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Here we’ll give a quick overview of convex functions. More details are available lots
of places; in addition to chapters 12-13 of [SSBD14] or Appendix B.2 of [MRT18],
the classic super-detailed reference is the book of Rockafellar [Roc70], and Boyd
and Vandenbreghe [BV04] is also good (and what I learned from).

Most sources assume functions on Rd ; we’ll assume a separable Hilbert space X ,
though the statements e.g. that don’t use an inner product will also hold for Banach
spaces, and so on. For the results about derivatives, you can use a Fréchet derivative,
and have a gradient/Hessian analogue. Don’t really worry about any of that, you
can just think of everything as on Rd .

Definition C.1. A set C ⊆ X is convex if for all x0, x1 ∈ C and α ∈ [0,1], it holds
that (1 − α)x0 + αx1 ∈ C.

Below, we’ll use the set R∪ {∞} a lot. Many of these results hold for the full extended
real line R ∪ {−∞,∞}, but you often have to exclude −∞ for things to make sense.

It’s typical in optimization to, rather than dealing with functions on some restricted
domain that’s a proper subset of X , instead define f (x) = ∞ for x that shouldn’t be
in the domain. Then dom f = {x ∈ X : f (x) < ∞}.

Definition C.2. A function f : X → R ∪ {∞} is called

• convex if it lies below its chords: for all x0, x1 ∈ X and α ∈ (0, 1),

f ((1 − α)x0 + αx1) ≤ (1 − α)f (x0) + αf (x1);

• strictly convex if this inequality is strict;

• and m-strongly convex, for some m > 0, if

f ((1 − α)x0 + αx1) ≤ (1 − α)f (x0) + αf (x1) − 1
2mα(1 − α)∥x1 − x0∥2.

A function is convex if and only if its epigraph, {(x, r) ∈ X × (R ∪ {∞}) : r ≥ f (x)}, is a
convex set.

An m-strongly convex function is m′-strongly convex for any m′ < m; convexity is
equivalent to 0-strong convexity, which we don’t call strongly convex. m-strong
convexity implies strict convexity, but the reverse is not true. Likewise, strict
convexity implies convexity.

A concave/strictly concave/m-strongly concave function is one where −f is con-
vex/strictly convex/m-strongly convex.

For more, visit https://cs.ubc.ca/˜dsuth/532D/25w1/.
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Any local minimum of a convex function must be a global minimum, since we can
connect any two local minima by chords. The set of global minima must be convex,
for the same reason. If f is strictly convex, it has only one global minimum.

C.1 first-order conditions

Proposition C.3. If f : X → R ∪ {∞} is differentiable on its convex domain,

• it is convex iff it lies above its tangents: for all x, x′ ∈ dom f ,

f (x′) ≥ f (x) + ⟨∇f (x), x′ − x⟩.

• it is m-strongly convex iff for all x, x′ ∈ X ,

f (x′) ≥ f (x) + ⟨∇f (x), x′ − x⟩ + 1
2m∥x

′ − x∥2.

Proof. We’ll do this for m ≥ 0, in which case the m = 0 results are for plain convexity.

If f (x′) ≥ f (x) + ⟨∇f (x), x′ − x⟩ + 1
2m∥x

′ − x∥2 for all x, x′, then

f ((1 − α)x + αx′) ≤ (1 − α)f (x) + αf (x′) − 1
2mα(1 − α)∥x′ − x∥2

1
α

[
f ((1 − α)x + αx′) − f (x)

]
≤ f (x′) − f (x) − 1

2m(1 − α)∥x′ − x∥2

lim
α→0

f (x + α(x′ − x)) − f (x)
α

≤ f (x′) − f (x) − 1
2m∥x

′ − x∥2,

and that limit is exactly the directional derivative given by ⟨∇f (x), x′ − x⟩.

In the other direction, let xα = (1 − α)x0 + αx1, and note xα − x0 = α(x1 − x0),
xα − x1 = −(1 − α)(x1 − x0). Then

f (xα) ≤ f (x0) + ⟨∇f (xα), xα − x0⟩ − 1
2m∥xα − x0∥2

= f (x0) + α⟨∇f (xα), x1 − x0⟩ − 1
2mα2∥x1 − x0∥2

and

f (xα) ≤ f (x1) + ⟨∇f (xα), xα − x1⟩ − 1
2m∥xα − x1∥2

= f (x1) − (1 − α)⟨∇f (xα), x1 − x0⟩ − 1
2m(1 − α)2∥x1 − x0∥2.

Adding 1 − α times the first inequality plus α times the second yields

f (xα) ≤ (1 − α)f (x0) + αf (x1) − 1
2mα(1 − α)(α + 1 − α)∥x1 − x0∥2.

Proposition C.4. If f : X → R ∪ {∞} is continuously differentiable on its convex
domain,

• it is convex iff ∀x, x′ ∈ dom f , ⟨∇f (x) − ∇f (x′), x − x′⟩ ≥ 0;

• it is m-strongly convex iff ∀x, x′ ∈ dom f , ⟨∇f (x) − ∇f (x′), x − x′⟩ ≥ m∥x − x′∥2.

This result is important for convex optimization: if x∗ is a minimizer, ∇f (x∗) = 0,
and so then m∥x − x∗∥2 ≤ ⟨∇f (x), x − x∗⟩ ≤ ∥∇f (x)∥ ∥x − x∗∥, i.e. ∥x − x∗∥ ≤ 1

m∥∇f (x)∥,
and if we know m > 0 then the right-hand side is something we can actually measure
for any point x and upper-bound how far we can be from the minimizer.

2



Proof. We’ll again use m = 0 for plain convexity.

