
CPSC 532D — 13. IMPLICIT REGULARIZATION AND MARGINS

Danica J. Sutherland

University of British Columbia, Vancouver

Fall 2025

For deep learning, as we’ve seen, the fact that something is an ERM may not be
enough to see that it generalizes: there are “good” ERMs that generalize, but also bad
ones that don’t, for the same architecture and even for reasonably similar parameter
norms/etc. So, we’ll need to specify something more than just that it’s an ERM.

One way to study this is to ask which solution gradient descent will converge to, then
try to prove properties of that. The idea that our optimization algorithm or other
such “implementation details” can actually choose for us which of the “equally valid
solutions” we end up with It’s also sometimes called the

implicit bias of the
algorithm, in the sense that
the algorithm has a certain
inductive bias towards
certain kinds of solutions.
That can sometimes cause
confusion with the concept
of the same name from social
science, though, and just
generally kind of imply that
it’s “bad” when actually
often the presence of this
implicit regularization is
“good.”

is called the implicit regularization of the algorithm: we
don’t explicitly write down a regularizer, but the choice of algorithm has a similar
effect.

13.1 gradient descent for linear regression

Let’s start with the function

f (w) = Lsq
S (x 7→ w · x) =

1
m
∥Xw − y∥2,

where X ∈ Rm×d is the matrix stacking up Sx and y ∈ Rm is the vector form of Sy .
We have

∇f (w) =
2
m

XT(Xw − y),

which notice is 2
m∥X

TX∥-smooth, so f is convex and β-smooth, thus small-learning-
rate gradient descent finds a global optimum (Theorem 11.5). In the traditional
m > d case when X is full-rank, there’s a unique solution to this problem, typically
with Xw , y but always having XT(Xw − y) = 0. In high-dimensional settings d > m,
though, it’s possible to achieve Xw = y (interpolation) in infinitely many ways.

There’s a more explicit (but
longer) analysis for least
squares, which gives some
more details without relying
on any general gradient
descent analyses, in the
2023 notes.

Which one does gradient descent find?

Proposition 13.1. Let X ∈ Rm×d be of rank m (implying d ≥ m), and y ∈ Rm. Suppose
that l(h, (x, y)) = ly(h(x)) for a differentiable function ly such that ly(ŷ) → 0 implies
ŷ → y.

Consider any iterative optimization method which begins at a point w0 and then has
updates of the form wt+1 − wt ∈ span{∇LS(x 7→ wk · x) : 0 ≤ k ≤ t}. If this method
converges to a global minimizer w∞ of LS(x 7→ w · x), then

w∞ = XT(XXT)−1y + (I − XT(XXT)−1X)w0 = arg min
w:Xw=y

∥w − w0∥.

Proof. This was Assignment 1, Question 3.

For more, visit https://cs.ubc.ca/˜dsuth/532D/25w1/.

1

https://www.cs.ubc.ca/~dsuth/532D/23w1/notes/17-implicit-reg.pdf
https://www.cs.ubc.ca/~dsuth/532D/23w1/notes/17-implicit-reg.pdf
https://cs.ubc.ca/~dsuth/532D/25w1/

13.2 separable logistic regression

There’s another major class of loss functions not satisfying the requirement of
Proposition 13.1: for instance, with logistic loss ly(ŷ) = log(1 + exp(−yŷ)), ly(ŷ)→ 0
implies ŷ → y∞, not y.

So, let’s consider logistic regression in particular: for yi ∈ {−1, 1},

f (w) =
1
m

m∑
i=1

log(1 + exp(−yi⟨xi , w⟩)).

We’re also going to assume that the data is linearly separable: there is some w∗ such
that yi⟨xi , w∗⟩ > 0 for all i. Then, it’s possible to drive f (w) arbitrarily close to zero,
but never to actually reach it: we only get log(1 + exp(−t)) → 0 for t → ∞, so we
need ∥w∥ → ∞. A solution of the form cw∗ for c→∞would work, but potentially so
would many other solutions, since there are probably many possible perfect linear
separators on this dataset. Which one does gradient descent find?

