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In Chapter 2, we showed that ERM probably gets approximately the right answer on
finite hypothesis classes. As we discussed in Section 2.3.1, even though everything
we do on a computer is ultimately finite, it’s not really satisfying to analyze things
that way: we need to incorporate somehow that “similar” hypotheses probably have
similar error. So, we might as well go to a case where |H| = co.

In logistic regression, our data is in a subset of R4, our labels are in ) = {-1,1},

and we try to predict with a confidence score in Y =R. Our predictors are linear
functions of the form h,(x) = w - x, and the logistic loss is given by

liogh, (x,9)) = 1 (h(x)) = log(1 + exp(~h(x)p)). (4.1)

For the probabilistically-minded among you, this corresponds to maximizing the
likelihood of a model that takes p(v | x) = 1/(1 + exp(—h(x))).

We’ll use the hypothesis class H = {h, = x> w-x: w € R, ||lw|| < B} for some
constant B; this avoids overfitting by using really-really complex w, and is basically
equivalent to doing L,-regularized logistic regression (we’ll talk about this more
later). This H is still infinite, but it has finite volume.

Now, our analysis is going to be based on the idea that if w and v are similar
predictors, i.e. h,,(x) = h,(x) for all x, then they’ll behave similarly: Lp(hy,) ~ Lp(h,)
and Lg(h,) = Lg(h,). Thus we don’t have to do a totally separate concentration
bound on their empirical risks; we can exploit that they’re similar.

The fundamental idea is going to be one of a “set cover,” or an “e-net.” To handle
an infinite H that’s nonetheless bounded, we’re going to choose some finite set H,
such that everything in H is close to something in H, use Proposition 2.2 to say that
Lp(h)—Lg(h)isn’t too big for anything in H, and then argue that since Lp(h)— Lg(h)
is smooth, this means it can’t be too big for anything in H at all.

Figure 4.1: A (non-minimal) set cover.

For more, visit https://cs.ubc.ca/~dsuth/532D/25w1/.
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This is more convenient
than Y = {0, 1} here. ..

You usually want an

intercept term, w - X + wy,
but you can achieve that by
padding x with an
always-one dimension.


https://cs.ubc.ca/~dsuth/532D/25w1/

4.1 SMOOTHNESS: LIPSCHITZ FUNCTIONS

To formalize the idea that similar weight vectors give similar loss, we’ll want a
bound like

ILp(h) = Lp(g)l < M py(h, g),
for some notion of a distance metric on H.

DEerINITION 4.1. A metric on a set X is a function p : X x X — R such that for all
x, v,z € Xt (i) p(x, x) = 0; (ii) if x = p, then p(x,y) > 0; (iii) p(x, v) = p(v, x); (iv)
p(x, 2) < p(x, ) + p(9, 2)-

DerinITION 4.2. A function f : X — )V is M-Lipschitz with respect to metrics p,
and py, if for all x, x” € X, py,(f(x), f(x’)) < M py(x, x’). The smallest M for which
this inequality holds is the Lipschitz constant, denoted || f|[r;p-

If X and/or ) are subsets of RY, we assume that the corresponding p is Euclidean
distance unless we say otherwise.
So, for example, x > |x| is a 1-Lipschitz function, since ||x| - |y|| <|x-1y|

The notation ||f||ip is justified by the following result, which uses notions of function
spaces described in Appendix B.

LemMma 4.3. Let F be a vector space of functions X — ), where ) is a normed space, such
that f + g € F is the function x — f(x)+ g(x) and af € F is the function x — af(x)
forany a € R. ||-||Lip with respect to the metric py,(y,y’) = |ly — ¥’lly is a seminorm on F:

it satisfies ||f + gllLip < lf llLip + IgllLip and llafll = lal |lf l|Lip-

Proof. Both properties can be shown fairly directly:
[1£ (%) + 8(x) = f(x') = g()l

||f + g”Lip = ?;1}3 pX(x, x)
llf (x) = FON - 1lg(x) = g()l
< il:)lci) 0% x) + 0 (5 %) < | fllLip + llgllip
B llaf(x) —af () _ lal 1If (x) = f(I _
lafllLip = sup ) sup oomx) lal {1 f llLip- O

It’s only a seminorm, not a proper norm, because there are nonzero functions with
zero Lipschitz constant: for instance, x + a for any a € R.

