
CPSC 532S: Assignment 4 – due Friday, 8 Apr 2022, 11:59pm
This late policy is extra-extra-generous because of end-of-term: -1 point on the assignment per day you’re
late, not including Saturday/Sunday so that handing in Monday is only -1, up to a hard deadline of
Friday April 15th (and not accepted after that).

This assignment is split into four questions (the parts with big section headers; most have sub-parts). You
can solve each question in groups of up to three. Groups don’t need to be consistent between problems; you
can do Q1 and Q2 alone, Q3 with Alice, and Q4 with Bob and Carlos if you want.

Please do not just split the questions up and do the parts separately. If your name is on a solution,
you are pledging that you contributed significantly to the solution and understand it fully.

There is a separate Gradescope assignment for each problem; use the Gradescope groups feature to submit
once and associate with each of you, but also put all of your names on the first page as a backup.

Prepare your answers to these questions using LATEX. Hopefully you’re reasonably familiar with it, but if
not, try using Overleaf and looking around for tutorials online. (Note that free Overleaf accounts can only
share with one “named collaborator,” but you can collaborate with more people by sending them an edit
link. Make sure you only share the parts of the homework you’re handing in together!)

Feel free to ask questions if you get stuck on things on Piazza (but remove any details about the actual
answers. . . feel free to make a private post if that’s tough). If you look stuff up anywhere other than in the
slides, one of the two course textbooks, or the Telgarsky notes, please cite your sources: just say in the
answer to that question where you looked. (A link is fine, no need for a formal citation.) Please do not
look at solution manuals or so on. If you accidentally come across a solution while looking for something
related, still write the argument up in your own words, link to wherever you found it, and be clear about
what happened.

If you like, the .tex source for this file is available on the course website, and you can put your answers in
\begin{answer} My answer here... \end{answer} environments to make them stand out if so; feel free
to delete whatever boilerplate you want (or not, I’m not printing them out). Or answer in a fresh document;
just make it clear which question you’re answering where.

If you’re using a consistent group and want to write your answers in one document, you could split the
PDF with e.g. qpdf a2.pdf --pages . 2-3 -- q1.pdf or through the GUI of a PDF viewer. Or you can
upload the full file four times and just make sure you assign pages appropriately.

Submit your answers as a PDF on Gradescope: instructions on Piazza. You’ll be prompted to mark where
each sub-part is in your PDF; make sure you mark all relevant pages for each part. (This saves me a
surprising amount of time in grading.) If something goes wrong, you can also email your assignment to me
directly (dsuth@cs.ubc.ca).
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https://piazza.com/class/ky0u4qahwdn2xj?cid=17


1 Proving kerneldom [25 points + 5 bonus points]

Prove that the following functions are kernels, i.e. that they are positive semi-definite functions.

Hint: Recall that you can do so by directly proving all kernel matrices are psd, by writing an explicit feature
mapping k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩ where ϕ maps into any Hilbert space (including Rd), or by using steps known
to produce new kernels out of old ones as in lecture 15 slides “Building kernels from other kernels” through
“Some more ways to build kernels.” You could also use Bochner’s theorem, which we did not cover in class,
if you’re a Fourier buff: a kernel k(x, y) = ψ(x− y) with ψ(0) = 1 is psd iff it is the Fourier transform of a
probability measure.

Hint: Here are two Hilbert spaces that might be useful to you. First, the space ℓ2 of square-summable
sequences (ak)

∞
k=1 with inner product ⟨(ak), (bk)⟩ℓ2 =

∑
k akbk. Second, the space L2(X ) of square-integrable

functions1 on X , with inner product ⟨f, g⟩L2 =
∫
X f(x)g(x)dx.

(a) [5 points] k(x, y) = cos(x− y) on R.

Hint: The list of trigonometric identities makes for good bedtime reading.

(b) [5 points] kn(x, y) =
1
2π [1 + 2

∑n
k=1 cos(k(x− y))] =

sin
((

n+
1
2

)
(x−y)

)
2π sin((x−y)/2) on R for any n ≥ 0.

(This is called the Dirichlet kernel, because it is a continuous kernel which converges to the Dirichlet
delta function δ(x− y) as n→ ∞.)

(c) [5 points] k(x, y) = min(x, y) on [0, 1].

