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In our motivation of SRM in Chapter 8, we talked about wanting to use an H so big
that the approximation error infh∈H LD(h) − Lbayes is zero. What kinds of H satisfy
that?

To keep things simple, we’ll think about Y ⊆ R today.

One example would be the set of all functions X → Y . This way leads a million
mathematical counterexamples of being able to do even super basic things like
computing expectations, let alone being able to learn.

A milder set to target is the set of all continuous functions. If there’s a continu-
ous function achieving the Bayes error, then this immediately guarantees that the
approximation error would be zero.

Definition 9.1. For a metric space X , C(X ) denotes the Banach space of continuous
functions X → R, with norm given by ∥f ∥∞ = supx∈X |f (x)|.

Recall that if f and g are elements of a function space and a ∈ R, we have that af + g
is the function mapping x to af (x) + g(x). So, ∥f − g∥∞ = supx∈X |f (x) − g(x)| is one
possible distance metric on functions.

The following result suggests that this is a reasonable (if strict) way to calculate
distances between functions.

Proposition 9.2. Suppose that ℓ(h, (x, y)) = ly(h(x)) for ly : R → R. Then LD is(
E(x,y)∼D∥ly∥Lip

)
-Lipschitz with respect to ∥h − g∥∞.

Proof. We have that

|LD(h) − LD(g)| = | E
(x,y)∼D

ly(h(x)) − E
(x,y)∼D

ly(g(x))| ≤ E
(x,y)∼D

|ly(h(x)) − ly(g(x))|

≤ E
(x,y)∼D

∥ly∥Lip|h(x) − g(x)| ≤
(

E
(x,y)∼D

∥ly∥Lip

)
∥h − g∥∞.

9.1 denseness

Even if the “target function” isn’t continuous, the approximation error could still be
zero.

Example 9.3. Consider X = R and the true labels being determined by the discon-
tinuous function y = 1(x > 0). Although this function isn’t in C(X ), you can get
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arbitrarily close to it, e.g. by taking the continuous functions

fσ(x) =


0 if x ≤ 0

x/σ if 0 ≤ x ≤ σ

1 if x ≥ σ.

The 0-1 loss here is

LD(fσ) = Pr
(
x ∈ (0, σ)

)
E
[
1 − x

σ
| x ∈ (0, σ)

]
< Pr

(
x ∈ (0, σ)

)
.

As σ → 0, we have LD(fσ) → 0 regardless of D. Thus, infh∈C(X ) LD(h) = 0, even
though there is no h ∈ C(X ) with LD(h) = 0. Therefore the approximation error, in
this case, is zero.

C(X ) can approximate many interesting function classes. We can frame this with
the following definition from metric topology:

Definition 9.4. Let G ⊆ F for some metric space F . We say that G is dense in F
with respect to the metric ρ if, for every f ∈ F , infg∈G ρ(g, f ) = 0.

That is, for every point in f ∈ F that isn’t in G, you need to be able to get arbitrarily
close to f with points in G.

A canonical example is that the set of rational numbers is dense in the set of real
numbers.

Proposition 9.5. Suppose that H is dense in F with respect to ∥·∥∞, and use loss
ℓ(h, (x, y)) = ly(h(x)) with finite E(x,y)∼D∥ly∥Lip. Then infh∈H LD(h) = inff ∈F LD(f ).

Proof. Let M = E(x,y)∼D∥ly∥Lip < ∞. Choose (f1, f2, . . . ) to be a sequence in F such
that LD(fi) → inff ∈F LD(f ). For each fi , choose hi ∈ H such that ∥fi − hi∥∞ ≤ 1

i ,
which is possible because H is dense in F . Then, by Proposition 9.2, |LD(hi) −
LD(fi)| ≤ M∥hi − fi∥∞ ≤ M

i → 0, and thus (LD(hi)) converges to the same point as
(LD(fi)).

9.2 universal approximators

Definition 9.6. We call a hypothesis class HThere are many variants of
universality [see e.g. SFL10];
this is a reasonable baseline.

of functions X → R universal if
H∩ C(X ) is dense in C(X ) with respect to ∥·∥∞.