So, what is [[Lp||p;p? Well, to start, the properties above imply that

Lo(h) - Lp(@) = | E fh2) - E (g 2)| < E [e(h2)- g 2),

which means that |[Lpllrip < E,.pllh = €(h, z)|lip, where the Lipschitz constant of
the function h + €(h, z), which we can also more compactly write as €(-, z), is with
respect to some metric on H.

m

For the same reason, we have that ||Lg]|p < Ly llec, z)llLip; in fact, this is a special
i=1

case of the result for Lp, noting that Lg = Ly where D is the empirical distribution,

the discrete distribution that puts 1/m probability at each of the points in S.
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To make this a little more concrete, let’s think about z = (x,y) and €(h, (x,v)) =
l,(h(x)), along with H being linear predictors, h,, = (x > w - x). Then we have that

1€(hy, (x,9)) = €(hy, (x, )] = |1y (hy(x)) = Ly (hy (x))]
= ly(w - x) = Ly(v - x)|
<lliplw - x — v - x|
< liip [l lw = vl

and so if we use the metric on H of p(hy, h,) = ||lw — v||, then we’ve shown that
€€, (x, 9)ILip < Ny lILip lIx[l. This implies from the properties of Lemma 4.3 that

1 m
Lp—Lelhin < E  xlW:n + — AL Ay i 4.2
ILo = Llhip < E Il Iy m;n I, lip (4.2)

If we assume for simplicity that the distribution is bounded, Pr(, ,)-p(llx|| < C) = 1,
and that ||/ ||.;p < M for each y, then Lp — Lg is guaranteed to be (2CM)-Lipschitz.

4.1.1 Lipschitz constants of scalar losses

For logistic regression (and other problems), we can compute the Lipschitz constant
of l;og : R — R with a little calculus:

LemMma 4.4. Let X C R be a connected set. If a function f : X — R is differentiable
everywhere on the interior of X, || f|Lip = supyexlf (x)I-

Proof. We apply the fundamental theorem of calculus: assuming without loss of
generality that x” > x,

116 el = | [ £ar < [irwiar < f(su)gv’(s) ) dt - (su)glf )|x —x

showing [|f|lLip < sup,cy|f’(x)|. Equality follows by considering an x with |f’(x
arbitrarily close to the supremum and looking at |f(x + &) — f(x)|. D

We won’t need this now, but it’s worth noting that if X' C R is convex and f: X ->R
is everywhere differentiable, the exact same proof with a directional derivative from
x to x” gives that [|fllLip = sup,cx[IVf(x)

Lemma 4.5. Forany |y| <1, ||I ag”Llp <L

Proof. l;og is differentiable everywhere on R, and so using Lemma 4.4,

d log
dy

)] =

1 .
T+ exp(—39) exp(-y7) (—3?)’

:‘ exp(—y9)  exp(yy)
1 +exp(-p9) exp(y?)

T3 loa(1 +exp(-39)| =)

-yl =

1+exp y}) ‘|y|<1 -



4.2 SET COVERING

The goal of all of this was to say that Lp — Lg is smooth and so, if everything in H is
near something in H, then Lp — Lg can’t be too much bigger on H than it is on H,.
Now the question is: how big does H, have to be?

LemMa 4.6. Let X' be a normed vector space with finite dimension d, and p the metric
induced by its norm. Let U C X be such that there is some 0 € X with sup .y p(0, u) <R,
and let € (0, R). Then there existsa T C U with |T| < (3R/v])d such that for all u € U,
thereisa t € T with p(t, u) < n.

This is proved in Section 4.4 based on comparing volumes. The R¥ case is a relatively
straightforward result that you can definitely directly understand, it just doesn’t
really have anything to do with the rest of the course so we won’t go through it; the
general case uses the exact same structure, but might require taking a bit of measure
theory on faith.

4.3 PUTTING IT ALL TOGETHER

We now have all the tools we need for the following result about linear models with
bounded Lipschitz losses.

ProrosiTION 4.7. Let hy(x) = w- x and H C {h,, : ||w|| < B} for some B > 0. Consider a
loss £(h, (x,)) = 1,(h(x)) for functions L, : R — R which each have Lipschitz constant at
most M and are bounded in [a, b]. Assume that ||x|| < C almost surely under D. Then,
with probability at least 1 — 9,

1

sup Lp(h) — Lg(h) < [BCM + (b - a)\/log 5t %10g(72m)].

1
heH V2m

This implies that for an ERM hg,

. / |d
Lp(hs) — 22{{ Lp(h) < \/%_m [BCM +2(b-a) log% +(b-a) > log(72m)}.

Proof. We'll first choose an 1-cover Hy = {hy,..., hNn} C 'H, where 1 is a parameter
to be set later. Then, for any h € H, let nny (h) € arg ming,¢y, p(h, h’), where again
p(hy, hy) = |lw — v||. Define the function A(h) := Lp(h) — Lg(h) for brevity. Then

sup A(h) = sup A(h) — A(nnyy, (h)) + A(nny, (h))
heH heH

< sup [A(h) - A(nny, (h)] + sup A(nny, ()
heH heH

< NlIAllLip + max A(I).

