
CPSC 532D — 3. CONCENTRATION INEQUALITIES

Danica J. Sutherland

University of British Columbia, Vancouver

Fall 2025

We’ll now prove Hoeffding’s inequality (Proposition 2.1), and learn a bunch of useful
stuff along the way.

3.1 markov

We’ll start with the following surprisingly simple bound, which turns out to be the
basis for just about everything:

Proposition 3.1 (Markov’s inequality). If X is a nonnegative-valued random variable,
then Pr(X ≥ t) ≤ 1

t E X for all t > 0.

Proof. We know X ≥ 0. We also know, if X ≥ t, then X ≥ t. Combining those two
statements, we can write X ≥ t 1(X ≥ t). Now take the expectation of both sides of
that inequality, giving E X ≥ t E1(X ≥ t) = t Pr(X ≥ t). Rearrange.

This was actually proved by Markov’s PhD advisor Chebyshev. Luckily, though,
Chebyshev has another inequality named after him:

Proposition 3.2 (Chebyshev’s inequality). For any X, Pr(|X − E X| ≥ ε) ≤ 1
ε2 Var X.

Proof. (X − E X)2 is a nonnegative random variable; applying Markov gives Pr((X −
E X)2 ≥ t) ≤ 1

t E(X − E X)2. Change variables to t = ε2.

Equivalently, with probability at least 1 − δ, |X − E X| <
√

Var[X] / δ.

Let’s consider iid X1, . . . , Xm, each with mean µ and variance σ2. Then the random

variable X = 1
m

m∑
i=1

Xi has mean µ and variance σ2/m, so Chebyshev gives that

|X − µ| ≤ σ/
√
mδ. This is Op(1/

√
m), as expected, so sometimes this is good enough.

But the dependence on δ is really quite bad. For instance, if the Xi are normal,
X̄ ∼ N (µ, σ2/m) and so the 1 − δ probability range on the deviation is actually
|X̄ − µ| ≤ σ√

m
· Φ−1(1 − δ

2 ), where Φ is the standard normal CDF. To compare the true
value to the bound for some choices of δ:

δ 0.1 0.01 0.001 0.0001 0.00001
Φ−1(1 − δ

2 ) 1.6 2.6 3.3 3.9 4.4
1/
√
δ 3.2 10.0 31.6 100.0 316.2√

2 log 2
δ

2.4 3.3 3.9 4.5 4.9

The last line,
√

2 log 2
δ
, is the (much tighter) bound we’ll obtain from (3.2) below.

Chebyshev’s inequality is sharp, meaning that it can be an equality in certain cases;
this happens for random variables of the form Pr(X = 0) = 1 − δ, Pr(X = 1/

√
δ) =

For more, visit https://cs.ubc.ca/˜dsuth/532D/25w1/.
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Pr(X = −1/
√
δ) = 1

2δ. This X has mean 0 and variance 1, but it still has a big
probability of being really far from zero. “Typical” random variables, like Gaussians,
don’t look like this. So, here’s another analysis that will make stronger assumptions
than just the mean and variance to take this “typicality” into account.

3.2 chernoff bounds

Perhaps the most useful category of results are called Chernoff bounds; they’re
based on

Pr(X ≥ E X + ε) = Pr
(
eλ(X−E X) ≥ eλε

)
≤ e−λεE eλ(X−E X), (3.1)

where we applied Markov to the nonnegative random variable exp(λ(X − E X)) for
any λ > 0.

The quantity MX(λ) = E eλ(X−E X) is known as the centred moment-generating func-
tion; recalling that et = 1 + t + t2

2! + t3

3! + · · · and writing µ = E X, we have

MX(λ) = E eλ(X−µ) = 1 + λE[X − µ] +
λ2

2!
E[(X − µ)2] +

λ3

3!
E[(X − µ)3] + · · · .

So, taking the kth derivative of the centred mgf and then evaluating at λ = 0 gives

M(k)
X (0) = E[(X − µ)k].

Proposition 3.3. If X ∼ N (µ, σ2), then E eλ(X−µ) = e
1
2λ

2σ2
.

