
CPSC 532D — 7. PAC LEARNING; NO FREE LUNCH

Danica J. Sutherland

University of British Columbia, Vancouver

Fall 2025

7.1 pac learning

Our VC bound of Theorem 6.11 – and indeed our finite-class bound of Proposi-
tion 2.2 – have one striking property, which is notably not shared by our bound on
logistic regression from Equation (5.9): they give bounds on the excess error of ERM
which don’t depend on anything about the distribution D, only H, ℓ, and m.

This property corresponds to one of the standard notions of learnability. Here, we’re
going to use a general idea of a learning algorithm as some function that takes a
sample S ∈ Z∗ (the set of sequences of any length from Z) and returns a hypothesis
in H.

Definition 7.1. An algorithm A : Z∗ → H agnostically PAC learns H with a loss ℓ
if there exists a function m : (0,1)2 → N such that, for every ε, δ ∈ (0,1), for every
distribution D over Z, for any m ≥ m(ε, δ), we have that

Pr
S∼Dm,A

(
LD(A(S)) > inf

h∈H
LD(h) + ε

)
< δ,

where the randomness is both over the choice of S and any internal randomness in
the algorithm A. That is, A can probably get an approximately correct answer, where
“correct” means the best possible loss in H.

If A runs in time polynomial in 1/ε, 1/δ, m, and some notion of the size of h∗, then
we say that A efficiently agnostically PAC learns H.

Definition 7.2. A hypothesis class H is agnostically PAC learnable if there exists an
algorithm A which agnostically PAC learns H.

So, ERM agnostically PAC-learns finite hypothesis classes for losses bounded in [a, b],

with the sample complexity m(ε, δ) = 2(b−a)2

ε2 log |H|+1
δ

, from Proposition 2.2. A finite hypothesis class
necessarily has finite VC
dimension (why?).

More
generally, Theorem 6.11 shows that ERM PAC-learns finite-VC classes for binary
classification with zero-one loss, with the sample complexity being any function
m(ε, δ) such that√

2
m(ε, δ)

√d(log(m(ε, δ)) + 1 − log d) +

√
log

2
δ

 ≤ ε;

a little bit of annoying algebra can give us that it suffices to have, say, the sample

complexity m(ε, δ) ≥ 8
ε2 max

{
log

2
δ
, 4d log

32d
ε2

}
.

In the definition of agnostic PAC learning, there’s no limitation at all on the dis-
tribution – there needs to be an m(ε, δ) that works for any D. This is nice, in that

For more, visit https://cs.ubc.ca/˜dsuth/532D/25w1/.

1

https://cs.ubc.ca/~dsuth/532D/25w1/

since H and ℓ are under our control and m is easy to observe, we can be sure that
it applies to whatever problem we’re thinking about. It is, however, an extremely
worst-case kind of notion; if we know more about D, we might be able to get better
bounds. For example, maybe the number of samples you need depends on “how
hard” the particular problem is. We’ll talk about this more a little later in the course
(“nonuniform learning”). For now, it’s worth mentioning one common special case:

Definition 7.3. Consider a nonnegative loss ℓ(h, z) ≥ 0. A distribution D is called
realizable by H if there exists an h∗ ∈ H such that LD(h∗) = 0.

Definition 7.4.This version doesn’t have the
“agnostic” modifier because it
was introduced first [Val84].

An algorithm A : Z∗ → H is said to (realizably) PAC learn H with a
loss ℓ if there exists a function m : (0,1)2 → N such that, for every ε, δ ∈ (0,1), for
every realizable distribution D over Z, for any m ≥ m(ε, δ), we have that

Pr
S∼Dm,A

(LD(A(S)) > ε) < δ,

where the randomness is both over the choice of S and any internal randomness in
the algorithm A. That is, A can probably get an approximately correct answer, where
“correct” means zero loss.

If A runs in time polynomial in 1/ε, 1/δ, m, and some notion of the size of h∗, then
we say that A efficiently (realizably) PAC learns H.

Definition 7.5. A hypothesis class H is PAC learnable if there exists an algorithm A
which PAC learns H.

Sometimes people say “realizable PAC learnable” or similar, to emphasize the
difference versus agnostic PAC. The name “agnostic” is because the definition doesn’t
care whether there’s a perfect h∗ or not. (Notice that if A agnostically PAC learns H,
then it also PAC learns H.)

