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Here we’ll give a quick overview of convex functions. More details are available lots
of places; in addition to chapters 12-13 of [SSBD14] or Appendix B.2 of [MRT18],
the classic super-detailed reference is the book of Rockafellar [Roc70], and Boyd
and Vandenbreghe [BV04] is also good (and what I learned from).

Most sources assume functions on R?; we’ll assume a separable Hilbert space X,
though the statements e.g. that don’t use an inner product will also hold for Banach
spaces, and so on. For the results about derivatives, you can use a Fréchet derivative,
and have a gradient/Hessian analogue. Don’t really worry about any of that, you
can just think of everything as on R¥.

DerintTion C.1. A set C C X is convex if for all xg, x; € C and « € [0, 1], it holds
that (1 — o)xg + axy € C.
Below, we’ll use the set R U {oo} a lot. Many of these results hold for the full extended

real line R U {—o0, 0o}, but you often have to exclude —co for things to make sense.

It’s typical in optimization to, rather than dealing with functions on some restricted
domain that’s a proper subset of X, instead define f(x) = oo for x that shouldn’t be
in the domain. Then dom f = {x € X' : f(x) < oco}.

DeriNiTION C.2. A function f : X — R U {co} is called

* convex if it lies below its chords: for all xy, x; € X and « € (0, 1),

fU1=a)xg + axy) < (1 —a)f(xp) + af (x1);

* strictly convex if this inequality is strict;

 and m-strongly convex, for some m > 0, if

FUL = a)xg + axy) < (1= @) f (xo) + af (x1) = gma(l = a)llx; = xol>.

A function is convex if and only if its epigraph, {(x,r) € X x (R U {oo}) : r > f(x)},is a
convex set.

An m-strongly convex function is m’-strongly convex for any m’ < m; convexity is
equivalent to 0-strong convexity, which we don’t call strongly convex. m-strong
convexity implies strict convexity, but the reverse is not true. Likewise, strict
convexity implies convexity.

A concave/strictly concave/m-strongly concave function is one where —f is con-
vex/strictly convex/m-strongly convex.

For more, visit https://cs.ubc.ca/~dsuth/532D/25w1/.


https://en.wikipedia.org/wiki/Fr%C3%A9chet_derivative
https://math.stackexchange.com/q/1755510
https://en.wikipedia.org/wiki/Extended_real_number_line
https://en.wikipedia.org/wiki/Extended_real_number_line
https://cs.ubc.ca/~dsuth/532D/25w1/

Any local minimum of a convex function must be a global minimum, since we can
connect any two local minima by chords. The set of global minima must be convex,
for the same reason. If f is strictly convex, it has only one global minimum.

C.1 FIRST-ORDER CONDITIONS

ProrosiTiON C.3. If f : X — R U {00} is differentiable on its convex domain,

* it is convex iff it lies above its tangents: for all x, x" € dom f,

f(xX) 2 fx) +(Vf(x), x" = x).

e it is m-strongly convex iff for all x, x" € X,
F) 2 f(x) +(V(x), 5" = x) + gmllx’ = x|,
Proof. We’ll do this for m > 0, in which case the m = 0 results are for plain convexity.
If f(x)> f(x)+(Vf(x),x" —x)+ %m”x’ — x||? for all x, x’, then
FU1 = a)x + ax’) < (1= @)f (x) + af (x) = 3ma(l - a)llx” - x||?
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(x) < f(x’) - f(x)- %WIHX’ - x“z;

and that limit is exactly the directional derivative given by (Vf(x), x" — x).

In the other direction, let x, = (1 — a)xy + ax;, and note x, — xg = a(x; — Xg),
Xq — X1 = —(1 = a)(x1 — x¢). Then

f(xa) < f(x0) + (Vf (xa), Xq = X0) = 3mllxa = XolI?
= f(x0) + &V (xq), X1 = Xo) = gma|lxy = xo|I?
and
f(xa) < fx1) +(Vf(xa), %o = x1) = Fmllxg = x|
= f(x1) = (1 = a)(Vf(xq), x1 = x0) — sm(1 = a)?||x; — xoll*.
Adding 1 — a times the first inequality plus « times the second yields
f(xa) < (1= a)f (x0) + af (x1) = Fma(l — a)(+ 1 = a)llx; = xoll*. O

ProposiTioN C.4. If f : X — R U {oo} is continuously differentiable on its convex
domain,

e itis convex iff Vx,x’ e dom f, (Vf(x) - Vf(x'), x —x") > 0;

s it is m-strongly convex iff Vx, x’ € dom f, (Vf(x) = Vf(x), x — x') > m||x — x’||%.
This result is important for convex optimization: if x* is a minimizer, Vf(x*) = 0,
and so then m||x — x*||> < (V£ (x), x = x*) < [V ()l IIx = x*]|, Le. [lx = x|l < LIV (x)ll,

and if we know m > 0 then the right-hand side is something we can actually measure
for any point x and upper-bound how far we can be from the minimizer.
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Proof. We'll again use m = 0 for plain convexity.