We’re going to approach this informally, for time and simplicity. Soudry et al.
[Sou+18] and Gunasekar et al. [GLSS18] handle it in full, and Ji and Telgarsky
[JT19] approach the non-separable case; Bach [Bach25, Section 11.1.2] gives an
overview including a few things we aren’t covering here.

Notice that

∇f (w) = − 1
m

m∑
i=1

exp(−yi⟨xi , w⟩)
1 + exp(−yi⟨xi , w⟩)

yixi .

We know that we’ll get ∥wt∥ → ∞ from the argument above; it’s reasonable to expect,
then, that we’ll have wt

∥wt∥
→ v for some ∥v∥ = 1, and yi⟨xi , v⟩ > 0 for all i since

otherwise we wouldn’t approach a minimizer. This gives us, roughly speaking,

∇f (∥wt∥v) ∼ − 1
m

m∑
i=1

exp(−yi∥wt∥⟨xi , v⟩)
1 + exp(−yi∥wt∥⟨xi , v⟩)

yixi ∼ −
1
m

m∑
i=1

exp(−yi∥wt∥⟨xi , v⟩)yixi ,

since t
1+t = t + O(t2) and we’ll eventually have exp(−yi∥wt∥⟨xi , v⟩)≪ 1.

So, eventually each gradient term gets small. Which ones are bigger than the others?
The asymptotic ratio between the size of the gradient contributions from xi and xj is

exp(−yi ∥wt∥ ⟨xi , v⟩) |yi | ∥xi∥
exp(−yj ∥wt∥ ⟨xj , v⟩) |yj | ∥xj∥

=
∥xi∥
∥xj∥

exp
(
−∥wt∥(yi⟨xi , v⟩ − yj⟨xj , v⟩)

)
.

As ∥wt∥ → ∞, this ratio goes to 0 if yi⟨xi , v⟩ > yj⟨xj , v⟩, or∞ if the order is reversed;
it is ∥xi∥/∥xj∥ ∈ (0,∞) if and only if yi⟨xi , v⟩ = yj⟨xj , v⟩. So, for whatever v we have,
let Iv be the set of indices such that yi⟨xi , v⟩ is minimized. Only these terms really
matter:

∇f (∥wt∥v) ∼ − 1
m

∑
i∈Iv

exp(−yi∥wt∥⟨xi , v⟩)yixi .

So, if gradient descent diverges in a direction v, the dominant direction in which
wt moves is a (positive) linear combination of the points {xi : i ∈ Iv}. Let’s define
ρ = mini yi⟨xi , v⟩; then, summarizing,

v =
m∑
i=1

αiyixi with ∀i, (αi ≥ 0 and yi⟨xi , v⟩ = ρ) or (αi = 0 and yi⟨xi , v⟩ > ρ). (13.1)

2

In fact, ρ is a quantity known as the geometric margin of the linear separator v; it is
exactly the smallest distance from any of the xi to the hyperplane {x : vTx = 0}, the
decision boundary of the linear classifier with unit-norm weights v. (Claim 15.1 of
[SSBD14] proves this, if you’re skeptical.)

0

v

{x : ⟨v, x⟩ = 0}

x1

x2

ρ = ⟨xi , v⟩

x3

13.2.1 Margin maximization

The equations (13.1) turn out to be equivalent to the KKT conditions of the problem
of finding the max-margin separator, also known as a hard support vector machine
(SVM). This problem is given by

arg max
v:∥v∥=1

min
i∈[m]

yi⟨xi , v⟩ s.t. ∀i ∈ [m], yi⟨xi , v⟩ > 0

Change so that v = w/∥w∥ for any w:

= arg max
w∈Rd

min
i∈[m]

yi⟨xi , w⟩
∥w∥

s.t. ∀i ∈ [m], yi
⟨xi , w⟩
∥w∥

> 0

= arg max
w∈Rd

1
∥w∥

min
i∈[m]

yi⟨xi , w⟩ s.t. ∀i ∈ [m], yi⟨xi , w⟩ > 0

The objective is the same for any w′ = cw for c > 0, so we might as well limit
ourselves to solutions where mini yi⟨xi , w⟩ = 1:

⊇ arg max
w∈Rd

1
∥w∥

s.t. ∀i ∈ [m], yi⟨xi , w⟩ ≥ 1

= arg min
w∈Rd

1
2
∥w∥2 s.t. ∀i ∈ [m], yi⟨xi , w⟩ ≥ 1. (13.2)

Proposition 13.2. Let x1, . . . , xm ∈ X for a real Hilbert space X . Then

arg min
w∈Rd

1
2
∥w∥2 s.t. ∀i ∈ [m], yi⟨xi , w⟩ ≥ 1

=

w =
∑
i

αiyixi : ∀i ∈ [m], (αi ≥ 0 and yi⟨xi , w⟩ = 1) or (αi = 0 and yi⟨xi , w⟩ > 1)

 .

Proof. This is a direct application of the KKT conditions; the problem is convex and
strictly feasible, hence the conditions are both necessary and sufficient.

Alternatively, we also give a direct argument without appealing to the KKT condi-
tions. We first show that the given conditions ensure margin maximization.

Let w =
∑
i
αiyixi such that for each i ∈ [m], yi⟨xi , w⟩ ≥ 1 and either αi = 0 and/or

3

https://en.wikipedia.org/wiki/Karush%E2%80%93Kuhn%E2%80%93Tucker_conditions
https://en.wikipedia.org/wiki/Karush%E2%80%93Kuhn%E2%80%93Tucker_conditions

yi⟨xi , w⟩ = 1. Let v be any vector such that for all i, yi⟨xi , v⟩ ≥ 1. Then

⟨w, v⟩ =
〈∑

i

αiyixi , v

〉
=
∑
i

αiyi⟨xi , v⟩ ≥
∑
i

αi ,

while

⟨w, w⟩ =
∑
i

αiyi⟨xi , w⟩ =
∑
i

0 if αi = 0

αi if yi⟨xi , w⟩ = 1
=
∑
i

αi .

Thus we have that for any feasible v,

∥w∥∥v∥ ≥ ⟨w, v⟩ ≥ ⟨w, w⟩ = ∥w∥2,

and hence since the problem is trivial when w = 0, ∥v∥ ≥ ∥w∥. Therefore w has
minimal norm among the feasible solutions, and hence solves (13.2).

The other direction is shown in the following section.

Aside: Margin maximization ensures given conditions

This direction is less directly relevant for us, but is here for completeness.

First, the solution w to (13.2) is unique: the objective is strictly convex, the inter-
section of a bunch of affine constraints is always convex, and we assumed that the
constraints are feasible so it’s not an empty set.

Suppose that w + tδ is feasible for small t > 0 and ∥δ∥ = 1; since w is a strict
minimizer, we know

d
dt

(1
2
∥w + tδ∥2

)∣∣∣∣
t=0

= (⟨w, δ⟩ + t)
∣∣∣∣
t=0

= ⟨w, δ⟩

must be positive.

When is w + tδ feasible? This happens exactly when

yi⟨xi , w + tδ⟩ = yi⟨xi , w⟩ + tyi⟨xi , δ⟩ ≥ 1.

Let I = Iw/∥w∥ = {i ∈ [m] : yi⟨xi , w⟩ = 1}. If i ∈ I , feasibility with any t > 0 requires
yi⟨xi , δ⟩ ≥ 0. For i < I , since w is feasible we have yi⟨xi , w⟩ > 1; we can thus always
move some small amount t in the direction δ.

So, we know that the solution w must satisfy that ⟨w, δ⟩ > 0 for all δ with yi⟨xi , δ⟩ ≥ 0,
i ∈ I . It’s a geometric fact that the only w for which this is possible are the

∑
i∈I

αiyixi ,

shown in the following lemma; the proof is then complete.

