybe Ly, ((hg) > 0
Would like to show Pr (LQZ f(hS) < 8) > 1 —9,i.e. Pr(L(hy) > ¢) <0
S ©

Union bound

Call Z 5 the set of “bad” hypotheses, {h e A : Ly f(h) > 8}

M = {S cdhe Hy. Lih) = ()} is set of “bad” samples
° If L@x,f(hs) > 8, then S & M Pp[AUBF?'lA)”'(B)'P"(P‘“‘)
For a “worst-case ERM”, we have B

Pr(L(hy) > &) = 20(M) = 2| | ) {S: L) =0} [ < ) D ({S: Ly(h) = 0})
heZ , heH g
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Realizable, finite #7

Pr(L(hg) > &) < ) D ({S: Ly(h) = 0})
he , L m_ .
DS 1 Lg(h) =0}) = D5{S Vi, h(x) =) ) o e

If a hypothesis is bad,
Because it’s iid, this is just H I {x; : h(x) =f(x)}) we're likely to sample

at least one x; where it’s wrong

But 9 ({x;: h(x)—yl})— 1 — Ly Ah) <1 —¢ sinceh e #Zy

o\
Pr(L(hS) > 8) < Z (1 8) Not too likely to get unlucky
heX g with any bad hypothesis

<|Zpl(1—e) <|Z|(l—-¢e)" <|H#|e™™



Finite # are (realizable) PAC-learnable

. We showed that Pr (L@x,f(hs) < g) > 1 — | |e "

1
. Or:if we have n > — (logl%l + log %) Ly «h) < € with prob. at least 1 — 0.
E "

|

. Or: error is at most — (log\%\ + log %) with high probability

n

» /A is PAC learnable if there is a function ng, : (0,1)> > N and a learning alg. s.t.:
» Forevery g,0 € (0,1), for every D over &, and every labeler f : X — {0,1}:
o If /Z is realizable for & _and f,

» then running the algorithm on n > ngy,(¢, 0) i.i.d. examples from <. labeled by f,
o Will return a hypothesis /4 with L@x,f(h) <e€

 with probability at least 1 — 0 over the choice of examples



Example: Boolean conjunctions

# . conjunctions of the form
aANCAf

Algorithm:

. Startwitha AaA -+ AfAf
* Cross out bits inconsistent with the positives
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Example: Boolean conjunctions

c A J/\f || = 3d. [é (dlog(B) + log %)] samples enough

y

# . conjunctions of the form
- aANCAf

+

Algorithm:

. Startwitha AaA -+ AfAf
* Cross out bits inconsistent with the positives

Assuming realizabillity, this gives an ERM
* Algorithm makes every + example a +

* True function f is only “less specific” than h:
h(x) = - for anything truly -
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So, are we done?

Every practical # is finite if you put it on a computer
Total size of weights in a big deep network is typically up to ~1GB

Say 100MB, 8 * 100 * 2%V pits, so there are 02527 possible networks
. log (225'225) = 252% log(2) ~ 252 million

 |f we want, say, € = 0.1 (90% accuracy): 2.5 billion training points

(Plus, we don’t actually do ERM with realizable, fixed hypothesis classes...)
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PAC learnability and computational efficiency

RESEARCH CONTRIBUTIONS

« A Theory of the Learnable

o Valiant (1984)’s formulation |

required the algorithm & 1 \:;

o run in POIynOrn.laI time . Communications of the ACM, 1984 5 . .

* We're going to think about runtime separately, N A
but be aware many authors keep that in the definition

* Independent(?), closely related development by Vapnlk and Chervcnenkls
in the USSR; much more on their work soon & Ee. %
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PAC learnability and computational efficiency

(Sec 1.4-1.5
PDF through UBC: log in here)

A class that can be PAC-learned but not in polynomial time
(assuming P = BPP and P # NP): b ~

e . A FFRRNEA BN

3-DNF: 3-term clauses in disjunctive normal form ” ﬁ?\ ﬁu:%f,ﬂ

T\ VT,V T; (et kAl |
terms are conjunctions: Iy =a AC A -+

* Graph 3-coloring reduces to learning 3-DNFs

%( g ] f% {
| o . b2 .

