CPSC 532D — C. CONVEXITY

Danica J. Sutherland

University of British Columbia, Vancouver

Fall 2025

Here we'll give a quick overview of *convex functions*. More details are available lots of places; in addition to chapters 12-13 of [SSBD14] or Appendix B.2 of [MRT18], the classic super-detailed reference is the book of Rockafellar [Roc70], and Boyd and Vandenbreghe [BV04] is also good (and what I learned from).

Most sources assume functions on \mathbb{R}^d ; we'll assume a separable Hilbert space \mathcal{X} , though the statements e.g. that don't use an inner product will also hold for Banach spaces, and so on. For the results about derivatives, you can use a Fréchet derivative, and have a gradient/Hessian analogue. Don't really worry about any of that, you can just think of everything as on \mathbb{R}^d .

DEFINITION C.1. A set $C \subseteq \mathcal{X}$ is convex if for all $x_0, x_1 \in C$ and $\alpha \in [0, 1]$, it holds that $(1 - \alpha)x_0 + \alpha x_1 \in C$.

Below, we'll use the set $\mathbb{R} \cup \{\infty\}$ a lot. Many of these results hold for the full *extended* real line $\mathbb{R} \cup \{-\infty, \infty\}$, but you often have to exclude $-\infty$ for things to make sense.

It's typical in optimization to, rather than dealing with functions on some restricted domain that's a proper subset of \mathcal{X} , instead define $f(x) = \infty$ for x that shouldn't be in the domain. Then dom $f = \{x \in \mathcal{X} : f(x) < \infty\}$.

Definition C.2. A function $f: \mathcal{X} \to \mathbb{R} \cup \{\infty\}$ is called

• *convex* if it lies below its chords: for all $x_0, x_1 \in \mathcal{X}$ and $\alpha \in (0, 1)$,

$$f((1-\alpha)x_0 + \alpha x_1) \le (1-\alpha)f(x_0) + \alpha f(x_1);$$

- *strictly convex* if this inequality is strict;
- and *m-strongly convex*, for some m > 0, if

$$f((1-\alpha)x_0 + \alpha x_1) \le (1-\alpha)f(x_0) + \alpha f(x_1) - \frac{1}{2}m\alpha(1-\alpha)||x_1 - x_0||^2.$$

A function is convex if and only if its *epigraph*, $\{(x, r) \in \mathcal{X} \times (\mathbb{R} \cup \{\infty\}) : r \geq f(x)\}$, is a convex set.

An m-strongly convex function is m'-strongly convex for any m' < m; convexity is equivalent to 0-strong convexity, which we don't call strongly convex. m-strong convexity implies strict convexity, but the reverse is not true. Likewise, strict convexity implies convexity.

A concave/strictly concave/m-strongly concave function is one where -f is convex/strictly convex/m-strongly convex.

Any local minimum of a convex function must be a global minimum, since we can connect any two local minima by chords. The set of global minima must be convex, for the same reason. If f is strictly convex, it has only one global minimum.

C.1 FIRST-ORDER CONDITIONS

PROPOSITION C.3. If $f: \mathcal{X} \to \mathbb{R} \cup \{\infty\}$ is differentiable on its convex domain,

• it is convex iff it lies above its tangents: for all $x, x' \in \text{dom } f$,

$$f(x') \ge f(x) + \langle \nabla f(x), x' - x \rangle.$$

• it is m-strongly convex iff for all $x, x' \in \mathcal{X}$,

$$f(x') \ge f(x) + \langle \nabla f(x), x' - x \rangle + \frac{1}{2} m ||x' - x||^2.$$

Proof. We'll do this for $m \ge 0$, in which case the m = 0 results are for plain convexity.

If
$$f(x') \ge f(x) + \langle \nabla f(x), x' - x \rangle + \frac{1}{2}m||x' - x||^2$$
 for all x, x' , then

$$f((1-\alpha)x+\alpha x') \leq (1-\alpha)f(x) + \alpha f(x') - \tfrac{1}{2}m\alpha(1-\alpha)||x'-x||^2$$

$$\frac{1}{\alpha} \Big[f((1-\alpha)x + \alpha x') - f(x) \Big] \le f(x') - f(x) - \frac{1}{2} m(1-\alpha) ||x' - x||^2$$

$$\lim_{\alpha \to 0} \frac{f(x + \alpha(x' - x)) - f(x)}{\alpha} \le f(x') - f(x) - \frac{1}{2}m||x' - x||^2,$$

and that limit is exactly the directional derivative given by $\langle \nabla f(x), x' - x \rangle$.