The following property is known as separating compact sets. It establishes that
thresholding functions in a universal hypothesis class can shatter any set, so that
VCdim(sgn ◦H) = ∞. It also implies that the Rademacher complexity is infinite.

Proposition 9.7. Let V, W ⊂ X be disjoint compact sets,Finite sets are compact. and let H be universal. Choose
any a ≥ 0. Then there exists an h ∈ H such that h(x) > a for all x ∈ V, and h(x) < −a for
all x ∈ W.

Proof. Define ρV(x) = minv∈V∥x−v∥, and likewise ρW. Since the sets are compact, we
can use just min instead of inf, and they’ll still be well-defined continuous functions
in C(X ). Since the sets are compact and disjoint, if ρV(x) = 0 then ρW(x) > 0, and
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vice versa. Thus the following g is well-defined and continuous:

g(x) = 2a
ρV(x) − ρW(x)
ρV(x) + ρW(x)

.

If x ∈ V, then ρV(x) = 0, and so g(x) = −2a for x ∈ V. Likewise, g(x) = 2a for x ∈ W.
Thus, any h ∈ H with ∥h − g∥∞ < a will satisfy the property we want. Since g is
continuous and H is dense in C(X ), such an h must exist.

This result implies that, at least for binary classifiers, it’s impossible to PAC-learn a
universal H. Depending on the H, though, we may be able to nonuniformly learn
it with SRM or similar algorithms. If we use a decomposition H = H1 ∪ H2 ∪ · · ·
for H1 ⊂ H2 ⊂ · · · , then even though the approximation error in all of H is zero,
the approximation error in Hk might not be. As we consider Hk for increasing
k, we trade off higher estimation error for lower approximation error. When H
is universal, there might be some Hk where we can achieve zero approximation
error (if there’s some h ∈ H achieving the minimal loss, Well-specified doesn’t imply

realizable; you might have
infh∈H LD(h) > 0.

also called the well-specified
setting). We might, though, only have the approximation error of Hk going to zero
as k increases, called a misspecified setting; this would be true e.g. in Example 9.3
with Hk = {f : ∥f ∥Lip ≤ k}.

9.3 universal approximation of neural networks

As you may have heard before (probably invoked in somewhat mystical ways),
classes of neural networks are universal.

A feedforward neural network (or multilayer perceptron, MLP) is a function defined
hierarchically as

f (x) = f (D)(x) f (k)(x) = σk(Wkf
(k−1)(x) + bk) f (0)(x) = x,

where Wk ∈ Rd′k×dk−1 , bk ∈ Rd′k , and σk : Rd′k → Rdk ; usually, dk = d′k. Typically
σD(z) = z, while intermediate hidden layers use nonlinear activations. Many common
choices are componentwise, such as ReLU(z) = max{z,0}, tanh, or sigmoid(z) =

1
1+exp(−z) . Other choices include softmax(z) = (exp(zj))j /

∑
j

exp(zj), max pooling,

attention operators, and so on.

On A3, you bounded the Rademacher complexity for some such networks, with
some assumptions on σk, D, bounds on Wk, and that bk = 0. (There are [slightly]
better bounds than this one; we’ll talk about this a bit soon.) Your bound didn’t
explicitly depend on the number of parameters, just on their norms.

It’s worth noting now that neural networks are usually trained via stochastic gradient
descent, but this non-convex optimization can be difficult: in general, it’s NP-hard,
even to optimize a single ReLU unit with square loss [GKMR21]. We’ll talk more
about optimization soon.

9.3.1 Constructive proofs

The following result is easy to understand, and extremely simple, but is indicative
of universal approximation results in general.

Theorem 9.8. Let g : [0, 1]→ R be M-Lipschitz. For any ε > 0, there exists a network
f such that ∥f − g∥∞ ≤ ε, where the network has one hidden layer of width N = ⌈M/ε⌉
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using threshold activations σ(t) = 1(t ≥ 0), and a linear output unit.

Proof. We’re going to construct a piecewise-constant approximation to g. For i ∈
{0, . . . , N − 1}, let bi = iε

M , i.e.

b0 = 0, b1 =
ε

M
, · · · , bN−1 =

(⌈M
ε

⌉
− 1

)
ε

M
<

M
ε
· ε

M
= 1.