COMPUTATIONAL

LEARNING THEORY

But: 3-DNF C 3-CNF, /\ (aVbVec),

uel,,vel,wel; e . -
University of Hllinois, Urbana-Champaign, Urbana, Illinois

and 3-CNF can be efficiently PAC-learned

LESLIE G. VALIANT

LEONARD PITT (1 988)

Harvard University, Cambridge, Massachusetts
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https://direct-mit-edu.eu1.proxy.openathens.net/books/book/2604/An-Introduction-to-Computational-Learning-Theory

(pause)
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Non-realizable (agnostic) learning

What if there’s some noise in the data?
* e.g. two identical xs might have different ys

Instead of saying x ~ &, and y = f(x), have joint distribution (x,y) ~ &
< is a distribution over domain & = X X ¥

Population loss is now Lg,(h) = Pr(h(x) #y) =Y ({(x, y) : h(x) # y})

l «— (1 ifhalx) #y;
Empirical | till Lo(h) = —
mpirical loss still L¢(/) lzzl {() fh(x) =y,

n
» Notice this is the population loss over the empirical distribution on §
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Non-realizable (agnostic) learning

Somplls K¢ Ao P

. Population loss is now Lg,(h) = Pr(h(x) #y) = D ({(x, y) @ h(x) # y})
1 if h(x) # y,

n i1 () If h(xl-) — yi

» Notice this is the population loss over the empirical distribution on §

n

1
_ Empirical loss still Lg(h) = — Z {
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(General loss functions

So far we’ve only looked at the error rate
More generally, allow a loss function £ : 7 X £ — |

1 n
Lo(h) = E__o[£(h,7)] Ly(h) = — ) £(h,z)
i=1
o B 0 ifh(x) =y
O-1loss: £ =X XY, €o_i(h,(x,y)) = {1 £ () % v

gives classification error rate

Square loss (¥ C R)is Zgq(h, (x,y)) = (h(x) — y)

Tons of other options!
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Agnostic PAC

o # is agnostically PAC learnable foraset Z andloss ¢ : ' X £ — |
if there is a function ngy, : (0,1)> = N and a learning algorithm such that:

For every €,0 € (0,1) and every distribution & over Z£,
then running the algorithm on n > ng(¢, 0) i.i.d. examples from &

will return a hypothesis 1 € Z with Lg,(h) < + €

with probability at least 1 — 6 over the choice of examples

 \We don’t (nhecessarily) get error arbitrarily close to 0 anymore!

. Realizable means 1nt Lg(A") = 0: then, this is same as realizable PAC
h'eAx
. Otherwise, 1nf Lg(h') is the best loss achievable in #
h'eA
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Improper Agnostic PAC

o /A is agnostically PAC learnable in #7 ' for £,loss ¢ : Z' X £ — |
if there is a function ngy, : (0,1)> = N and a learning algorithm such that:

For every €,0 € (0,1) and every distribution & over Z£,
then running the algorithm on n > ng(¢, 0) i.i.d. examples from &

will return a hypothesis with Lg,(h) < int Lg(h') + ¢
h'eA

with probability at least 1 — 6 over the choice of examples

* e.g.: learn a polynomial classifier almost as good as the best linear classifier,
or learn a 3-DNF function with a 3-CNF

e Shai+Shai: “there is nothing improper about representation-independent learning”
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Bayes error rate

What can we say about 1inf Lg(/)?
heX

It’s at least as big as the Bayes error: error of the Bayes-optimal classifier
. 1
Il ifPr(y=1]|x)>—=
Jo(x) = ¢ 2

0 otherwise

This is the best conceivable classifier. (See homework!)

The best classifier in #Z might be this good, or it might be worse
Other losses have corresponding Bayes-optimal predictors;

for reasonable classification losses, it’s this same fg,.
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Summary

PAC learnability: realizable, agnostic, improper

]
. Finite classes: realizable PAC by ERM with n > — (log\?/\ + log %)
5

Extended definition to general loss functionson Z,e.g. X X ¥
Bayes classifier / Bayes error rate

Next time: finite classes in the agnostic case + uniform convergence
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