In the other direction, let $x_{\alpha} = (1 - \alpha)x_0 + \alpha x_1$, and note $x_{\alpha} - x_0 = \alpha(x_1 - x_0)$, $x_{\alpha} - x_1 = -(1 - \alpha)(x_1 - x_0)$. Then

$$f(x_{\alpha}) \le f(x_0) + \langle \nabla f(x_{\alpha}), x_{\alpha} - x_0 \rangle - \frac{1}{2} m ||x_{\alpha} - x_0||^2$$

= $f(x_0) + \alpha \langle \nabla f(x_{\alpha}), x_1 - x_0 \rangle - \frac{1}{2} m \alpha^2 ||x_1 - x_0||^2$

and

$$f(x_{\alpha}) \le f(x_1) + \langle \nabla f(x_{\alpha}), x_{\alpha} - x_1 \rangle - \frac{1}{2} m ||x_{\alpha} - x_1||^2$$

= $f(x_1) - (1 - \alpha) \langle \nabla f(x_{\alpha}), x_1 - x_0 \rangle - \frac{1}{2} m (1 - \alpha)^2 ||x_1 - x_0||^2$.

Adding $1 - \alpha$ times the first inequality plus α times the second yields

$$f(x_{\alpha}) \le (1-\alpha)f(x_0) + \alpha f(x_1) - \frac{1}{2}m\alpha(1-\alpha)(\alpha+1-\alpha)||x_1-x_0||^2.$$

Proposition C.4. If $f: \mathcal{X} \to \mathbb{R} \cup \{\infty\}$ is continuously differentiable on its convex domain,

- it is convex iff $\forall x, x' \in \text{dom } f$, $\langle \nabla f(x) \nabla f(x'), x x' \rangle \ge 0$;
- it is m-strongly convex iff $\forall x, x' \in \text{dom } f$, $\langle \nabla f(x) \nabla f(x'), x x' \rangle \ge m||x x'||^2$.

This result is important for convex optimization: if x^* is a minimizer, $\nabla f(x^*) = 0$, and so then $m\|x - x^*\|^2 \le \langle \nabla f(x), x - x^* \rangle \le \|\nabla f(x)\| \|x - x^*\|$, i.e. $\|x - x^*\| \le \frac{1}{m} \|\nabla f(x)\|$, and if we know m > 0 then the right-hand side is something we can actually measure for any point x and upper-bound how far we can be from the minimizer.

Proof. We'll again use m = 0 for plain convexity.

If f is convex/m-strongly convex, then

$$f(x) \ge f(x') + \langle \nabla f(x'), x - x' \rangle + \frac{1}{2} m ||x - x'||^2$$
$$f(x') \ge f(x) - \langle \nabla f(x), x - x' \rangle + \frac{1}{2} m ||x - x'||^2$$

and so

$$f(x) + f(x') \ge f(x') + f(x) + \langle \nabla f(x') - \nabla f(x), x - x' \rangle + m||x - x'||^2.$$

In the other direction, again using $x_{\alpha} = (1 - \alpha)x_0 + \alpha x_1$ we know that

$$f(x_{1}) = f(x_{0}) + \int_{0}^{1} \langle f(x_{\alpha}), x_{1} - x_{0} \rangle d\alpha$$

$$= f(x_{0}) + \langle \nabla f(x_{0}), x_{1} - x_{0} \rangle + \int_{0}^{1} \langle f(x_{\alpha}) - \nabla f(x_{0}), x_{1} - x_{0} \rangle d\alpha$$

$$= f(x_{0}) + \langle \nabla f(x_{0}), x_{1} - x_{0} \rangle + \int_{0}^{1} \frac{1}{\alpha} \langle f(x_{\alpha}) - \nabla f(x_{0}), x_{\alpha} - x_{0} \rangle d\alpha$$

$$\geq f(x_{0}) + \langle \nabla f(x_{0}), x_{1} - x_{0} \rangle + \int_{0}^{1} \frac{1}{\alpha} m ||x_{\alpha} - x_{0}||^{2} d\alpha$$

$$= f(x_{0}) + \langle \nabla f(x_{0}), x_{1} - x_{0} \rangle + m ||x_{1} - x_{0}||^{2} \int_{0}^{1} \alpha d\alpha$$

$$= f(x_{0}) + \langle \nabla f(x_{0}), x_{1} - x_{0} \rangle + \frac{1}{2} m ||x_{1} - x_{0}||^{2}.$$

C.2 SECOND-ORDER CONDITIONS

The notation $A \ge 0$ means that the square matrix (or Hilbert-space operator) A is positive semi-definite; $A \ge B$ means that $A - B \ge 0$. Thus $A \ge mI$ means that all eigenvalues of A are at least m. The notation $\nabla^2 f$ denotes the Hessian, the matrix of all second derivatives. (This is a $\mathcal{F} \to \mathcal{F}$ operator in Hilbert spaces.)

If f is a function on scalars, $\nabla^2 f(x) \ge mI$ exactly means than $f''(x) \ge m$.

PROPOSITION C.5. If $f: \mathcal{X} \to \mathbb{R} \cup \{\infty\}$ is continuously twice-differentiable on its convex domain,

- it is convex iff $\forall x \in \text{dom } f$, $\nabla^2 f \geq 0$;
- it is m-strongly convex iff $\forall x \in \text{dom } f$, $\nabla^2 f \geq mI$.

Proof. Again use m = 0 for the plain convexity case, and $x_{\alpha} = (1 - \alpha)x_0 + \alpha x_1$.