If f is convex/m-strongly convex, then
f(x) > f(X)+(VF(x'), x = x")y + Smllx = x|
f(x) > f(x) =(Vf(x),x = ')+ tm]lx - x'||?

and so

F@)+ f(xX) 2 f() + f(0) + (V) =V x), x = x') + mllx = x|1%

In the other direction, again using x, = (1 — «)xy + ax; we know that

1
Fn) = flxo) + f<f<xa>, %1 - xo)da
0

1
~

= f(x0) +(Vf(xp), x1 —x0) + | {f(xa) = Vf(x0), x1 — xp)dx
0
L

= f(xo) + (Vf(x0), x1 — x0) +

~{f () = Vf () %~ x0)da
0

1
> flxo) + (Vf (a1 =y + [ Sl = xolPda
0

1

= f(x0) + (Vf(xq), x1 — x¢) + ml||x; — x0||2 J ada
0

= f(x0) +(Vf (x0), x1 = x0) + Fmllxy = xolI> O

C.2 SECOND-ORDER CONDITIONS

The notation A > 0 means that the square matrix (or Hilbert-space operator) A is
positive semi-definite; A > B means that A — B > 0. Thus A > mI means that all
eigenvalues of A are at least m. The notation V2 f denotes the Hessian, the matrix of
all second derivatives. (This is a 7 — F operator in Hilbert spaces.)

If f is a function on scalars, V2 f(x) > ml exactly means than f”(x) > m.

ProposiTioN C.5. If f : X = R U {00} is continuously twice-differentiable on its convex
domain,

e it is convex iff Vx € dom f, V2 f > 0;

e it is m-strongly convex iff Vx € dom f, V2 f > ml.

Proof. Again use m = 0 for the plain convexity case, and x, = (1 — a)xp + ax;.



If f is convex / m-strongly convex, then using Proposition C.4 gives

mllx; — xoll* < (Vf(x1) = Vf(xg), X1 — x)

1

- U V2 f(xa)(x; — x0) oy 3 - xo>
0

F 1

:<X1—X0, J\

0£<x1—xo, J f(xq)da—ml (xl—x0)>.
L0

Now, let x( be any point in the interior of the domain and let x; = x( + €v, getting

1
<£v, szf(xO +eav)doa — ml ev> >0
0

1

<v, jVQf(xO + eav)da — ml v> > 0.

0

1

As ¢ — 0, we have that jVZf(xo +eav)da — V2 f(x) since V2 f is continuous. Thus
0
(v, (V2f(x) = mI)v) > 0 for all x in the interior of the domain and all v. This is

exactly the condition that V2 f(X) > ml.

For the other direction, we have that

1 «
F) = f) +(VF 7 —x+ [ [ =% V2 F (e — ) da
3 %
.
> f(x) +(Vf(x),x" —x)+ m||x’ - x|]’dtda
0 0

= f(x) +(Vf(x), x" = x) + gmllx’ - x||?
1

o
sincede: Q, andfocdoc: % O
0 0

C.3 PROPERTIES
Prorosition C.6. If f, g, and f, for all y € Y are all convex functions, then so are
* af forany o> 0;
* f + g, or more generally ffydw(y) if w is any (nonnegative) measure on Y;
* x> f(Ax+b) forany A, b;

* x> g(f(x))if g: R — Ris also nondecreasing;



* x — max(f(x), g(x)), or more generally x SUP ey fy(x);

* x> infyey f(x, ) if f(x,p) is convex in (x,y), and Y is a nonempty convex set.

The proofs are mostly straightforward, and omitted here.

Similarly, the sum of an m-strongly convex and an m’-strongly convex function is
(m + m’)-strongly convex, and the sum of an m-strongly convex function with a
convex function is m-strongly convex. Scaling an m-strongly convex function by
a > 0 gives you an ma-strongly convex function.

Notice that the square loss, hinge loss, and logistic loss are all convex functions of
the function h.

Treorem C.7 (Jensen’s inequality). If f : X — R is convex and X a random variable
on X such that the expectations exist, f(EX) < E f(X).

PropositioN C.8. The function w + |[w||* is 2-strongly convex.

Proof. Its gradient is 24, and so its Hessian is 2I. Or, more directly,
(1 - 0w + av||® + % 2ol - a)||lw - v]|?
= (1= a)?|lwll’ + [Vl + 2a(1 - a)(w, v)
+ a1 - a)l|w])® + a1 — a)l|v]]* = 2a(1 — a){w, v)
=(1-a+a)(l-a)w|?+ale+1-a)w|?

= (1 - a)llwll* + allol> O

Thus %||-||2 is 1-strongly convex.



	First-order conditions
	Second-order conditions
	Properties