If you read [SSBD14] or other work by computational learning theorists,The emphasis here on “how
many samples for a given

error” is also kind of a
TCS-style framing, whereas
statisticians more often ask

“how much error for a given
number of samples”; I tend
to prefer the latter, but it’s

all equivalent.

there tends
to be a lot of focus on just being learnable versus not being learnable. That problem
has been solved (for binary classification), though, as we’ll see soon! Recent work
focuses much more on rates than on just learnability or not, and tends to be willing
to make some assumptions on D rather than either being totally general or assuming
only realizability.

We’ve shown that anything with finite VC dimension is PAC learnable, and that
ERM does so. But that’s just an upper bound, and maybe we just didn’t prove a good
enough bound.A related question: maybe

we know a better upper
bound for algorithm A than
algorithm B; does that mean
A is actually better than B?

Maybe it could turn out that ERM also PAC learns some infinite VC
classes, or maybe it doesn’t but some other algorithm does. As we’ll see next, neither
situation is true.

7.2 no free lunch for high-vc classes

Theorem 7.6.This result is similar to
Theorem 5.1 of [SSBD14],

but incorporating the idea of
VC dimension (which they

haven’t introduced yet at
that point).

LetH be a hypothesis set of binary classifiers over X . Let m ≤ VCdim(H)/2.
Then, using 0-1 loss,

inf
A

sup
D realizable by H

Pr
S∼Dm

A

(
LD(A(S)) >

1
8

)
≥ 1

7
,

where the infimum over A is over all (possibly randomized) learning algorithms which
return hypotheses in H, and the probability is over both the sampling of a training set

2

and any internal randomness in A.

Before we prove this, let’s unpack the quantifiers a bit. For any m and any learning
algorithmA, there is some realizable distribution D such thatA has at least constant
probability of failing with m samples, i.e. getting at least 1/8 error. Note that this
distribution depends on m and on A.

This result immediately implies the following:

Corollary 7.7. Any H with VCdim(H) = ∞ is not PAC learnable.

This doesn’t necessarily mean that there’s any single D that A fails on forever. But,
at any m, there’s still some distribution that’s too hard. This removes the possibility
of PAC learning, which needs to work for all distributions at a uniform rate.

Proof of Theorem 7.6. We’re first going to pick a shatterable set of size 2m, X̃ =
{x̃1, . . . , x̃2m} ⊆ X ; at least one such set must exist, since 2m ≤ VCdim(H). Then we’ll
pick the marginal distribution of x, Dx, to be a discrete uniform distribution on X̃ .
To construct our hard D, we’re going to use this Dx and then somehow assign a y
for each x.

Since we’re being totally generic with respect to A, it’s going to be hard to say which
y | x labeling rule in particular is going to be hard for A to learn. So, as a proof
technique, we’re going to start with a random labeling rule, and then settle on a
particular one later. Specifically, for each vector of possible labels y ∈ {0, 1}m, choose
some particular f ∈ H such that f (xj) = yj for all j; there must be at least one, since
H shatters X̃ . Let F be the set of these functions (of size exactly 2m), and choose
f ∼ Unif(F), i.e. we’re picking a labeling function uniformly from F . For any f , let
the distribution D(f) denote the distribution that you get by sampling x ∼ Dx and
then assigning y | x = f (x).

Now, for any sample of inputs Sx = (x1, . . . , xm), we can implicitly construct a sample
of pairs S =

(
(x1, f (x1)), . . . , (xm, f (xm))

)
. Run the algorithm A to get ĥS = A(S),

which itself might be random given S. Its expected loss over the process of choosing
a distribution, sampling a training set, and running the algorithm is

E
f ∼Unif(F)

E
S∼Dm

(f)

E
A

LD(f)
(A(S)) = E

f
E
S
E
A

E
x∼Dx

1
(
[A(S)](x) , f (x)

)
.

Using the law of total expectation, let’s break this expectation up based on whether
the test x is in the training data S or not:

E
f ,S,A

E
x
1([A(S)](x) , f (x)) = E

f ,S,A

[
Pr(x ∈ Sx) E

x∼Dx

[1([A(S)](x) , f (x)) | x ∈ Sx]

+ Pr(x < Sx) E
x∼Dx

[1([A(S)](x) , f (x)) | x < Sx]
]
.

For the first term, we’re not going to worry about what the algorithm does on the
data it’s actually seen, since the algorithm might be good: we’ll just bound this as
being at least zero. For the second, we know since Dx is uniform and |Sx| ≤ m that

Pr(x < Sx) =
|X̃ \ Sx|
|X̃ |

≥ m
2m

=
1
2
.

