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These notes give a quick overview of a few linear algebra concepts that go beyond
Rd . For a more thorough introduction, the book of Deisenroth, Faisal, and Ong
[DFO20] is focused towards ML, that of Axler [Axl25] is meant as a second course
in linear algebra from a more mathematical viewpoint, or that of Roman [Rom07] is
a comprehensive graduate-level reference book.

B.1 vector spaces

You should be already familiar with Rd . You might not be familiar yet with more
general notions of vector spaces, which abstract important pieces of the structure of
Rd to let us treat things other than Euclidean vectors in a similar way.

While the definitions can be made more general, we’re only going to deal with real
vector spaces.

Definition B.1. A real vector space is a non-empty set V along with the operations
of vector addition, denoted v + w ∈ V for any v, w ∈ V, and scalar multiplication,
denoted av ∈ V for any v ∈ V and a ∈ R, satisfying the following requirements:

• Vector addition is associative: for all u, v, w ∈ V, u + (v + w) = (u + v) + w.

• Vector addition is commutative: for all v, w ∈ V, v + w = w + v.

• Vector addition has an identity: there is some zero vector 0 ∈ V such that for
all v ∈ V, v + 0 = v.

• Vector addition has inverses: for each v ∈ V, there is some −v ∈ V such that
v + (−v) = 0.

• Compatibility of scalar multiplication: for all a, b ∈ R and v ∈ V, a(bV) =
(ab)V.

• Identity of scalar multiplication: for all v ∈ V, (1)v = v

• Distributive property I: for all a ∈ R and v, w ∈ V, a(v + w) = av + aw.

• Distributive property II: for all a, b ∈ R and v ∈ V, (a + b)v = av + bv.

The axioms imply many things you’d expect, like that the additive identity is unique,
additive inverses are unique and given by (−1)v, 0v = 0 (where the left-hand 0 is in
R and the right-hand is the zero vector in V), etc.

These eight axioms are all things that you probably use all the time without thinking
about it for Rd . Given anything with those structures, though, we can do a lot that
we do with Rd . For example, we often use function spaces. Here F is some set of
functions X → Y , and we can treat them as vectors if we define a way to add two
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functions and to do scalar multiplication, which we will always use as the following:
if f , g ∈ F and a ∈ R,

f + g = (x 7→ f (x) + g(x)) af = (x 7→ af (x)).

These definitions make sense if:

• Y is itself a vector space, so that adding f (x) + g(x) and multiplying af (x)
make sense. This could be just R, or could be more general: Rd would be
common, but it could be itself a function space. . . .

• The set F needs to be “closed” under both of these operations, so that f +g and
af are well-defined. (This is the v + w ∈ V and av ∈ V part of the definition.)

So, one reasonable function space could be where X = R = Y and F is the set of
quadratic functions (where here linear or constant functions also count as quadratic).
Adding two quadratics gets you another quadratic, as does scaling by a constant.
More generally, F could be the space of polynomials with degree at most k. Much
more generally, we can also think about spaces like “all continuous functions” or
“all infinitely-differentiable functions.”

Definition B.2. A subspace U of a real vector space V is a nonempty subset U ⊆ V
such that for all v, w ∈ U and a ∈ R, v + w ∈ U and av ∈ U.

The sum of two subspaces U, W of V, given by U + W = {u + w : u ∈ U, w ∈ W}, is
itself a subspace, and is the smallest subspace containing both U and W. The sum
of multiple subspaces is analogous:

∑
i

Ui = {
∑
i
ui : ∀i, ui ∈ Ui}.

A direct sum,Pairwise independence isn’t
enough: consider

span{(1, 0)}, span{(0, 1)},
span{(1, 1)} in R2.

denoted
⊕
i

Ui or U1 ⊕ · · · ⊕ Um, is a sum which further satisfies that

Ui ∩ (
∑
j,i

Uj ) = {0} for each i. If V = U ⊕W, then W is called a complement of U.

Note that this implies that any subspace must contain 0 (why?), and that for any V
both {0} and V are subspaces of V.

Linear functions are a subspace of the space of quadratic functions. More generally,
the space of polynomials with degree at most k is a subspace of the space of polyno-
mials with degree at most K for any k ≤ K, and is also a subspace of the space of all
continuous functions.

Something like {f ∈ F : |f (0)| ≤ 1}, however, is not a subspace unless f (0) = 0 for
all f ∈ F , since a subspace containing f must also contain e.g. 3

f (0) f .

Any subspace has at least one complement; they are generally not unique, but are
isomorphic to one another.

Definition B.3. The span of a set of vectors S ⊆ V is the subspace

span(S) = {a1v1 + · · · + amvm : m ∈ N, a1, . . . , am ∈ R, v1, . . . , vm ∈ S}.

We define span({}) = {0}.

It can be seen that span(S) is the intersection of all subspaces of V containing S.

Definition B.4. A nonempty set of vectors S ⊆ V is linearly independent if for any
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distinct v1, . . . , vm ∈ S,

a1v1 + · · · + amvm = 0 implies a1 = · · · = am = 0.