Lemma 13.3. Let x1, . . . , xm ∈ X for a finite m and real Hilbert space X . Define C =
{w : ∀i ∈ [m], ⟨xi , w⟩ ≥ 0}. The set K = {w : ⟨w, x⟩ ≥ 0 : w ∈ C}K is the “polar cone” of C. can be written
K = {

∑
i
αixi : αi ≥ 0}.

Proof. Let L = {
∑
i
αixi : αi ≥ 0}; we will show L = K.

First, L ⊆ K: for any w ∈ C and αi ≥ 0, we have that〈∑
i

αixi , w

〉
=
∑
i

αi︸︷︷︸
≥0

⟨xi , w⟩︸ ︷︷ ︸
≥0

≥ 0.

4

It remains to show K ⊆ L. Suppose that x < L; then we will produce a w ∈ C for
which ⟨w, z⟩ < 0, implying that x < K. Thus any element of K must also be in L.

It is easy to see that L is a closed, convex set. Thus x has a unique projection in L,
call it y; since x < L, ∥x − y∥ > 0.

Since y is the closest point to x and L is convex, ⟨y − x, y − z⟩ ≤ 0 for any z ∈ L: if the
inner product were positive, then y + ε(z − y) ∈ L would be closer to x, contradicting
that y is the closest point.

Take any z ∈ L; then tz ∈ L for any t > 0 as well, and so ⟨y − x, y − tz⟩ ≤ 0. Dividing
by t,

〈
y − x, 1

t y − z
〉
≤ 0; letting t →∞, this means that ⟨y − x, z⟩ ≥ 0.

Noting that xi ∈ L for each i, this means that ⟨y − x, xi⟩ ≥ 0, so that y − x ∈ C. But
we also have that

⟨y − x, x⟩ = ⟨y − x, y⟩ + ⟨y − x, x − y⟩ ≤ 0 − ∥x − y∥2 < 0,

since y ∈ L and x , y. Thus we have found y − x ∈ C for which ⟨y − x, x⟩ < 0, and
hence x < K.

13.2.2 Hinge loss interpolation

The hinge loss is given by

l
hinge
y (ŷ) =

1 − yŷ if yŷ ≤ 1

0 if yŷ ≥ 1.

−3 −2 −1 0 1 2 3

0

1

2

3

l
hinge
y (ŷ)

[l0−1
y ◦ sign](ŷ)

yŷ

Notice that if Lhinge
S (x 7→ w · x) = 0, then for all i ∈ [m], yixi · w ≥ 1. Thus (13.2) is

equivalent to
arg min

w:Lhinge
S (x 7→w·x)=0

∥w∥, (13.3)

the minimum-norm hinge loss interpolator. This is kind of a nice analogy to how
gradient descent for least squares or similar losses (starting at w0 = 0) finds the
minimum-norm interpolator for that loss! But, interestingly, explicitly minimizing
logistic loss (with gradient descent) implicitly minimizes hinge loss.

Transforming the hard constraint into a soft one gives us a soft support vector

5

machine,
arg min

h
Lhinge

S (h) + λ∥h∥2.

13.2.3 Margin analysis

How can we think about the 0-1 generalization error of the max-margin predictor?

We know that in dimension d, the VC dimension is either d or d + 1, depending on
if we put an intercept in. But when d is high, e.g. d > m, this doesn’t really tell us
anything, and in particular this doesn’t use the norm at all.

We’re finding the minimum-norm interpolator, though, so maybe we can use a
Rademacher bound that exploits that the norm isn’t too big. So, let’s think about
HB = {h : ∥h∥ ≤ B}with the norm ∥x 7→ ⟨w, x⟩∥ = ∥w∥. We know that ES Rad(HB|Sx

) ≤
B√
m

√
E∥x∥2. To use this for a generalization bound on the 0-1 loss, though, we need

to convert these soft predictions into hard ones with the sign function, so that the
estimation error is bounded in terms of Rad ((ℓ0−1 ◦ sign ◦HB)|S). But ℓ0−1 ◦ sign
isn’t Lipschitz; it jumps suddenly from 0 to 1 as the sign of the predictor changes. So
we can’t use Talagrand’s lemma to peel it off at all.