We’re going to construct

f (x) =


g(0) if 0 ≤ x < b1

g(b1) if b1 ≤ x < b2
...

g(bN−1) if bN−1 ≤ x ≤ 1

as a two-layer network. To do this, let a0 = g(0), and for i ≥ 1 let ai = g(bi) − g(bi−1),
so that

k∑
i=0

ai = g(0) + (g(b1) − g(0)) + (g(b2) − g(b1)) + · · · = g(bk).

Thus the desired f is just

f (x) =
N−1∑
i=0

ai 1(x ≥ bi),

which is a network of the desired form: the first layer has a weight matrix of all ones,
and a bias vector collecting the negatives of the thresholds bi , while the second layer
has weights collecting the ai and no offset.

Now, consider any input x, and let k = max{k : bk ≤ x}.You could use a narrower
network by depending on the

total variation of g, how
much it “wiggles” up and
down: if g is pretty flat in

some region, there’s no need
to keep putting points there,

you only need a new one
when g changes more than ε.

Then, since g is M-Lipschitz,

|g(x) − f (x)| ≤ |g(x) − g(bk)|︸         ︷︷         ︸
≤M |x−bk |

+ |g(bk) − f (bk)|︸           ︷︷           ︸
0

+ |f (bk) − f (x)|︸          ︷︷          ︸
0

≤ M
ε

M
= ε.

We could do a similar thing with ReLU networks, using piecewise-linear approxima-
tions rather than piecewise-constant.

Here’s a similar result in Rd :

Theorem 9.9. Let g : [0, 1]d → R be continuous. For any ε > 0,δ exists for any ε, since
continuous functions on

compact domains are
uniformly continuous, and
∥·∥2 and ∥·∥∞ are equivalent.

choose δ > 0 such that
∥x − x′∥∞ ≤ δ implies |g(x) − g(x′)| ≤ ε. Then there is a three-layer ReLU network f with
Ω

(
1
δd

)
ReLU nodes satisfying

∫
[0,1]d
|f (x) − g(x)|dx ≤ 2ε.

Proof (sketch). Approximate the continuous g by a piecewise-constant h, with pieces
given by hyper-rectangles. Construct a two-layer ReLU net to check whether the
input x is in each hyper-rectangle. Put those networks side-by-side as the first two
layers of f , so that the second hidden layer is just an indicator vector of which
hyper-rectangle x is in. Use a linear readout layer to set any value on those pieces.

For details, see Theorem 2.1 of Telgarsky [Tel21].

Notice the curse of dimensionality: the size of the network depends exponentially
on the dimension, which for deep learning is typically at least hundreds, perhaps
millions or more. This isn’t just a proof artifact; it’s necessary to approximate
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arbitrary continuous functions. The construction also needs really large weights,
and has a really bad Lipschitz constant; it also only gives an L1 approximation
bound, not sup-norm like before.

9.3.2 Non-constructive bound via Stone-Weierstrass

We can actually get a sup-norm bound with only one hidden layer a different way,
using the celebrated Stone-Weierstrass approximation theorem from analysis.

Theorem 9.10 (Stone-Weierstrass, special case). Let X be a compact metric space.
Suppose F is a set of functions from X → R such that:

• Each f ∈ F is continuous: F ⊆ C(X ).

• For each x ∈ X , there is at least one f ∈ F with f (x) , 0.

• For all f , g ∈ F and α ∈ R, we have αf + g ∈ F and f g = (x 7→ f (x)g(x)) ∈ F . F is an algebra.

• For each x , x′ ∈ X , there is at least one f ∈ F with f (x) , f (x′). F separates points.

Then F is dense in C(X ) with respect to ∥·∥∞.

You may have heard of the Weierstrass theorem, which shows that polynomial
functions are dense in C(X ); this is a generalization.

Proposition 9.11. The set of functions Fexp is dense in C(X ), where

Fexp =

x 7→ m∑
i=1

ai exp(wi · x) : m ≥ 1;w1, . . . , wm ∈ Rd ; a1, . . . , am ∈ R

 .

Notice that Fexp is a set of one-hidden-layer neural networks with exponential
hidden activations and unbounded width.