By (4.2), ||Allip < 2CM. The other term is uniform convergence over a finite
hypothesis class Hy, as in Proposition 2.2. We have |Hy| = N(H, 1), and so we
can use Hoeffding for each element of H, with a failure probability of &/N(™H, 1)).
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Applying Proposition 4.11, this gives that with probability at least 1 — 9,

N(H, 1)
S

sup A(h) < 2CMn+ (b - a)\/L log
heM 2m

<2CMn+ (b - a)\/ﬁ [log% + dlog %]

Now, we could try to exactly optimize the value of #, but I think we won’t be
able to do that analytically. Instead, let’s notice that if nis o(1/y/m), the first term
being smaller doesn’t really help in rate since the other term is 1/4/m anyway — but
choosing a smaller 1y makes the log % worse. Also, the dependence on 1] there is only

in a log term, so it’s probably okay-ish to choose 1= a/+/m for some « > 0, giving us
B
sup[Lp(h) — Lg(h — [2CMa + —\/log +dlog > \/_
heH \/_

Picking a = B/(2V2), the first result follows by log(6V2m) = 1 log(36 - 2m).

To show the ERM bound, recall from (1.5) that for any fixed h* € H,

Lp(hs) - Lp(h) < (Lp(hs) - Ls(hs)) + (Ls(h*) = Lp(h")).

Bounding the first term by the previous result, with a failure probability of 6/2, and
the latter term by Hoeffding (Proposition 2.1) with the same failure probability:

d 1 2
\/_ BCM + —— \/_ \/log + —log(72m)l (b- a)wlﬁlog 5

To make it look a little nicer, we can slightly loosen the bound with Va + b < va+ Vb.
The fact that the left-hand side holds for each /*, and the right-hand side does not
depend on the choice of h*, gives the desired result. O

Lp(hs) -

4.3.1 Logistic regression in particular

For our motivating problem of logistic regression, M = 1, but there’s one catch: we
can use a = 0 but there isn’t an “inherent” upper bound for b. Given that we know
||| < C and ||w|| < B, though, we have that |h(x)| = |w - x| < BC. Thus

{(h, (x,v)) = log(1 + exp(—yh(x)) < log(1 + exp(BC)) =: b
{(h, (x,v)) = log(1 + exp(-vh(x)) > log(1 + exp(-BC)) =
b —a =1log(1 + exp(BC)) — log(1 + exp(—BC))

B 1 +exp(BC) exp(BC)
= log (1 + exp(—BC) x exp(BC))

1 BC
= log(w;jg—lé()-i-l) X exp(BC)) = logexp(BC) = BC. (4.3)



This machinery is called
“chaining”; we probably
won’t cover it in class, but
Wainwright [Wail9, Section
5.3.3] has a reasonable
overview.

This is sometimes called an

“internal cover,” as opposed
to an “external cover” which
allows centres outside of U.
Some sources use open balls,
in which case we’d allow > 1
for v-separated sets; this
doesn’t really matter, but
closed balls are a slightly
closer fit to what we’re using
them for. NS¢P is sometimes
called the “packing number,”
but that also gets used for a
different concept that’s
equivalent in normed spaces
but slightly different in
general metric spaces.

Plugging into Proposition 4.7 gives us that with probability at least 1 — o, logistic
regression with bounded-norm weights on bounded-norm data satisfies

(h) = Lg(h) < \77% {1 + \/log% + glog(72m)] -0, (BCw/dl(:ﬂg m] (4.4)

and similarly ERM satisfies

(h) < \1/37% [1 + 2\/log§ + \/g 10g(72m)] -0, (Bc\/dl(;f m] (4.5)

That /log m factor is actually unnecessary, but getting rid of it with covering number-
type arguments requires some more advanced machinery. Instead, soon we’ll see a
simpler way to show a OP(BC/\/E) rate, which drops the y/log m factor but far more
importantly also removes the dependence on d — that will also be very generally
applicable.

sup Lp
heH

LD(fls)—higf{ Lp

MoRE GENERAL VERSIONS We used the following properties about the problem:

* A bounded loss, to apply Hoeffding. This could be weakened in various ways,
e.g. another kind of subgaussianity, or other ways to show concentration for a
finite number of points.

* A Lipschitz loss. Some form of this is definitely necessary. You could poten-
tially use a locally Lipschitz loss (where the constant varies through space),
but then you have to be more careful in bounding (4.2) or similar.

* A covering number bound for H. We did this for linear models, but you could
anything, as long as it’s in the same metric as you used for Lipschitzness in the
previous part. This generality is often useful, e.g. for nonparametric H.