(When deriving VC dimension, we pretended the 0-1 loss was Lipschitz, but that
only worked because we were working with a hypothesis class mapping to ±1.
There’s no similar trick we can play with continuous-output H.)

We can work around this problem with surrogate losses. The hinge loss, above, is one
example: ℓ0−1(h, z) ≤ ℓhinge(h, z) for any inputs, so necessarily L0−1

D (h) ≤ Lhinge
D (h),

and so a bound on Lhinge
D (h) (based on the empirical hinge loss plus some complexity

term) will also apply to L0−1
D (h).

We can also use a tighter surrogate, though. One choice is margin loss:

l
ρ
y (ŷ) =


1 if yŷ ≤ 0

1 − 1
ρ
yŷ if 0 ≤ yŷ ≤ ρ

0 if yŷ ≥ ρ.

−3 −2 −1 0 1 2 3

0

1

2

3

l
hinge
y (ŷ)

ρ

l
(ρ=0.5)
y (ŷ)

[l0−1
y ◦ sign](ŷ)

yŷ

This is 1/ρ-Lipschitz, bounded in [0, 1], and always an upper bound to the 0-1 loss.

6

If mini yih(xi) ≥ ρ, then L
ρ

S(h) = 0. We get an immediate result:

L0−1
D (sign ◦h) ≤ L

ρ

D(h) ≤ L
ρ

S(h) +
2
ρ
E
S

Rad(H|Sx
) +

√
1

2m
log

1
δ

(13.4)

if h ∈ H and we picked ρ independently of S and h.

Separable case

One interesting case: suppose that not only the training data S but actually the
distribution D is separable with a geometric margin ρ.

Equivalently, this means there’s an h∗ with ∥h∗∥ = 1/ρ such that L1
D(h∗) = 0; here the

1-margin loss is also sometimes called ramp loss. This means that almost surely in S
we have that L

ρ

S(h∗) = 0 as well.

Consider ERM with H = {h : ∥h∥ ≤ ∥h∗∥ = 1/ρ}; its sample error will thus also be
zero, and (13.4) becomes that

L0−1
D (sign ◦ERMH(S)) ≤ 2

∥h∗∥
√
m

√
E∥x∥2 +

√
1

2m
log

1
δ
.

But notice that if the hinge loss is zero, then the ramp loss is as well. So, in this
realizable-with-a-margin setting, the h∗ that achieves zero ramp loss will also achieve
zero hinge loss, and so H contains at least one zero-error predictor. Thus (13.2) or
equivalently (13.3) will be guaranteed to find a zero-training-loss solution in H,

This shows nonuniform
learning over bounded
domains, but not over Rd

because of the E∥x∥2.

meaning that they find an ERM in this H, and so the bound above applies.

The only problem is that we probably don’t actually know the value of ∥h∗∥! The
following approach will handle this, as well as more general settings.

General case

But. . . it’s weird to pick ρ independently of S and h! If we obtain a margin of ρ, then

L
ρ′

S (h) will be zero for any ρ′ ≤ ρ and start growing for ρ′ > ρ; the optimal choice
of ρ will need to trade this off with the 1/ρ′ term. Why would we know how big a
margin we’re going to reasonably get before we look at the data?

We can do a nonuniform analysis to avoid committing in advance to a particular
margin ρ, exactly like what we did for SRM:

Proposition 13.4. Let H contain functions mapping to R, and fix some r > 0. Then for
any δ ∈ (0,1), we have with probability at least 1 − δ over the choice of S ∼ Dm that it
holds for all h ∈ H and ρ ∈ (0, r] that

L0−1
D (sign ◦h) ≤ L

ρ

S(h) +
4
ρ

E
S′∼Dm

Rad(H|S′x) +

√
1
m

log log2
2r
ρ

+

√
1

2m
log

2
δ
.