The set {} is defined to be linearly independent. A set which is not linearly indepen-
dent is linearly dependent.

A basis for V is a linearly independent set which spans V.

The dimension of a vector space V, dim V, is the size of the smallest basis for V; this
may be a natural number, or may be infinite.

Every vector space has a basis, and thus has a unique, well-defined dimension. Note
that dim{0} = 0, while any other vector space has dimension at least one. It can also
be seen that if |S| > dim V, then S is linearly dependent.

B.1.1 Linear Maps

Definition B.5. Let V and W be real vector spaces. Some authors use “linear
operator” only for V→ V
maps.

A linear map or linear operator is
a function T : V→ W satisfying that for all v, v′ ∈ V and a ∈ R,

T(av + v′) = aT(v) + T(v′).

We also frequently write Tv rather than T(v).

If F is the function space of infinitely differentiable functions R → R, then the
derivative operator Df = (x 7→ f ′(x)) is a linear operator F → F . If Fk is the space
of functions with k derivatives, then D : Fk → Fk−1 is a linear map.

Definition B.6. A bijective linear map T : V→ W is called an isomorphism. If an
isomorphism exists, we say that V and W are isomorphic.

It turns out that two vector spaces are isomorphic if and only if they have the same
dimension. Note that not all infinite-dimensional vector spaces are isomorphic,
because they could have different cardinalities, e.g. being countable or uncountable;
we won’t need to worry about this.

The space of all linear maps from V to W is itself a vector space.

Definition B.7. Let T : V→ W be linear. The null space of T is null(T) = {v ∈ V :
Tv = 0}, a subspace of V; the image of T is image(T) = {Tv : v ∈ V}, a subspace of W.
The rank of T is rank(T) = dim image(T).

The celebrated “rank-nullity theorem” says that rank(T) + dim null(T) = dim V.

B.2 normed spaces

One thing that our vector spaces don’t yet have is a notion of magnitude. In Rd , we

usually use the Euclidean norm ∥x∥ =
√∑

i
x2
i , but you’ve also probably seen at least

∥x∥1 =
∑
i
|xi | and ∥x∥∞ = maxi |xi |. What properties do these have in common?

Definition B.8. A real normed vector space is a real vector space V with a norm: a
function V→ R, written ∥v∥, such that:
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• Non-negativity: for all v ∈ V, ∥v∥ ≥ 0.

• Positive definitenesss: for every v ∈ V, ∥v∥ = 0 if and only if v = 0.

• Absolute homogeneity: for every a ∈ R and v ∈ V, ∥av∥ = |a|∥v∥.

• Sub-additivity / triangle inequality: for every v, w ∈ V, ∥v + w∥ ≤ ∥v∥ + ∥w∥.

The norm of a normed vector space induces the metric ρ(x, y) =
∥∥∥x − y∥∥∥; all the

requirements of a metric are easy to see from the properties of a norm.

Definition B.9. Consider a sequence x1, x2, . . . in a metric space X .

This sequence has a limit x∞ if for every ε > 0, there exists a positive integer N such
that for all n > N, ρ(xn, x∞) < ε.

This sequence is called Cauchy if, for every ε > 0, there exists a positive integer N
such that for all m, n > N, ρ(xm, xn) < ε.

The metric space X is called complete if all Cauchy sequences in X have limits in X .

Definition B.10. A real Banach space is a real normed vector space whose norm
induces a complete metric space.

You can check that, for example, the space of all continuous functions from X → R
is a Banach space.

B.3 inner product spaces

There’s one other major structure in Rd that we don’t have yet: dot products.

Definition B.11. A real inner product space is a real vector space V together with an
inner product, a function V × V→ R written ⟨v, w⟩ satisfying

• Symmetry: for all v, w ∈ V, ⟨v, w⟩ = ⟨w, v⟩.

• Linearity: for all u, v, w ∈ V and a, b ∈ R, ⟨au + bv, w⟩ = a⟨u, w⟩ + b⟨v, w⟩.

• Positive-definiteness: if v , 0, then ⟨v, v⟩ > 0.

An inner product space is also a normed vector space with ∥v∥ =
√
⟨v, v⟩, and hence

a metric space with ρ(v, w) = ∥v − w∥ =
√
⟨v − w, v − w⟩.

Definition B.12. A real Hilbert space is a real inner product space whose induced
metric space is complete.

The usual example of a Hilbert space on functions (. . . almost . . . ) is L2, which has
the usual vector space operations and the inner product

⟨f , g⟩L2
=
∫

f (x)g(x) dx.

A slight variant is L2(P), where P is a probability distribution on X ; this has inner
product

⟨f , g⟩L2(P) = E
X∼P

f (X)g(X).

The reason this is “almost” a function space is that these functions are only defined
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almost everywhere: if P is standard normal, and f ′ =

f (x) x , 0

100 x = 0,
then ∥f −f ′∥ = 0,

all inner products are the same, etc. So we usually think of these as being spaces of
equivalence classes of functions, rather than of functions proper.

The other major kind of function space is reproducing kernel Hilbert spaces, which
we spend a while on later in the course.
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