4.4 ASIDE: PROOF OF LEMMA 4.6

To show our bound on how big H, has to be, we’ll use the following concepts. Here
X is any set with metric p; denote its closed balls by B,(x) = {y € X' : p(x,y) < 1}.

DEerINITION 4.8. An 1-cover of aset U C X isaset T C U such that U C User B, (1)
The covering number N,C1°"(U) is the size of the smallest 1-cover of U.

An 1-separated set is one where p(u;, u;) > nfor all i # j — note that this inequality is
strict. Let N;ep(U) denote the size of the largest 1-separated subset of U.

ProrosiTION 4.9. Any maximially sized v-separated subset of U is also an n-cover of U;
hence NV (U) < NP (U).

Proof. Let T be a maximally-sized n-separated subset of U. Suppose there were some
u € U such that p(u, t) > nfor all t € T. Then T U {u} would be a larger 1-separated
subset of U, contradicting that T was of maximal size. Thus T is an n-cover of U. [J

sep

ProposiTioN 4.10. For any U C V, we have that N,

not necessarily hold for NV,

(U) < N;ep(V). The same does

Proof. Any 1-separated subset of U is also a subset of V, and so the largest 1-
separated subset of V can only be larger than that for U.
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However, an 1n-cover of V may not be be a subset of U. For example, in R, {0} is an
1-cover of the set [—1}, 1], but there is no size-one t}-cover of the set [-1,0) U (0, 1]. O

These concepts are well-defined for any metric space. For our main bound of interest,
we’ll further need things to be in a d-dimensional normed space: see Definition B.8 for
details, but for now, it’s enough to say that both R and {h,, = (x > w - x) : w € R?},
with the metric p(hy, h,) = ||lw — v||, satisfy this assumption.

ProrosiTION 4.11. Let X be a normed space with dimension d, and o € X. If N> R,
trivially Ni®¥(Bg(0)) = Nilep(BR(o)) = 1. Otherwise, for n € (0, R] and finite d, we have

d d d
(5) < N (B o)) < N3P (Bg(0)) < (ﬁﬂ) < (ﬁ) .
1 P e

We won’t actually use the lower bound here for anything other than vague reassur-
ance that at least this upper bound isn’t too loose, but it’s not much extra work.

Proof. We'll get both of the meaningful inequalities here by comparison of volumes.
Formally, let vol denote the Haar measure for A under addition; this exists for any
finite-dimensional normed space. For R, this is just Lebesgue measure, which
is (for “reasonable” sets) exactly the intuitive notion of volume. Any other finite-
dimensional normed space is isomorphic to R? and so its vol satisfies the same
properties as Lebesgue measure.

For the lower bound, let T be a minimal n-cover of Bg(0). Then we have that

vol (Bg (o <vol[UB ] Zvol(Bn(t)) = N£%(Bg(0)) vol (By(0)),

teT teT

where the final equality follows because volume is translation-invariant and any
two balls of the same size are translations of each other. But, using the notation
aU = {au : u € U} for “dilations,” we have that B, (0) = %Bq(o), and moreover it is

well-known that d-dimensional volumes satisfy vol(aU) = a? vol(U). Thus we’ve
shown

d
WW&W>E%&ﬂ{§.

vol(B,

For the upper bound, let T be a maximal 1-separated subset of Bg(0). This implies
that the B,5(t) for each ¢ € T are disjoint, since if Bq/ (f) and B, (t ’) contained a
common point x, we would have p(t,t') < p(t, x) + p(x, t') < /2 + /2 = 1. We also
have, since T C Bg(0), that B,5(t) € Bgryy2(0). Thus

Y vol (Bya(t) = vol ] Bya(t)

teT teT

< vol (Bgy2(0)).

Since the left-hand side here is equal to N;ep(BR(o)) vol (Bq/z(o)), we have

1(Bgrs d d
mﬂ&wsm(mezﬁ“ﬁ)4ﬁ+q.

vol (871/2(0)) Y]/Z "

The final inequality follows from 1 < R. O


https://en.wikipedia.org/wiki/Haar_measure

Unfortunately, for infinite-dimensional Banach spaces a Haar measure doesn’t exist,
and indeed the covering number is infinite [Isr15]. So, this kind of “hypothesis-
covering” approach cannot work there.

We now have the bound we wanted:

LemMa 4.6. Let X' be a normed vector space with finite dimension d, and p the metric
induced by its norm. Let U C X be such that there is some 0 € X with sup .y p(0, u) <R,
and let € (0, R). Then there existsa T C U with |T| < (3R/n)d such that for all u € U,
thereisat € T with p(t, u) <1

Proof. We can write our assumption about o as H C Bg(o). Applying Proposi-
tions 4.9 to 4.11, we find

N;™(H) < NyP(H) < N3P (Bg(o)) < (3R/n)”. O
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