Proof. Let ρk = r2−k for all k ≥ 0, and δk = 6δ
π2k2 for k ≥ 1; note that

∞∑
k=1

δk = δ. By

(13.4), it holds with probability at least 1 − δk for each ρk that

∀h ∈ H, L0−1
D (sign ◦h) ≤ L

ρk
S (h) +

2
ρk

E
S′∼Dm

Rad(H|S′x) +

√
1

2m
log

1
δk

.

For any ρ ∈ (0, r], the smallest k such that ρk ≤ ρ is given by k =
⌈
log2

r
ρ

⌉
.

7

We have ℓρ′ ≤ ℓρ for any ρ′ ≤ ρ, so L
ρk
S (h) ≤ L

ρ

S(h).

We also know that ρ ≤ ρk−1 = 2ρk , so 1
ρk
≤ 2

ρ
.

Finally, from log 1
δk

= log π2

6δ + 2 log log2

⌈
log2

r
ρ

⌉
we use that π2/6 < 2 and ⌈log2 a⌉ <

log2(a) + 1 = log2(2a), then
√
a + b ≤

√
a +
√
b.

Then, we can run whatever learning algorithm and look at what ρ gives us the
best tradeoff in the upper bound above. For instance, if the data is separable and
h maximized the margin, then maybe we pick ρ to be the margin we got; then
L
ρ

S(h) = 0, and hopefully the 1/ρ term isn’t too big since we were trying to maximize
the margin. We might get a better tradeoff by using a bigger ρ, though, if it still
keeps our margin loss reasonably small.

We do have to commit to some predefined upper bound r on the biggest margin we
can handle, but the resulting bound only depends on it through

√
log log2(r/ρ), so

we can pick something big.

13.3 other models/algorithms

Lyu and Li [LL20] and Ji and Telgarsky [JT20] study small-learning-rate gradient
descent on L-homogeneous networks, those satisfying h(x; αw) = αLh(x;w) for α > 0;
this is true e.g. for (leaky)-ReLU networks. (We’ll describe the [LL20] results.) Their
analysis is in terms of the normalized margin

γ̄(w) =
mini∈[m] yih(xi ;w)

∥w∥L2
.

This normalization is exactly the one that makes γ̄(αw) = γ̄(w). They show, using an
approach like that of Section 13.2, that gradient flow or small-learning-rate gradi-
ent descent (under some additional regularity conditions) monotonically increase
the log-sum-exp version of normalized margin, which means they approximately
monotonically increase the normalized margin, which roughly means that it finds a
local maximum (ish) of the normalized margin. Unfortunately, in this case the KKT
conditions aren’t actually enough to get a global minimizer, and in fact gradient de-
scent doesn’t even always converge to even a local maximizer of the margin [VSS22],
but we can generally expect that it “usually” does.

This is a kind of margin maximization, and Proposition 13.4 applies. Knowing these
results, you can ask questions like what this margin maximization actually does on
particular models [e.g. Fre+23].

There’s been a bunch of recent work trying to figure out the implicit regularization
of Adam, rather than SGD, on homogeneous networks; some recent papers are
[WMCL21; Wan+22; CKS23; XL24].

There’s also a ton more work in this area; Vardi [Var22] gives a (now kind of outdated)
survey.

references

[Bach25] Francis Bach. Learning Theory from First Principles. May 2025.
[CKS23] Matias D. Cattaneo, Jason M. Klusowski, and Boris Shigida. On the

Implicit Bias of Adam. 2023. arXiv: 2309.00079.

8

https://www.di.ens.fr/~fbach/ltfp_book.pdf
https://arxiv.org/abs/2309.00079
https://arxiv.org/abs/2309.00079
https://arxiv.org/abs/2309.00079

REFERENCES

[Fre+23] Spencer Frei, Gal Vardi, Peter L. Bartlett, Nathan Srebro, and Wei Hu.
“Implicit Bias in Leaky ReLU Networks Trained on High-Dimensional
Data”. ICLR. 2023. arXiv: 2210.07082.