If f is convex / m-strongly convex, then using Proposition C.4 gives

$$m||x_1 - x_0||^2 \le \langle \nabla f(x_1) - \nabla f(x_0), x_1 - x_0 \rangle$$

$$= \left\langle \int_0^1 \nabla^2 f(x_\alpha)(x_1 - x_0) \, d\alpha, x_1 - x_0 \right\rangle$$

$$= \left\langle x_1 - x_0, \left[\int_0^1 \nabla^2 f(x_\alpha) \, d\alpha \right] (x_1 - x_0) \right\rangle$$

$$0 \le \left\langle x_1 - x_0, \left[\int_0^1 \nabla^2 f(x_\alpha) \, d\alpha - mI \right] (x_1 - x_0) \right\rangle.$$

Now, let x_0 be any point in the interior of the domain and let $x_1 = x_0 + \varepsilon v$, getting

$$\left\langle \varepsilon v, \left[\int_{0}^{1} \nabla^{2} f(x_{0} + \varepsilon \alpha v) d\alpha - m \mathbf{I} \right] \varepsilon v \right\rangle \geq 0$$

$$\left\langle v, \left[\int_{0}^{1} \nabla^{2} f(x_{0} + \varepsilon \alpha v) d\alpha - m \mathbf{I} \right] v \right\rangle \geq 0.$$

As $\varepsilon \to 0$, we have that $\int\limits_0^1 \nabla^2 f(x_0 + \varepsilon \alpha v) d\alpha \to \nabla^2 f(x_0)$ since $\nabla^2 f$ is continuous. Thus $\langle v, (\nabla^2 f(x) - m \mathbf{I}) v \rangle \geq 0$ for all x in the interior of the domain and all v. This is exactly the condition that $\nabla^2 f(\mathbf{X}) \geq m \mathbf{I}$.

For the other direction, we have that

$$f(x') = f(x) + \langle \nabla f(x), x' - x \rangle + \int_0^1 \int_0^\alpha \langle x' - x, \nabla^2 f(x_\tau)(x' - x) \rangle d\tau d\alpha$$

$$\geq f(x) + \langle \nabla f(x), x' - x \rangle + \int_0^1 \int_0^\alpha m ||x' - x||^2 d\tau d\alpha$$

$$= f(x) + \langle \nabla f(x), x' - x \rangle + \frac{1}{2} m ||x' - x||^2$$
since $\int_0^\alpha d\tau = \alpha$, and $\int_0^1 \alpha d\alpha = \frac{1}{2}$.

C.3 PROPERTIES

Proposition C.6. If f, g, and f_y for all $y \in \mathcal{Y}$ are all convex functions, then so are

- αf for any $\alpha \geq 0$;
- f + g, or more generally $\int f_v dw(y)$ if w is any (nonnegative) measure on \mathcal{Y} ;
- $x \mapsto f(Ax + b)$ for any A, b;
- $x \mapsto g(f(x))$ if $g : \mathbb{R} \to \mathbb{R}$ is also nondecreasing;

- $x \mapsto \max(f(x), g(x))$, or more generally $x \mapsto \sup_{v \in \mathcal{V}} f_v(x)$;
- $x \mapsto \inf_{y \in \mathcal{Y}} f(x, y)$ if f(x, y) is convex in (x, y), and \mathcal{Y} is a nonempty convex set.

The proofs are mostly straightforward, and omitted here.

Similarly, the sum of an m-strongly convex and an m'-strongly convex function is (m+m')-strongly convex, and the sum of an m-strongly convex function with a convex function is m-strongly convex. Scaling an m-strongly convex function by $\alpha > 0$ gives you an $m\alpha$ -strongly convex function.

Notice that the square loss, hinge loss, and logistic loss are all convex functions of the function h.

THEOREM C.7 (Jensen's inequality). If $f: \mathcal{X} \to \mathbb{R}$ is convex and X a random variable on \mathcal{X} such that the expectations exist, $f(\mathbb{E} X) \leq \mathbb{E} f(X)$.

Proposition C.8. The function $w \mapsto ||w||^2$ is 2-strongly convex.

Proof. Its gradient is 2h, and so its Hessian is 2I. Or, more directly,

$$\begin{aligned} \|(1-\alpha)w + \alpha v\|^2 + \frac{1}{2} \cdot 2 \cdot \alpha (1-\alpha) \|w - v\|^2 \\ &= (1-\alpha)^2 \|w\|^2 + \alpha^2 \|v\|^2 + 2\alpha (1-\alpha) \langle w, v \rangle \\ &+ \alpha (1-\alpha) \|w\|^2 + \alpha (1-\alpha) \|v\|^2 - 2\alpha (1-\alpha) \langle w, v \rangle \\ &= (1-\alpha+\alpha) (1-\alpha) \|w\|^2 + \alpha (\alpha+1-\alpha) \|v\|^2 \\ &= (1-\alpha) \|w\|^2 + \alpha \|v\|^2. \end{aligned}$$

Thus $\frac{1}{2} \|\cdot\|^2$ is 1-strongly convex.