Proof. Let’s start with X ∼ N (0, 1). We can write

E
X∼N (0,1)

eλX =
∫

1
√

2π
e−

1
2 x

2
eλx dx

=
∫

1
√

2π
e−

1
2 x

2+λx− 1
2λ

2+ 1
2λ

2
dx

= e
1
2λ

2
∫

1
√

2π
e−

1
2 (x−λ)2

dx

= e
1
2λ

2
,

since the last integral is just the total probability density of an N (λ,1) random
variable. To handle Y ∼ N (µ, σ2), note that this is equivalent to σX + µ, so

eλ(Y−E Y) = eλ(σX+µ−E(σX+µ)) = eλ(σX) = e(λσ)X = e
1
2 σ

2λ2
.

Plugging Proposition 3.3 into (3.1), for X ∼ N (µ, σ2), it holds for any λ > 0 that

Pr(X ≥ µ + ε) ≤ e−λεe
1
2 σ

2λ2
.

The value of λ only appears on the right-hand side, not the left. So we might as
well find the best value of λ to use: the one that gives the tightest bound. Let’s
optimize this in λ: noting that exp is monotonic, we can just check that 1

2σ
2λ2 − λε

has derivative σ2λ − ε, which is zero when λ = ε/σ2 > 0. (And this is indeed a max,
since the second derivative is σ2 > 0.) Plugging in that value of λ, we get the bound

Pr(X ≥ µ + ε) ≤ exp
(
− ε2

2σ2

)
. (3.2)

Equivalently, X < µ + σ
√

2 log 1
δ

with probability at least 1 − δ.
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3.3 subgaussian variables

In fact, the only place we used the Gaussian assumption in this argument was in
that E eλ(X−E X) ≤ e

1
2λ

2σ2
. So we can generalize the result to anything satisfying that

condition, which we call subgaussian:

Definition 3.4. Watch out with other
sources; notation for
subgaussians is not very
standardized, in particular
whether the parameter is σ
or σ2. (It’s not even
standardized whether it’s
written “subgaussian,”
“sub-Gaussian,” or many
other variants.)

A random variable X with mean µ = E[X] is called subgaussian
with parameter σ ≥ 0, abbreviated SG(σ), if its centred moment-generating function
E[eλ(X−µ)] exists and satisfies that for all λ ∈ R, E[eλ(X−µ)] ≤ e

1
2λ

2σ2
.

As we just saw, normal variables with variance σ2 are SG(σ).

Notice also that if σ1 < σ2, then anything that’s SG(σ1) is also SG(σ2).

The final key “base” result we’ll need is that any bounded variable is subgaussian:

Proposition 3.5 (Hoeffding’s lemma). If Pr(a ≤ X ≤ b) = 1, X is SG
(
b−a

2

)
.

Proof. See Section 3.3.1; we’ll probably skip this in class.

Here are some useful properties about building subgaussian variables:

Proposition 3.6. If X1 is SG(σ1) and X2 is SG(σ2), and the two are independent, then

X1 + X2 is SG
(√
σ2

1 + σ2
2

)
.

Proof. E[eλ(X1+X2−E[X1+X2])] = E[eλ(X1−E X1)]E[eλ(X2−E X2)] by independence. Bound-

ing each expectation, this is at most e
1
2λ

2σ2
1 e

1
2λ

2σ2
2 = e

1
2λ

2
(√

σ2
1+σ2

2

)2

.

Proposition 3.7. If X is SG(σ), then aX + b is SG(|a| σ) for any a, b ∈ R.

Proof. E[eλ(aX+b−E[aX+b])] = E[e(aλ)(X−E X)] ≤ e
1
2 (aλ)2σ2

= e
1
2λ

2(|a|σ)2
.

Proposition 3.8 (Chernoff bound for subgaussians). If X is SG(σ), then for any ε ≥ 0,

Pr(X ≥ E X + ε) ≤ exp
(
− ε2

2σ2

)
, or equivalently Pr

(
X < E X + σ

√
2 log 1

δ

)
> 1 − δ.

Proof. Exactly as the argument leading from (3.1) to (3.2).

Since −X is also SG(σ) by Proposition 3.7, the same bound holds for a lower deviation
Pr(X ≤ E X− ε). A union bound then immediately gives Pr(|X−µ| ≥ ε) ≤ 2 exp

(
− ε2

2σ2

)
.