Proof. We just need to show that it satisfies the conditions of Stone-Weierstrass. The

first two are clear. For f (x) =
m∑
i=1

ai exp(wi · x) and g(x) =
m′∑
i=1

a′i exp(w′i · x), we have

αf + g =

x 7→ m∑
i=1

(αai) exp(wi · x) +
m′∑
i=1

a′i exp(w′i · x)

 ∈ Fexp

f g =

x 7→ m∑
i=1

m′∑
j=1

aia
′
i exp((wi + w′j ) · x)

 ∈ Fexp.

To show Fexp separates x1 and x2, consider f (x) = exp((x1 − x2) · x), so that

f (x1)
f (x2)

=
exp

(
∥x1∥2 − x2 · x1

)
exp (x1 · x2 − ∥x2∥2)

= exp
(
∥x1∥2 − 2x1 · x2 + ∥x2∥2

)
= exp

(
∥x1 − x2∥2

)
,

which is one iff x1 = x2.

Proposition 9.12 ([HSW89]). Let σ : R → R be continuous with limz→−∞ σ(z) = 0,
limz→∞ σ(z) = 1. Then Fσ is dense in C(X ), where Fσ is defined as

Fσ =

x 7→ m∑
i=1

aiσ(wi · x) : m ≥ 1;w1, . . . , wm ∈ Rd ; a1, . . . , am ∈ R

 .
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Proof (sketch). For any continuous target g, first find an f0 ∈ Fexp such that ∥f0 −
g∥∞ ≤ ε/2. Now, find some coefficients such that

exp(z) ≈
∑
j

cjσ(tjz)

is sufficiently accurate so that when we replace each exp(wi ·x) in f0 by
∑
i
ciσ(tiwi ·x),

we find an f ∈ Fσ such that ∥f − f0∥∞ ≤ ε/2.

More generally, this works if σ is anything that’s not a polynomial [LLPS93]. (A
shallow network with fixed-degree polynomial activations is itself a polynomial of
fixed degree.) These are for shallow, wide networks, but if you use a deep, narrow
network you can get away even with polynomial activations [KL20].

There are also a variety of other results. Maybe most important is an infinite-
width construction of Barron [Bar93]; also see Section 3 of [Tel21] or Section 9.3 of
[Bach25].

9.4 circuit complexity

We won’t go into depth on this perspective, but it’s definitely worth knowing it
exists. Shalev-Shwartz and Ben-David [SSBD14, Chapter 20] overview the general
basic results, but the standard classic text seems to be Parberry [Par94]. There’s also
recent work, particularly on Transformers.

The short version:

• Two-layer networks with threshold activations can represent all functions
from {±1}d → {±1}. Since computers always represent things as binary strings,
that’s pretty powerful.

• But, it takes exponential width to do that.

• But, for any Boolean function that can computed with maximal runtime T,
there exists a network of size O(T2) that implements that function.

9.5 interpretation

“Neural networks can do anything!!”

(You don’t hear “decision trees can do anything!!” as often, but it’s just as true. . . .)

These results mean that, for any (continuous) function (on a bounded domain) that
we’d like to approximate, there is some neural net that can closely approximate
that behaviour. Continuous functions also aren’t a huge limit, as in Example 9.3.
So, there is some neural network that can approximate “what’s the next bit in the
response of a very smart human to a Unicode string of length at most 128,000 bytes.”
But that network is going to be very large (in parameter count and also weight norm).
There’s also a really really big decision tree that can do that.

So, does ERM in a large enough hypothesis class, or SRM, or whatever other learning
algorithm, necessarily generalize? Maybe not.

Also, for neural networks ERM is NP-hard; does gradient descent approximate it
well? Maybe not.
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But, are these constructions with enormous norms indicative of the actual norm
required for functions we care about? Maybe not.

One way to help answer these questions is to characterize what kinds of functions
have large norms. This is mostly beyond the scope of this course, but the typical
traditional scheme is based on functions in Sobolev classes; [Bach25] has a bunch of
material on this. There’s also recent work on, say, constructing Transformers to do
some particular task, as an existence proof of approximation for that task (rather
than universally).
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