Hint: You could consider the integral
∫
R 1(t ∈ [0, x])1(t ∈ [0, y])dt.

(d) [5 points] k(X,Y ) =
∑

x∈X

∑
y∈Y k0(x, y) on finite sets with elements in X , where k0 is a kernel on X .

(e) [5 points] k(x, y) = 1/
√
1− xy on (−1, 1).

For [5 bonus points], you can instead show 1/
√
1− xTy is psd on {x ∈ Rd : ∥x∥ < 1}.

Hint: It might help to use the following expansion (see e.g. here), which converges for |z| < 1:

1√
1− z

=

∞∑
k=0

ckz
k for ck :=

1

22k

(
2k

k

)
.

1Really, this should be a space of equivalence classes of functions, since a function that’s zero only almost everywhere will
have norm zero. That won’t matter for this question.
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https://en.wikipedia.org/wiki/List_of_trigonometric_identities
https://math.stackexchange.com/a/2053154/19147


2 Maximizing differences [25 points]

Let’s consider learning a kernel classifier with the somewhat unusual linear loss, ℓ(h, (x, y)) = −yh(x), where
y ∈ {−1, 1}. Take the kernel k : X × X → R with associated RKHS Hk.

(a) [10 points] Find the regularized loss minimizer

ĥλ = argmin
h∈Hk

LS(h) +
1
2λ∥h∥

2
Hk
, (RLM)

for a training sample S = ((x1, y1), . . . , (xn, yn)).

(b) [5 points] Show that LS(ĥλ) = − 1
λ

∥∥∥ 1
n

∑
i:yi=1 k(xi, ·)−

1
n

∑
i:yi=−1 k(xi, ·)

∥∥∥2
Hk

.

(c) [5 points] Find a (data-dependent) value of λ, call it λ̂, such that ∥ĥλ̂∥Hk
= 1, and simplify the

expression for LS(ĥλ̂).

(d) [5 points] Argue that ĥλ̂ is a solution to

min
h∈Hk:∥h∥≤1

LS(h). (ERM)

Further argue that solving (ERM) is equivalent to solving

max
h∈Hk:∥h∥≤1

∑
i:yi=1

h(xi)−
∑

i:yi=−1

h(xi), (MAX)

i.e. finding a function high on the positively-labeled points and low on the negatively-labeled ones.
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3 One way to do semi-supervised learning [25 points]

Semi-supervised learning is when you’re given not only a training set of (x, y) pairs, but also a set of
unlabeled x samples from the marginal distribution of x. (For instance, maybe you have a really big dataset
scraped from the web, and have only paid for human annotation of a small, random selection from it.) Even
though there aren’t any labels, this can be useful for determining the optimal decision function under some
reasonable assumptions: for instance, if you have a clear cluster structure, it’s perhaps more likely that the
labeling function is constant on that cluster.

One way to try to implement this is to penalize the gradient norm of the decision function, evaluated at the
data points – the decision function should be smooth where there’s data. (You might be familiar with this
type of gradient penalty from GANs.) It turns out that the special structure of RKHSes will allow for this.
Specifically, let’s let Hk be an RKHS for some twice-differentiable kernel k on R, i.e. f ∈ Hk maps R to R.
(Everything here will work for Rd, the notation just gets a little messier.)

Our goal will be to minimize the following regularized loss over all of Hk, where both ν and λ are positive
scalars:

J(h) =
1

n

n∑
i=1

(
h(xi)− yi

)2
+
ν

m

m∑
i=1

(
h′(xi)

)2
+ λ∥h∥2Hk

. (J)

Here we assume that we have our usual sample set
(
(x1, y1), . . . , (xn, yn)

)
, but we also have an unlabeled

sequence
(
xn+1, . . . , xm

)
, so that we have m total samples for x (of which the first n are labeled).

Kernels are two-argument functions, so differentiation notation can be slightly awkward. For brevity, we will
use ∂1 to refer to differentiating with respect to the first argument and ∂2 the second, so that ∂1k(x, y) means
∂
∂xk(x, y), ∂

2
2k(x, y) means ∂2

∂y2 k(x, y), and ∂1∂2k(x, x) means ∂2

∂z1∂z2
k(z1, z2)|z1=x

z2=x
– note that differentiation

happens “before” passing the arguments in (this is not ∂2

∂x2 k(x, x)).