If f is convex/m-strongly convex, then

f (x) ≥ f (x′) + ⟨∇f (x′), x − x′⟩ + 1
2m∥x − x

′∥2

f (x′) ≥ f (x) − ⟨∇f (x), x − x′⟩ + 1
2m∥x − x

′∥2

and so

f (x) + f (x′) ≥ f (x′) + f (x) + ⟨∇f (x′) − ∇f (x), x − x′⟩ + m∥x − x′∥2.

In the other direction, again using xα = (1 − α)x0 + αx1 we know that

f (x1) = f (x0) +

1∫
0

⟨f (xα), x1 − x0⟩dα

= f (x0) + ⟨∇f (x0), x1 − x0⟩ +

1∫
0

⟨f (xα) − ∇f (x0), x1 − x0⟩dα

= f (x0) + ⟨∇f (x0), x1 − x0⟩ +

1∫
0

1
α
⟨f (xα) − ∇f (x0), xα − x0⟩dα

≥ f (x0) + ⟨∇f (x0), x1 − x0⟩ +

1∫
0

1
α
m∥xα − x0∥2dα

= f (x0) + ⟨∇f (x0), x1 − x0⟩ + m∥x1 − x0∥2
1∫

0

αdα

= f (x0) + ⟨∇f (x0), x1 − x0⟩ + 1
2m∥x1 − x0∥2.

C.2 second-order conditions

The notation A ⪰ 0 means that the square matrix (or Hilbert-space operator) A is
positive semi-definite; A ⪰ B means that A − B ⪰ 0. Thus A ⪰ mI means that all
eigenvalues of A are at least m. The notation ∇2f denotes the Hessian, the matrix of
all second derivatives. (This is a F → F operator in Hilbert spaces.)

If f is a function on scalars, ∇2f (x) ⪰ mI exactly means than f ′′(x) ≥ m.

Proposition C.5. If f : X → R ∪ {∞} is continuously twice-differentiable on its convex
domain,

• it is convex iff ∀x ∈ dom f , ∇2f ⪰ 0;

• it is m-strongly convex iff ∀x ∈ dom f , ∇2f ⪰ mI.

Proof. Again use m = 0 for the plain convexity case, and xα = (1 − α)x0 + αx1.

3



If f is convex / m-strongly convex, then using Proposition C.4 gives

m∥x1 − x0∥2 ≤ ⟨∇f (x1) − ∇f (x0), x1 − x0⟩

=
〈 1∫

0

∇2f (xα)(x1 − x0) dα, x1 − x0

〉

=
〈
x1 − x0,


1∫

0

∇2f (xα) dα

 (x1 − x0)
〉

0 ≤
〈
x1 − x0,


1∫

0

∇2f (xα) dα −mI

 (x1 − x0)
〉
.

Now, let x0 be any point in the interior of the domain and let x1 = x0 + εv, getting

〈
εv,


1∫

0

∇2f (x0 + εαv) dα −mI

 εv
〉
≥ 0

〈
v,


1∫

0

∇2f (x0 + εαv) dα −mI

 v
〉
≥ 0.

As ε→ 0, we have that
1∫

0
∇2f (x0 + εαv)dα→ ∇2f (x0) since ∇2f is continuous. Thus

⟨v, (∇2f (x) − mI)v⟩ ≥ 0 for all x in the interior of the domain and all v. This is
exactly the condition that ∇2f (X) ⪰ mI.

For the other direction, we have that

f (x′) = f (x) + ⟨∇f (x), x′ − x⟩ +

1∫
0

α∫
0

⟨x′ − x,∇2f (xτ)(x′ − x)⟩dτdα

≥ f (x) + ⟨∇f (x), x′ − x⟩ +

1∫
0

α∫
0

m∥x′ − x∥2dτdα

= f (x) + ⟨∇f (x), x′ − x⟩ + 1
2m∥x

′ − x∥2

since
α∫
0

dτ = α, and
1∫

0
αdα = 1

2 .

C.3 properties

Proposition C.6. If f , g, and fy for all y ∈ Y are all convex functions, then so are

• αf for any α ≥ 0;

• f + g, or more generally
∫
fydw(y) if w is any (nonnegative) measure on Y ;

• x 7→ f (Ax + b) for any A, b;

• x 7→ g(f (x)) if g : R→ R is also nondecreasing;
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• x 7→ max(f (x), g(x)), or more generally x 7→ supy∈Y fy(x);

• x 7→ infy∈Y f (x, y) if f (x, y) is convex in (x, y), and Y is a nonempty convex set.

The proofs are mostly straightforward, and omitted here.

Similarly, the sum of an m-strongly convex and an m′-strongly convex function is
(m + m′)-strongly convex, and the sum of an m-strongly convex function with a
convex function is m-strongly convex. Scaling an m-strongly convex function by
α > 0 gives you an mα-strongly convex function.

Notice that the square loss, hinge loss, and logistic loss are all convex functions of
the function h.

Theorem C.7 (Jensen’s inequality). If f : X → R is convex and X a random variable
on X such that the expectations exist, f (E X) ≤ E f (X).

Proposition C.8. The function w 7→ ∥w∥2 is 2-strongly convex.

Proof. Its gradient is 2h, and so its Hessian is 2I. Or, more directly,

∥(1 − α)w + αv∥2 + 1
2 · 2 · α(1 − α)∥w − v∥2

= (1 − α)2∥w∥2 + α2∥v∥2 + 2α(1 − α)⟨w, v⟩

+ α(1 − α)∥w∥2 + α(1 − α)∥v∥2 − 2α(1 − α)⟨w, v⟩

= (1 − α + α)(1 − α)∥w∥2 + α(α + 1 − α)∥v∥2

= (1 − α)∥w∥2 + α∥v∥2.

Thus 1
2∥·∥

2 is 1-strongly convex.
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