3

Thus we’ve shown that

E
f ∼Unif(F)

E
S∼Dm

(f)

E
A

LD(f)
(A(S)) ≥ 1

2
E

f ,S,A
E

x∼Dx

[1([A(S)](x) , f (x)) | x < Sx].

Now, I’ll show this remaining expectation is exactly 1/2, since our labels f (x̃j) are
uniformly random and totally independent of the training set. To see this more
clearly, let’s change notation a little. Rather than choosing an f and then an S ∼ Dm

(f),

let’s think of choosing the x points Sx, and the labels for every point in X̃. Once we
know both of those things, we can easily construct S. Let I ∼ Unif([2m])m be the
sequence of random indices into X̃, and let ỹ ∼ Unif(±1)2m be the vector of labels

for every possible input. Then S =
(
(x̃I1

, ỹI1
), . . . , (x̃Im , ỹIm)

)
, and

E
f ∼Unif(F)

E
S∼Dm

(f)

E
A

LD(f)
(A(S))

≥ 1
2

E
I∼Unif([2m])m

E
ỹ∼Unif(±1)2m

E
A

E
j∼Unif([2m]\I)

[1([A(S)])(x̃j) , ỹj)]

=
1
2

E
I∼Unif([2m])m

E
ỹI∼Unif(±1)|I|

E
A

E
j∼Unif([2m]\I)

Pr
ỹj∼Unif(±1)

(
[A(S)](x̃j) , ỹj

)
.

Whatever the choice of [A(S)](x̃j), it has absolutely nothing to do with ỹj ; thus
whether our prediction agrees with the label is just a pure coin flip, 50% chance it
agrees, 50% it doesn’t. That is,

E
f ∼Unif(F)

E
S∼Dm

(f)

E
A

LD(f)
(A(S)) ≥ 1

4 .

But, if the average over f of the expected loss ES∼Dm
(f)

LD(f)
(ĥS) is at least 1

4 ,This proof technique is
known as the probabilistic

method, and often
attributed to Paul Erdős.

then there

must be at least one particular f such that the expected loss is at least 1
4 ! Pick one

and call it g; this will be the labeling function claimed by the theorem.

We’ve now shown the average loss is large, but we still want to show that the loss
has high probability of being large. Now, LD(g)

(A(S)) is a random variable bounded
in [0,1], and we already know one way to bound those variables in terms of their
means: Markov’s inequality. But Markov’s inequality bounds the probability of
things being big, and we want to bound the probability of this being small. So we’ll
need to switch it around, which is sometimes called “reverse Markov”:

Pr(LD(g)
(ĥS) ≤ 1

8) = Pr
(
1 − LD(g)

≥ 1 − 1
8

)
≤

1 − E LD(g)
(ĥS)

7
8

≤
(
1 − 1

4

) 8
7

=
6
7
.

Thus, for the realizable D(g) we picked above,

Pr
A;S∼Dm

(g)

(
LD(g)

(A(S)) >
1
8

)
≥ 1

7
.

7.2.1 Interpretation

Theorem 7.6 is sometimes called a “no free lunch” theorem, in that there is no
algorithm that always works (in the sense of PAC learning): every algorithm fails on
at least one distribution.

In fact, basically this same proof strategy implies [Wol96] that, if you only care
about the “off-sample” error (the average error on (x, y) | x < Sx), there are just

4

as many possible distributions where your predictor is right as where it’s wrong,
regardless of your learning algorithm. If you don’t assume anything about the world,
all algorithms perform the same on average over all possible worlds.

This is in some ways a deep philosophical problem, called the problem of induction
and generally credited to David Hume. The fact that the sun rose every day so
far doesn’t, from “pure first principles,” imply anything about whether it will rise
tomorrow: we just decide to prefer “simple” explanations, i.e. we choose some H
that we like. But that doesn’t really answer which H would be good.

Actually, VC or Rademacher theory can’t answer that problem either: it’s preferable
to choose a H with small complexity, but since Rad((H + {f })|S) = Rad(H|S), and
VCdim(H) = VCdim({x 7→ h(x)f (x) : h ∈ H}) for ±1-valued h and f , we haven’t
actually seen any objective notion of a “simple hypothesis”! We’ve only seen ways to
say that sets of hypotheses are all similar enough to one another.