[GLSS18] Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. “Char-
acterizing Implicit Bias in Terms of Optimization Geometry”. ICML.
2018. arXiv: 1802.08246.

[JT19] Ziwei Ji and Matus Telgarsky. “The implicit bias of gradient descent
on nonseparable data”. COLT. 2019. arXiv: 1803.07300.

[JT20] Ziwei Ji and Matus Telgarsky. “Directional convergence and alignment
in deep learning”. NeurIPS. 2020. arXiv: 2006.06657.

[LL20] Kaifeng Lyu and Jian Li. “Gradient Descent Maximizes the Margin of
Homogeneous Neural Networks”. ICLR. 2020. arXiv: 1906.05890.

[Sou+18] Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar,
and Nathan Srebro. The Implicit Bias of Gradient Descent on Separable
Data. JMLR (2018). arXiv: 1710.10345.

[SSBD14] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine
Learning: From Theory to Algorithms. Cambridge University Press,
2014.

[Var22] Gal Vardi. On the Implicit Bias in Deep-Learning Algorithms. 2022. arXiv:
2208.12591.

[VSS22] Gal Vardi, Ohad Shamir, and Nathan Srebro. “On Margin Maximiza-
tion in Linear and ReLU Networks”. NeurIPS. 2022. arXiv: 2110 .
02732.

[Wan+22] Bohan Wang, Qi Meng, Huishuai Zhang, Ruoyu Sun, Wei Chen, Zhi-
Ming Ma, and Tie-Yan Liu. “Does Momentum Change the Implicit
Regularization on Separable Data?” NeurIPS. 2022. arXiv: 2110.03891
[cs.LG].

[WMCL21] Bohan Wang, Qi Meng, Wei Chen, and Tie-Yan Liu. “The Implicit
Bias for Adaptive Optimization Algorithms on Homogeneous Neural
Networks”. ICML. 2021. arXiv: 2012.06244.

[XL24] Shuo Xie and Zhiyuan Li. “Implicit Bias of AdamW: ℓ∞ Norm Con-
strained Optimization”. ICML. 2024. arXiv: 2404.04454.

9

https://arxiv.org/abs/2210.07082
https://arxiv.org/abs/2210.07082
https://arxiv.org/abs/2210.07082
https://arxiv.org/abs/1802.08246
https://arxiv.org/abs/1802.08246
https://arxiv.org/abs/1802.08246
https://arxiv.org/abs/1803.07300
https://arxiv.org/abs/1803.07300
https://arxiv.org/abs/1803.07300
https://arxiv.org/abs/2006.06657
https://arxiv.org/abs/2006.06657
https://arxiv.org/abs/2006.06657
https://arxiv.org/abs/1906.05890
https://arxiv.org/abs/1906.05890
https://arxiv.org/abs/1906.05890
https://arxiv.org/abs/1710.10345
https://arxiv.org/abs/1710.10345
https://arxiv.org/abs/1710.10345
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/copy.html
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/copy.html
https://arxiv.org/abs/2208.12591
https://arxiv.org/abs/2208.12591
https://arxiv.org/abs/2110.02732
https://arxiv.org/abs/2110.02732
https://arxiv.org/abs/2110.02732
https://arxiv.org/abs/2110.02732
https://arxiv.org/abs/2110.03891
https://arxiv.org/abs/2110.03891
https://arxiv.org/abs/2110.03891
https://arxiv.org/abs/2110.03891
https://arxiv.org/abs/2012.06244
https://arxiv.org/abs/2012.06244
https://arxiv.org/abs/2012.06244
https://arxiv.org/abs/2012.06244
https://arxiv.org/abs/2404.04454
https://arxiv.org/abs/2404.04454
https://arxiv.org/abs/2404.04454

	Gradient descent for linear regression
	Separable logistic regression
	Margin maximization
	Hinge loss interpolation
	Margin analysis

	Other models/algorithms

