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These notes give a quick overview of the singular value decomposition, a concept
that when I started grad school I was vaguely aware of and by the end of grad school
became basically the main way I think about linear algebra.

(For more, check out the Wikipedia article, Section 4.5 of [DFO20], Section 7E
of [Axl25], or Chapter 17 of Roman [Rom07]. The version discussed here is the
“compact SVD,” which I find way nicer to work with; when you use the “regular”
SVD, you very often have to write stuff in block matrices where the part that matters
is exactly the compact SVD.)

Let X be an m × n matrix of rank r, which among other things means that we can
write X = a1b

T
1 + · · ·+ arb

T
r for some vectors ai ∈ Rm, bi ∈ Rn. The SVD is a particular

decomposition like that: it’s

X = σ1u1v
T
1 + · · · + σrurv

T
r

where each σi > 0 and the {ui} ⊂ Rm and the {vi} ⊂ Rn are each orthonormal:
∥ui∥ = 1, uT

i uj = 0 for i , j. The σi are the (nonzero) singular values, the ui are the
left singular vectors, and the vi are the right singular vectors. This decomposition
always exists, for any X.

We can collect these into three matrices, called the compact SVD:

m×n︷︸︸︷
X =

m×r︷︸︸︷
U

r×r︷︸︸︷
Σ

r×n︷︸︸︷
VT

UTU = Ir Σ = diag(σ1, . . . , σr ) VTV = Ir .

This always exists; if we sort the Σ in nonincreasing order, σ1 ≥ · · · ≥ σr > 0, then Σ

is unique. U and V are not unique, though; you could always e.g. replace ui by −ui
and vi by −vi and still get a valid SVD.

A.1 projections

In this version of the SVD, UUT is an orthogonal projection, since (UUT)T = UUT

and (UUT)2 = U(UTU)UT = UUT. In fact, it is the projection onto the image of
X: for any y ∈ Rn, UUT(Xy) = UUTUΣVTy = UΣVTy = Xy. On the other hand,
suppose that XTz = 0, i.e. z is in the left null space of X (the orthogonal complement
of the image); then VΣUTz = 0. Σ−1 = diag(1/σi ) always

exists.
But if we left-multiply that equation by Σ−1VT, then

we get that UTz = 0, and thus UUTz = 0.

Similarly, VVT is the orthogonal projection onto the row space (the orthogonal
complement of the null space).

For more, visit https://cs.ubc.ca/˜dsuth/532D/25w1/.
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If, say, r = m, then the image of X is all of Rm and we do in fact have UUT = Im;
similarly if r = n then VVT = In; but if r < min(m, n) then neither holds.

The SVD is useful for understanding lots of things related to a matrix. For instance,

XTX = VΣUTUΣVT = VΣ2VT

tells us that the nonzero singular values are the nonzero squared eigenvalues of
XTX, and similarly they are the nonzero squared eigenvalues of XXT; likewise, the
left singular vectors are the eigenvectors of XXT and the right singular vectors of
XTX.

A.2 (pseudo)inverses

If X is invertible, then m = n = r and we know that

I = XX−1 = UΣVTX−1;

let’s left-multiply by VΣ−1UT, getting

VΣ−1UT = VΣ−1UTUΣVTX−1 = VVTX−1.

Because X must be full-rank if it’s invertible, in this case we have that VVT = I, and
so this means that if it exists, X−1 = VΣ−1UT.

A neat thing is that this formula still makes sense even if X is not invertible – even
if it’s not square. We call that matrix X†, the pseudoinverse of X:

X† = VΣ−1UT.

We just saw that if X is invertible then X−1 = X†. But it’s also useful much more
generally.

For example, in Section 1.1, we saw that ERM for linear regression is equivalent to
the condition XTXw = XTy. Using the SVD, we can write this as

VΣ2VTw = VΣUTy;

left-multiplying by VΣ−2VT gives the condition

VVTw = VΣ−1UTy = X†y.

Now, anything of the form w = X†y + (I − VVT)z, where z ∈ Rd is arbitrary, satisfies
this condition, since VVTX† = X† and VVT(I − VVT) = 0. If X is rank d, then
VVT = I, so no matter the choice of z we have w = X†y. Otherwise, there are
infinitely many solutions, taking X†y and then allowing an arbitrary component in
the null space of X.

It’s worth noting that of these solutions, X†y is the one with minimum norm. Note
that

⟨VVTa, (I − VVT)b⟩ = aTVVT(I − VVT)b = aT(VVT − VVT)b = 0,

because indeed the row space and its orthogonal complement are orthogonal. Since
VVTX† = X†, we have that

∥X†y + (I − VVT)z∥2 = ∥X†y∥2 + ∥(I − VVT)z∥2 + 2⟨X†y, (I − VVT)z⟩

= ∥X†y∥2 + ∥(I − VVT)z∥2;
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the first term here doesn’t depend on the choice of z, while the second term is always
nonnegative and is zero iff (I − VVT)z = 0. There are potentially many

choices of z here, but they all
yield the same w.

So, we uniquely minimize the norm with
w = X†y.

This indeed agrees with the usual way of writing the solution that you might
remember; if m ≥ d and X is full rank (r = d), then XTX = VΣ2VT has inverse
VΣ−2VT, because

(VΣ−2VT)(VΣ2VT) = VVT = Id ,

and thus
(XTX)−1XT = VΣ−2VTVΣUT = VΣ−1UT = X†.

This helps us understand better the sense in which X† is a “pseudo-”inverse:

XX† = UΣVTVΣ−1UT = UUT

is the identity if r = m, but otherwise is the projection onto the image of X; similarly
X†X = VVT is the identity if r = n, but otherwise is the projection onto the row
space of X.

A.3 norms

Recall that the Frobenius inner product is given by

⟨A, B⟩F =
∑
ij

AijBij =
∑
i

(∑
j

Aij(B
T)ji

)
=

∑
i

(ABT)ii = Tr(ABT),

and so the squared Frobenius norm of X, ∥X∥2F =
∑
ij

X2
ij , can also be computed as

∥X∥2F = Tr(XTX) = Tr(VΣ2VT) = Tr(VTVΣ2) = Tr(Σ2) =
∑
i

σ2
i .

In the middle here we used trace rotation,

Tr(AB) =
∑
i

∑
j

AijBji =
∑
j

∑
i

BjiAij = Tr(BA).

The operator norm, ∥X∥ = supy:∥y∥≤1∥Xy∥, also has a nice expression in terms of the
singular values: we can write

∥X∥2 = sup
y:∥y∥≤1

∥UΣVTy∥2 = sup
y:∥y∥≤1

yTVΣ2VTy.

Now,

∥VTy∥2 = yTVVTy = ∥(VVT)y∥2 ≤ ∥(VVT)y∥2 + ∥(I − VVT)y∥2 = ∥y∥2,

and so {VTy : ∥y∥ ≤ 1} ⊆ {z : ∥z∥ ≤ 1}. Thus we have that

∥X∥2 ≤ sup
z:∥z∥≤1

zΣ2z = sup
z:∥z∥≤1

∑
i

σ2
i z

2
i ≤ sup

z:∥z∥≤1
σ2

1

∑
i

z2
i = σ2

1,

since σ1 ≥ σi for all i. Moreover, we can achieve this upper bound by picking y = v1,
getting VTy = e1. Thus ∥X∥ = σ1.
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