Sometimes people get a little mystical about no free lunch theorems, though – e.g.
no-free-lunch.org says that this result “calls the whole of science into question,”
and I’ve heard a story about a certain famous machine learning theorist who, when
asked to help scientists on some applied problem, supposedly said something to the
effect of “because of the no free lunch theorem, since I don’t know anything about
your field then nothing I do can possibly help.”

But the world is not uniformly random; we know from experience that some kinds of
H tend to work better than others. so, although there is some distribution that every
algorithm fails on, it’s not the case in the world we live in that all algorithms are the
same as each other. (And, interestingly, there are (impractical) learning algorithms
that are always at least as good as any other algorithm, up to (huge) constants: check
out free-lunch.org [Nak21].)

7.2.2 Aside: “learning is NP-hard”

Another example of this kind of claim (based on a different underlying theorem)
is given by van Rooij et al. [vRoo+24], who say (in reaction to recent progress of
LLMs):

[We present] a mathematical proof of inherent intractability (formally,
NP-hardness) of the task that [...] AI engineers set themselves. This
intractability implies that any factual AI system created in the short-run
(say, within the next few decades or so) is so astronomically unlikely to
be anything like a human mind, or even a coherent capacity that is part
of that mind, that claims of ‘inevitability’ of AGI within the foreseeable
future are revealed to be false and misleading. We realize that this
implication may appear counterintuitive given everyday experiences and
interactions with currently impressive AI systems, but we will explain
why it is not. As we will carefully unpack later in the paper, it is a mistake
to assume that AI systems’ performance is either currently human-level,
or will simply continue to improve and the systems will soon constitute
human-level A(G)I. The problem is that—in line with our intractability
result—the performance cannot scale up.

What they actually prove (their Theorem 2) can be rephrased roughly as follows:

Theorem 7.8 (“Ingenia Theorem”, [vRoo+24]). Let X = {0,1}N The paper actually allows a
set of possible behaviours in
response to a given input.
Unfortunately, the formal
statement in the paper
doesn’t quite make sense. I
think, from reading the
proof, that this weaker
version is still true.

and Y a fixed finite
set. Let H be a hypothesis class containing all functions implemented by circuits with

5

https://en.wikipedia.org/wiki/Problem_of_induction
http://no-free-lunch.org
http://free-lunch.org

complexity at most a parameter D; for instance, for each N and D there exists a class of
feedforward neural networks satisfying this. Suppose that there exists a polynomial-time
algorithm, allowed to randomly sample from D as a constant-time operation, which with
probability at least Ω(1/Nα) for some α > 0 under any realizable D successfully identifies
a hypothesis h ∈ H satisfying that

Pr
(x,y)∼D

(h(x) = y) ≥ 1
|Y |

+ εN ,

for some εN = Ω(1/Nβ), for some β > 0. Then NP ⊆ BPP.

The assumption on the algorithm here is much weaker than efficient PAC learning:
it’s just that the learning algorithm does nontrivially better than random guessing,
with nontrivial probability. But the conclusion NP ⊆ BPP contradicts a very common
assumption in complexity theory. So, although we don’t 100% know this for a fact,
we should probably think that this implies there is no polynomial-time algorithm
that can improve on random guessing for any realizable distribution.

Does this imply that “AI” is computationally infeasible? Not really. Assuming
NP ⊈ BPP, it implies that for any given polynomial-time learning algorithm, there
exist some distributions which cannot be efficiently learned. (This is true even for
distributions which are themselves efficiently computable. The universal induc-
tion approach considered e.g. by Nakkiran [Nak21] finds computationally-efficient
hypotheses but it does so in an extremely computationally-inefficient way.)

This obviously doesn’t mean, though, that every distribution can’t be efficiently
learned. For instance, the distribution that always says “banana please” in response
to any input at all can be. Is “human-like behaviour” a distribution that can be
efficiently learned by some algorithm? I don’t know (other than to say that, well,
humans do it), and this theorem doesn’t say either!

7.3 lower bounds

Theorem 7.6 only applies when m ≤ VCdim(H)/2. We can use it, though, to also get
a quantitative lower bound for higher m:

Theorem 7.9.This theorem roughly
follows [MRT18, Theorem
3.20]. That result merges

this result with Theorem 7.6
in a way I find really hard

to follow; their theorem
statement is also obviously

incorrect when
m < (VCdim(H) − 1)/32.

[SSBD14, Theorem 6.8]
states a similar result, but

leaves this part as an
exercise.