The following result will be useful for us:

Lemma 3.1 (Special case of Steinwart/Christmann Lemma 4.34). Let k : R×R → R be a kernel such that

both ∂
∂x

∂
∂yk(x, y) and ∂2

∂x2
∂2

∂y2 k(x, y) exist and are continuous. Then, for all x ∈ R, ∂1k(x, ·) and ∂21k(x, ·)
are functions in Hk such that for all f ∈ Hk we have

⟨∂1k(x, ·), f⟩Hk
= f ′(x) and ⟨∂21k(x, ·), f⟩Hk

= f ′′(x).

For example, this also means that

⟨∂1k(x, ·), ∂1k(x′, ·)⟩Hk
= ∂1∂2k(x, x

′) and ⟨∂21k(x, ·), k(x′, ·)⟩Hk
= ∂21k(x, x

′).

(a) [10 points] Show a representer theorem for argminh∈H J(h), i.e. that you can write the optimal h as a
linear combination of some set of vectors in H.

Hint: The representer theorem we showed in class (lecture 16, starting around page 18 – sorry that
slides aren’t numbered in that lecture. . . ) will not directly apply, because J depends on the derivatives
of h. You’ll need to make an analogous argument, taking advantage of the lemma above.
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Define the following matrices:

K =

k(x1, x1) . . . k(x1, xn)
...

. . .
...

k(xn, x1) . . . k(xn, xn)

 ∈ Rn×n

G =

∂1k(x1, x1) . . . ∂1k(x1, xn)
...

. . .
...

∂1k(xm, x1) . . . ∂1k(xm, xn)

 ∈ Rm×n

H =

∂1∂2k(x1, x1) . . . ∂1∂2k(x1, xm)
...

. . .
...

∂1∂2k(xm, x1) . . . ∂1∂2k(xm, xm)

 ∈ Rm×m.

(b) [15 points] Write an explicit form for J(h) in terms of usual matrix and vector operations on the K, G,
and H matrices and the vector y ∈ Rn of labels, as well as the parameters of your linear combination.

Hint: It will probably help to start by writing out h(xi), h
′(xi), and ∥h∥2Hk

, then plugging those together.
It’s might be helpful in intermediate steps to use the standard basis vectors ei, which have a one in the
ith entry and zero in all others. Be careful about shapes matching.

If you did it right, the final form for J should be a quadratic form of your coefficients in terms of the matrices
K, G, and H. Thus, setting the gradient to zero will give an analytical solution written as the solution to a
certain linear system, although I don’t need you to write out that system since it’s a little messy.
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4 Tangent kernels [25 points]

Recall that the empirical tangent kernel for a general model h(x;w) is given by

kw(x, x
′) =

[
∇wh(x;w)

]T[∇wh(x
′;w)

]
,

where here we’re thinking of ∇wh(x;w) as a column vector, so that kw(x, x
′) ∈ R.

For randomly initialized w ∼ Q, in certain regimes kw will converge as the model gets bigger to its expectation

kQ(x, x
′) = E

w∼Q
kw(x, x

′).

(a) [10 points] Explicitly write out the empirical tangent kernel kw for a linear model h(x;w) = wTx, and
its expected kernel kQ when w ∼ N (0, I), the standard normal distribution. Does kernel regression
with kQ agree with ERM for h under the square loss (linear regression)?

(b) [15 points] Explicitly write out the empirical tangent kernel kw for a (not-very-)deep linear model
f(x;V,W ) = vTWx, where v ∈ Rm and W ∈ Rm×d; you can think of a vector w ∈ Rm(d+1) as stacking
up all the entries of W and v. Assume that Q has w ∼ N (0, I), and also write out kQ. Does kernel
regression with kQ agree with the ERM of f with square loss?

Hint: http: // matrixcalculus. org/ is handy to check that you’re taking your derivatives of linear
algebra expressions correctly, or The Matrix Cookbook is what I used in grad school, back before com-
puters could just solve all our problems for us. But make sure that you handle the shapes correctly – in
this case, kw should be scalar-valued.

Hint: Gee, that Wishart distribution sure is neat, huh? Nothing to do with anything in particular, just
thought I’d mention.
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http://matrixcalculus.org/
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
https://en.wikipedia.org/wiki/Wishart_distribution
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