Proposition 3.9 (Hoeffding). If X1, . . . , Xm are independent and each SG(σi) with
mean µi , for all ε ≥ 0

Pr

 1
m

m∑
i=1

Xi ≥
1
m

m∑
i=1

µi + ε

 ≤ exp

−
mε2

2 1
m

m∑
i=1

σ2
i

 .

Proof. By Propositions 3.6 and 3.7, 1
m

m∑
i=1

Xi is SG
(

1√
m

√
1
m

m∑
i=1

σ2
i

)
. The result then

follows by applying Proposition 3.8.
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If the Xi have the same mean µi = µ and parameter σi = σ, this becomes

Pr

 1
m

m∑
i=1

Xi ≥ µ + ε

 ≤ exp
(
−mε

2

2σ2

)
, (Hoeffding)

which can also be stated as that, with probability at least 1 − δ,

1
m

m∑
i=1

Xi < µ + σ

√
2
m

log
1
δ
. (Hoeffding’)

The form of Hoeffding we saw before, Proposition 2.1, follows immediately from
Proposition 3.5 and (Hoeffding’).

3.3.1 Proof of Hoeffding’s lemma

This proof roughly follows Zhang [Zhang23, Lemma 2.15], but rearranged to be (I
think) clearer. We start with a useful special case.Wikipedia’s proof is similar,

but I think a little less clean.
Other proofs are based more
explicitly on convexity, but

either don’t get the tight
constant [Har23, Section

21.3.1], use extremely
opaque changes of variable
[SSBD14, Lemma B.7], or
compute some pretty nasty

derivatives [MRT18, Lemma
D.1]. There’s also a proof

strategy based on
“exponential tilting” (see

[BLM13, Lemma 2.2],
[Rag14, Lemma 1], or
[Wai19, Exercise 2.4])

which is quite related but
just overall a little more

annoying. There are also
proofs based on

symmetrization (see [Wai19,
Examples 2.3-2.4] or

[Rom21]), which are nice
but (a) have a worse

constant and (b) require
symmetrization, which is an

important idea we’ll cover
soon but kind of hard to

understand.

Lemma 3.10. Let X ∼ Bernoulli(p). Then X is SG(1/2).

Proof. The logarithm of the (uncentred) moment-generating function of X is

ψ(λ) = logE eλX = log
(
(1 − p)e0 + peλ

)
.

This has derivatives

ψ′(λ) =
peλ

(1 − p)e0 + peλ

ψ′′(λ) =
peλ

(1 − p)e0 + peλ
−

(peλ)2(
(1 − p)e0 + peλ

)2 = ψ′(λ)(1 − ψ′(λ)).

Since the function x(1 − x) has maximum 1/4, ψ′′(λ) ≤ 1/4. By Taylor’s theorem (in
the Lagrange form), for any λ there exists some ξλ such that

ψ(λ) = ψ(0)︸︷︷︸
0

+λ ψ′(0)︸︷︷︸
p

+
1
2
λ2 ψ′′(ξλ)︸ ︷︷ ︸

≤1/4

≤ λp +
1
8
λ2.

Thus the centred mgf satisfies

E eλ(X−E X) = e−λp E eλX ≤ e−λp
(
eλp+ 1

8λ
2)

= e
1
8λ

2
= e

1
2λ

2( 1
2 )2

.

Proposition 3.5 (Hoeffding’s lemma). If Pr(a ≤ X ≤ b) = 1, X is SG
(
b−a

2

)
.

Proof. Using (X − a)/(b − a) and Proposition 3.7, we need only consider a = 0, b = 1.

Let f (λ) = E eλX be the (uncentred) mgf of X, and g(λ) = (1 − µ)e0 + µeλ that of a
Bernoulli(µ) variable, where µ = E X. First notice that

You can interchange this
derivative and expectation

just fine, since eλX is
continuously differentiable.

f ′(λ) =
d

dλ
E[eλX] = E

[
d

dλ
eλX

]
= E[XeλX].

For λ ≥ 0, recalling 0 ≤ X ≤ 1 gives us that f ′(λ) ≤ E[Xeλ] = µeλ = g ′(λ). Similarly,
for λ ≤ 0, we have f ′(λ) ≥ E[Xeλ] = g ′(λ). As f (0) = 1 = g(0), it follows that
f (λ) ≤ g(λ) everywhere. The conclusion follows by Lemma 3.10.
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