Let H be a set of binary classifiers over X such that VCdim(H) ≥ 2. For
any m > VCdim(H)/2,

inf
A

sup
D realizable by H

Pr
S∼Dm

(
LD(A(S)) >

VCdim(H) − 1
32m

)
>

1
100

where LD uses zero-one loss, and the infimum over A is over all learning algorithms
returning hypotheses in H.

Proof. Choose a set X̃ = {x̃1, . . . , x̃d} of size d = VCdim(H) which can be shattered
by H. We’re going to choose a distribution that puts most of its probability mass on
x̃1, in such a way that we’re likely to see fewer than half of the other points from the
distribution. Specifically, for an ε > 0 to choose later,

Pr
x∼Dx

(x = x̃1) = 1 − ε, for all i > 1, Pr
x∼Dx

(x = x̃i) =
ε

d − 1
.

Now, let D̃ be the distribution over {x̃2, . . . , x̃d} selected by Theorem 7.6 with m =
(d − 1)/2, and let f ∈ H be the labeling function chosen in D̃. Our distribution will

6

https://en.wikipedia.org/wiki/NP (complexity)
https://en.wikipedia.org/wiki/BPP (complexity)

be found by sampling x ∼ Dx and then letting y | x = f (x).

Now, we’re going to prove that it’s fairly likely that samples from Dx contain at most
(d − 1)/2 of the non-x̃1 points. How many points we don’t see is a little annoying to
characterize exactly, but we can get a bound based on

Q =
m∑
i=1

1(xi , x̃1);

if we repeat any of the non-x̃1 points, Q will double-count them, but it’s a valid
upper bound on the number of non-x̃1 points we see. Notice that Pr(xi , x̃1) = ε,
and each of the indicators is iid Bernoulli(ε), so Q ∼ Binomial(m, ε).

A standard tail bound for binomial variables, Proposition 7.10 with γ = 1, shows
that

Pr(Q ≥ 2mε) ≤ exp
(
−1

3
mε

)
.

To use this result, we want 2mε = 1
2 (d − 1); so, pick ε = (d − 1)/(4m). This is valid,

since m > d/2 implies that ε = d−1
4m < d−1

2d < 1
2 . Then we see less than half of the

non-x̃1 points with probability at least

1 − exp
(
−m

3
· d − 1

4m

)
= 1 − exp

(
−d − 1

12

)
≥ 1 − exp

(
− 1

12

)
> 0.07,

since 1 − exp(−1/12) ≈ 0.07995.

So, with more than 7% probability, a sample of size m from D will contain at most
(d − 1)/2 of the non-x̃1 points. Then, Theorem 7.6 tells us that with probability at
least 1/7, LD̃(A(S)) ≥ 1

8 . If this happens, this implies that LD(A(S)) ≥ 1
8 ε = d−1

32m ,
since the total probability of the non-x̃1 points is exactly ε. So, we have more than a
1
7 · 7% = 1% chance of seeing d−1

32m error on D, as desired.

Proposition 7.10. If X ∼ Binomial(m, p), then for any γ > 0 it holds that

Pr(X ≥ (1 + γ)mp) ≤ exp
(
−1

3
mpγ2

)
.

which is e.g. Theorem D.4 of [MRT18]. The proof technique is a bit different from
how we proved Hoeffding/etc, and does not hold as generally; it’s only for “sub-
Bernoulli” (bounded) variables, not subgaussians. If you’re curious, you should be
able to follow their proof (which uses their Theorem D.3) just fine.

Agnostic case You can get a bigger error if you don’t require D to be realizable:
Theorem 3.23 of [MRT18] gives that for any m and H,

inf
A

sup
D

Pr

LD(A(S)) − inf
h∈H

LD(h) ≥
√

d
320m

 ≥ 1
64

. (7.1)

Section 28.2 of [SSBD14] is similar. The proof strategy is like before, but we further
make the rarely-seen points have random labels with probabilities close enough to
1/2 that they take a lot of samples to identify, but far enough from 1/2 that you do
suffer significant loss if you get them wrong.

More generally These styles of theorems are sometimes called “minimax bounds,”
and algorithms are called “minimax-optimal” or simply “minimax” if they achieve

7

the lower bound (usually only up to constants, though that’s also sometimes called
“rate-optimal”). In Chapter 6 we showed that ERM gets error Õp(

√
d/m), which

combined with the agnostic result above shows that ERM is (up to log factors) rate-
optimal for finite-VC classes. Although we haven’t shown this [see SSBD14, Section
28.3; Zhang23, Section 6.5], ERM for binary classifiers achieves Õp(d/m) error in
the realizable setting, so by Theorem 7.9 ERM is also (up to log factors) minimax
rate-optimal for realizable distributions too.

