
CPSC 532S: Assignment 1 – due Thursday, 20 Jan 2022, 11:59pm
Prepare your answers to these questions using LATEX; hopefully you’re reasonably familiar with it, but if not,
try using Overleaf and looking around for tutorials online. Feel free to ask questions if you get stuck on things
on Piazza (but remove any details about the actual answers to the questions. . . feel free to make a private post
if that’s tough). If you prefer, the .tex source for this file is available on the course website, and you can put
your answers in \begin{answer} My answer here... \end{answer} environments to make them stand
out if so; feel free to delete whatever boilerplate you want (or not, I’m not printing them out). Or answer
in a fresh document; just make it clear which question you’re answering where. If you’re submitting to
ICML (or another deadline between January 18th and 31st), you can instead submit handwritten solutions
for this assignment only; also note that the lowest assignment will be dropped for your final grade, so you
can skip one assignment if you prefer.

You should do this assignment alone, and do the whole thing. (The first of these instructions, and probably
the second as well, will change for future assignments.) If you look stuff up anywhere other than in SSBD,
please cite your sources: just say in the answer to that question where you looked. Please do not look at
solution manuals / etc for SSBD, or look up proofs of the standard results we’re proving in Question 2.

Submit your answers as a single PDF on Gradescope: link and login instructions on the Canvas site, which
you should now be able to get to even if you’re not yet officially enrolled. You’ll be prompted to mark
where each question is in your PDF; make sure you mark all relevant pages for each part. (This saves me a
surprising amount of time in grading, although it’s kind of annoying for this one since Question 2 has a lot
of parts; sorry.)

Please put your name on the first page as a backup, just in case. If something goes wrong, you can also
email your assignment to me directly (dsuth@cs.ubc.ca).

Some quick meta-notes about the questions (feel free not to read):

Question 1, Some of the Shais’ Problems [50 points], lives up to its name; it’s a few questions right out of
the SSBD book. They, hopefully, should help reinforce the basic definitions / etc. You should be able to do
part (a) and probably part (b) now; material for part (c) will be covered in lecture 2.

Question 2, Principal Component Analysis From First Principles [50 points], is about doing some proofs
with linear algebra, which will be important later in the course, but mostly doesn’t have to do with this first
week of the course so much. Only part (a) directly has to do with lecture, and will be covered in class 2;
you can do the rest of the question now and come back to that part afterwards. This question is in here (i)
to remind you how linear algebra works (since this will matter later), (ii) because I think it’s at a nice level
of “walk you through a meaningful proof in a way where you do still have to think a bit”, and (iii) because
it proves some stuff that I think is nice to know that isn’t covered in CPSC 340.
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1 Some of the Shais’ Problems [50 points]

These problems are from the book of Shalev-Shwartz and Ben-David, though I tweaked some notation slightly
to agree with what we’re using in lecture.

For each of these problems, use the 0-1 loss (the misclassification rate, as discussed in lecture 1 / chapter 2
of SSBD).

(a) [10 points] [SSBD 2.2] Let H be a class of binary classifiers over a domain X . Let Dx be an unknown
distribution over X , and let f be the target hypothesis in H. Fix some h ∈ H. Use the 0-1 loss (the
misclassification rate). Show that the expected value of LS(h) over the choice of S equals LDx,f (h),
namely, E[LS(h)] = LDx,f (h).

(b) [20 points] [SSBD 3.3] Let X = R2, Y = {0, 1}, and let H be the class of concentric circles in the
plane – that is, H = {hr : r ∈ R+}, where hr(x) = 1[∥x∥≤r] (a function which is 1 if ∥x∥ ≤ r,
0 otherwise). Prove that H is PAC learnable (assuming realizability), and its sample complexity is
bounded by nH(ε, δ) ≤

⌈
1
ε log(1/δ)

⌉
.

(c) [20 points] [SSBD 3.7] Show that for every probability distribution D, the Bayes-optimal predictor fD
is optimal, in the sense that for every classifier g : X → {0, 1}, LD(fD) ≤ LD(g).
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2 Principal Component Analysis From First Principles [50 points]

We mentioned in class that the loss minimization framework can also apply to cases without a simple label,
such as unsupervised learning. Let’s use this idea to study perhaps the most common unsupervised linear
framework: PCA. We’ll introduce it as we go; don’t worry if you haven’t seen it before.