Minimax rates are also available for various other problems, including things like
linear regression, density estimation, and optimization. We won’t talk a lot about
lower bounds in this course, but they can be really nice to know whether your
learning algorithm is “good” or not. (The problem, though, is they tend to be
extremely “worst-case,” and might not be too informative about problems you’re
likely to actually see – similar to no free lunch arguments.)

7.4 the “fundamental theorem of statistical learning”

We’ve now shown all the necessary parts for a pretty complete qualitative under-
standing of PAC learning for binary classifiers.

Theorem 7.11 (Fundamental Theorem of Statistical Learning).This name is only, as far as I
know, used by [SSBD14].

For H a class of
functions h : X → {0, 1} and with the 0-1 loss, the following are equivalent:

1. Uniform convergence: for all ε, δ ∈ (0, 1), we have that suph∈H LD(h) − LS(h) < ε

with probability at least 1 − δ as long as m ≥ mUC(ε, δ) < ∞.[SSBD14] use two-sided
uniform convergence: in the

setting of the theorem here,
one-sided bounds imply
two-sided ones, but (a)

one-sided is what we really
use, and (b) in more general
settings the distinction can

matter.

2. Any ERM rule agnostically PAC-learns H.
3. H is agnostically PAC learnable.
4. Any ERM rule PAC-learns H.
5. H is PAC learnable.
6. VCdim(H) < ∞.

Proof. 1 implying 2 is our usual argument:

LD(ĥS) ≤ LS(ĥS) + sup
h∈H

LD(h) − LS(h) ≤ LS(h∗) + ε ≤ LD(h∗) + [LS(h∗) − LD(h∗)] + ε,

plus Hoeffding on LS(h∗) − LD(h∗).

2 implying 3, and 4 implying 5, are immediate.

2 implying 4, and 3 implying 5, is also straightforward from the definitions.

Corollary 7.7 shows that 5 implies 6.

6 implying 1 is shown by Theorem 6.11.

Theorem 6.8 of [SSBD14] gives a quantitative version, bounding the sample com-
plexities in terms of the VC dimension, by collecting lower bounds like Theorem 7.9
and (7.1) and upper bounds like Theorem 6.11 and the realizable equivalent that
we didn’t prove.

references

[MRT18] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talkwalkar. Founda-
tions of Machine Learning. 2nd edition. MIT Press, 2018.

8

https://cs.nyu.edu/~mohri/mlbook/
https://cs.nyu.edu/~mohri/mlbook/

REFERENCES

[Nak21] Preetum Nakkiran. Turing-Universal Learners with Optimal Scaling Laws.
2021. arXiv: 2111.05321.

[SSBD14] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learn-
ing: From Theory to Algorithms. Cambridge University Press, 2014.

[Val84] Leslie G. Valiant. A Theory of the Learnable. Communications of the
ACM 27.11 (1984), pages 1134–1142.

[vRoo+24] Iris van Rooij, Olivia Guest, Federico Adolfi, Ronald de Haan, Antonina
Kolokolova, and Patricia Rich. Reclaiming AI as a Theoretical Tool for
Cognitive Science. Computational Brain & Behavior (2024).

[Wol96] David H. Wolpert. The Lack of A Priori Distinctions Between Learning
Algorithms. Neural Computation 8.7 (October 1996), pages 1341–1390.

[Zhang23] Tong Zhang. Mathematical Analysis of Machine Learning Algorithms.
Pre-publication version. 2023.

9

https://arxiv.org/abs/2111.05321
https://arxiv.org/abs/2111.05321
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/copy.html
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/copy.html
http://dx.doi.org/10.1145/1968.1972
http://dx.doi.org/10.1007/s42113-024-00217-5
http://dx.doi.org/10.1007/s42113-024-00217-5
https://doi.org/10.1162/neco.1996.8.7.1341
https://doi.org/10.1162/neco.1996.8.7.1341
https://tongzhang-ml.org/lt-book/lt-book.pdf

	PAC learning
	No free lunch for high-VC classes
	Interpretation
	Aside: ``learning is NP-hard''

	Lower bounds
	The ``Fundamental Theorem of Statistical Learning''