In PCA, we’re given a dataset X ∈ Rn×d, which contains n points xi ∈ Rd stored as the rows of X.1

We’re trying to find a linear transformation W ∈ Rk×d, for k ≤ d, where W has orthonormal rows (WWT =
Ik), and we want Wx ∈ Rk to contain “as much information as it can” about x. For instance, we might want
to do this with k = 2 to plot high-dimensional data. We can do this to everything in X by taking XWT;
you should make sure it makes sense to you that this is the same as stacking up Wxi for each i.

To map a point z ∈ Rk back to Rd, we just take WTz (why?). Thus projecting and reconstructing the entire
dataset is XWTW .

We’ll choose W to minimize the squared reconstruction error on our dataset:

argmin
W :WWT=Ik

∥XWTW −X∥2F , (PCA)

where ∥X∥2F =
∑

ij X
2
ij = tr(XTX) is the squared Frobenius norm.

You may find it helpful for this question to recall “trace rotation”: tr(AB) = tr(BA).

(a) [5 points] Frame (PCA) as empirical risk minimization using the terminology from class (also see page
48 of Shai+Shai). Specifically, what are the data domain Z, the sample S = (z1, . . . , zn) ∈ Zn, the
hypothesis class H, and the loss function ℓ : H× Z → R such that the set of ERMs is exactly the set
of solutions to (PCA)?

Recall that the sample covariance2 of points z1, . . . , zn ∈ Rd is 1
n−1

∑n
i=1 (zi − z̄) (zi − z̄)

T ∈ Rd×d, where

z̄ = 1
n

∑n
i=1 zi is the sample mean. Another view of PCA is maximizing the variance of the projected points:

(b) [5 points] Suppose, for this part only, that X is centred: 1
n1

T
nX = 0d, where 1n ∈ Rn is an all-ones

vector and 0d ∈ Rd is an all-zeros vector. (This is standard in PCA; it gives us more flexibility in the
fit.) Show (PCA) is equivalent to maximizing the trace of the sample covariance of XWT.

Even requiring orthonormal W , there are many equivalent solutions to (PCA).3 To reduce the number of
valid solutions (and because it has its own advantages), we usually require that W be consistent with PCA
using sequential fitting : first, we solve (PCA) for k = 1. Once we’ve fit on j − 1 components, to get the jth
we remove the already-fit component, X −XWTW , and solve (PCA) with j = 1 on that remainder, making
that the jth row of W . We’ll prove shortly that this doesn’t hurt our reconstruction performance.

Thus, for the next little bit, we’re going to think only about the solution for k = 1. For notational convenience,
let the vector w ∈ Rd be the first (and only) row of W , so that W = wT. Plugging in to part (b), we obtain
that solutions to (PCA) are exactly the maximizers of ∥Xw∥. (There’s a bit of a hint for part (b)!)

What w are these? We can answer that with the following result, remembering ∥Xw∥2 = wT(XTX)w:

Proposition 2.1. Let A ∈ Rm×m have real eigenvalues λ1 ≥ · · · ≥ λm, with corresponding real orthonormal
eigenvectors qi. Let k be the largest index such that λ1 = λk (i.e. the top k eigenvalues are the same). Then

max
v:∥v∥=1

vTAv = λ1;

1As usual in machine learning, we’ll think of these as column vectors, even though they’re the rows of X. As a student in
CPSC 340 said last term, “that’s dumb,” but oh well.

2This is the unbiased sample covariance; the same is true for the biased estimator.
3Note that (RW )T(RW ) = WT(RTR)W and (RW )(RW )T = RWWTRT = RRT, so any unitary matrix (where RTR = I =

RRT) transforms any solution W into an equivalent one. For instance, you can rotate, permute, or flip signs of the components.
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this max is achieved if and only if v is a unit vector in span({q1, . . . , qk}) = {
∑k

i=1 αiqi : αi ∈ R}.

Proof. Pick α ∈ Rm such that v =
∑m

i=1 αiqi.

(c) [5 points] Prove this.

Recall that the singular value decomposition, the SVD,4 of a real rank-r matrix A ∈ Ra×b is A = UΣV T =∑r
i=1 σiuiv

T
i , where Σ is a diagonal matrix with entries σ1 ≥ · · · ≥ σr > 0, U ∈ Ra×r has orthonormal

columns ui ∈ Ra so that UTU = Ia, and V ∈ Rb×r has orthonormal columns vi ∈ Rb so that V TV = Ib. The
σi are the square roots of the nonzero eigenvalues of ATA, which coincide with those of AAT. U contains
the corresponding eigenvectors of AAT, while V has those of ATA.

Note that the SVD is not unique: you can always flip the signs of both ui and vi, and if there are non-distinct
singular values, you can rotate the singular vectors in the corresponding subspace.

Let Ak =
∑k

i=1 σiuiv
T
i = U1:kΣ1:kV

T
1:k be the rank-k approximation obtained by truncating the SVD. Here

U1:k and V1:k take the first k columns of U or V .

(d) [10 points] Show that the kth principal component ofX, obtained via the sequential algorithm described
above, is a valid choice for the kth right singular vector, so W = V T

1:k for one valid choice of V .
Furthermore, show XWTW = Xk.

We now know that for any k, the PCA reconstructions XWTW are equal to Xk. That this is a global
minimum for (PCA) is a consequence of the following theorem:

Theorem 2.2 (Eckart-Young, Frobenius). For any matrix B of rank at most k, ∥A−Ak∥F ≤ ∥A−B∥F .

We’re now going to prove this theorem together. To do it, we’ll first prove the version for the spectral
norm (also known as the operator norm). Recall that the spectral norm is ∥A∥op = supx∥Ax∥/∥x∥, which
Proposition 2.1 implies is equal to the largest singular value of A.

Theorem 2.3 (Eckart-Young, operator). For any matrix B of rank at most k, ∥A−Ak∥op ≤ ∥A−B∥op.

Proof. Recall that A is a× b and of rank r. Assume, without loss of generality, that k < r ≤ b ≤ a.

(e) [3 points] Explain why this doesn’t lose generality.

(f) [2 points] Show that ∥A−Ak∥op = σk+1.

Hint: You probably already basically did this as part of part (d).

Now, assume for the sake of contradiction that there is some B of rank at most k with ∥A−B∥op < σk+1.

(g) [5 points] Let y be in the null space of B, i.e. By = 0, with y ̸= 0. Show ∥Ay∥ < σk+1∥y∥.

(h) [5 points] Let z ∈ span({v1, . . . , vk+1}). Show ∥Az∥ ≥ σk+1∥z∥.

(i) [5 points] Argue that this is a contradiction.

Hint: Try a dimension-counting argument.

Okay – almost done! The theorem we actually wanted to show was:

Theorem 2.2 (Eckart-Young, Frobenius). For any matrix B of rank at most k, ∥A−Ak∥F ≤ ∥A−B∥F .
4Here we’re using the “compact” SVD, which I just find a little more convenient to think about. Everything would be

basically the same with the “full” SVD.
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Proof. Let B be any a× b matrix of rank at most k.

(j) [5 points] Prove the theorem.

Hint: Try using Theorem 2.3, recalling that

∥A∥2F = tr(ATA) = tr(V ΣUTUΣV T) = tr(V TV︸ ︷︷ ︸
I

ΣUTU︸ ︷︷ ︸
I

Σ) = tr(Σ2) =

r∑
i=1

σ2
i .

Alternatively, if you want – it’s basically the same proof – you could show instead:

Theorem 2.4 (Eckart-Young, more general). Let f(A) = f(σ1, . . . , σmax(a,b)) be a function of the singu-
lar values of A (where σi = 0 if i > r). Suppose that if σ′

i ≥ σi for all i, then f(σ′
1, . . . , σ

′
max(a,b)) ≥

f(σ1, . . . , σmax(a,b)). Then, for all matrices B of rank at most k, f(A−Ak) ≤ f(A−B).

In particular, this will include all unitarily invariant matrix norms, i.e. matrix norms such that ∥RAS∥ = ∥A∥
for all unitary matrices R and S.
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