
CPSC 532D — 11. OPTIMIZATION

Danica J. Sutherland

University of British Columbia, Vancouver

Fall 2025

We haven’t yet really talked in this course about any optimization algorithms to
actually implement our learning algorithms ERM or SRM.

Recall our usual decomposition (1.5)

LD(A(S)) − L∗︸ ︷︷ ︸
excess error

≤ LD(A(S)) − inf
h∗∈H

LD(h∗)︸ ︷︷ ︸
estimation error

+ inf
h∗∈H

LD(h∗) − L∗︸ ︷︷ ︸
approximation error

,

and that we’ve often done as in (1.6) that

LD(ERMH(S)) − LD(h∗)

= LD(ERMH(S)) − LS(ERMH(S))︸ ︷︷ ︸
≤suph LD(h)−LS(h)

+ LS(ERMH(S)) − LS(h∗)︸ ︷︷ ︸
≤0

+ LS(h∗) − LD(h∗)︸ ︷︷ ︸
small by Hoeffding

.

What about if we try to get the ERM, but don’t exactly achieve it? We can then do

LD(A(S)) − LD(h∗) = LD(A(S)) − LS(A(S))︸ ︷︷ ︸
≤suph LD(h)−LS(h)

+ LS(A(S)) − LS(ERMH(S))︸ ︷︷ ︸
optimization error

+ LS(ERMH(S)) − LS(h∗)︸ ︷︷ ︸
≤0

+ LS(h∗) − LD(h∗)︸ ︷︷ ︸
small by Hoeffding

.

Today we’ll study this optimization error a bit.

By far the most common optimization algorithm used in machine learning is
(stochastic) gradient descent and its variants. We’ll cover the foundational ideas, but
there is a lot more in this area, and generally, learning theory and optimization are
becoming much more integrated. For much much more about optimization, some
good resources are graduate courses by Michael Friedlander (CPSC 536M) and Mark
Schmidt (CPSC “5XX”, to eventually be offered as an actual class), the books of Boyd
and Vandenbreghe [BV04], Nocedal and Wright [NW06], and Bubeck [Bub15], and
the recent survey of Garrigos and Gower [GG23]. Chapter 14 of Shalev-Shwartz
and Ben-David [SSBD14] also gives an approachable account of projected stochastic
subgradient descent, which generalizes what we’re talking about here.

11.1 gradient descent

Gradient descent tries to find minw f (w) for some function f , such as LS(fw). Here w
should be some parameter vector, for example the flattened vector of all parameters
in a network; most of what we’ll talk about works for w in a Hilbert space.

For more, visit https://cs.ubc.ca/˜dsuth/532D/25w1/.

1

https://friedlander.io/teaching/23t1-cpsc542f/
https://www.cs.ubc.ca/~schmidtm/Courses/5XX-S22/
https://cs.ubc.ca/~dsuth/532D/25w1/

We start at some initial point w0, often either 0 or a sample from, say, N (0, σ2I). We
then update according to the rule

wt+1 = wt − ηt∇f (wt);

the scalar ηt > 0 is known as either the “learning rate” or the “step size,” although
note that it’s not actually the size of the step since ∥wt+1 − wt∥ = ηt∥∇f (wt)∥.

One way to motivate this is to say that we should only “trust” the gradient direction
locally, and then should re-check it regularly. Another way is to notice that this
update actually minimizes the local quadratic approximation given byIf instead of 1

2η∥w − wt∥2
we use

1
2 (w −wt)∇2f (wt) (w −wt),
i.e. the second-order Taylor

expansion, this is called
Newton’s method. Each step

of Newton’s method often
improves your loss much

more than gradient descent,
but each step is also much

more computationally
expensive.

g(w) = f (wt) + ⟨∇f (wt), w − wt⟩ +
1

2η
∥w − wt∥2.

This approximation is useful in that if f is 1
η
-strongly convex, then g will be a

global lower bound for f (Proposition C.3). Even if not, though, it’ll be an okay
approximation to a lower bound locally, since it’s the first-order Taylor expansion
plus a term that says “don’t go too far.’

We repeat this until we decide to stop, after T steps, and then return a result:

this might be wT (the “last iterate”), w̄ = 1
T

T∑
t=1

wt (the “average iterate”), wt̂ for

t̂ ∈ arg mint∈[T] f (wt) (the “best iterate”), the best iterate according to a validation
set, or some other scheme.

We’ll usually assume for now that ηt is some constant η, independent of the data,
and that we optimize for a fixed number of steps T, also chosen independently of
the data. In practice, other schemes are probably better; for instance, it’s often better
to use a backtracking scheme to adaptively choose ηt, or to otherwise have some kind
of learning rate schedule that decreases over time. In practice, we also probably do
set some upper bound T on the optimization time, but will frequently stop sooner if
it seems like we’re done.

11.2 β-smooth functions

A common assumption in optimization is that the target function is β-smooth:

Definition 11.1.Note that this is not what
analysts mean when they

say a “smooth function” (i.e.
infinitely differentiable).

We say a function f is β-smooth if it is differentiable everywhere,
and its gradient ∇f is β-Lipschitz.

Proposition 11.2. If f is twice-differentiable, it is β-smooth iff for all w in the interior
of its domain, all eigenvalues of the Hessian of f at x have absolute value at most β:
−βI ⪯ ∇2f (w) ⪯ βI.The notation A ⪰ 0 means

“is positive-semi-definite”;
A ⪰ B means that A − B is

positive-semi-definite.
Proof. When f is twice-differentiable and β-smooth, we have by Taylor’s theorem
that for any vector δ,

∇f (w + δ) = ∇f (w) + ∇2f (w)δ + ∥δ∥2ξ,

where ξ is an error vector depending on δ but with ∥ξ∥ ≤ C for some constant C.
Now, eigendecompose ∇2f (w) into eigenvalues λi and corresponding orthonormal
eigenvectors vi , so we can write ∇2f (w)δ =

∑
i
λi⟨vi , δ⟩vi . Also let δ = tv for some

2

∥v∥ = 1. Then we have that

∇f (w + tv) − ∇f (w) = t
∑
i

λi⟨vi , v⟩vi + t2ξ.

Now suppose that ∇f is β-Lipschitz, meaning that the norm of this expression is at
most βt, or equivalently ∥∥∥∥∥∥∥∑i λi⟨vi , v⟩vi + tξ

∥∥∥∥∥∥∥ ≤ β.

Choosing v = vi , this becomes ∥λivi + tξ∥ =
√
λ2
i + t⟨ξ, vi⟩ + t2∥ξ∥2 ≤ β; taking t → 0

and noting that while ξ can depend on t, its norm is bounded for all t, this implies
that we must have |λi | ≤ β.

For the other direction, suppose that each |λi | ≤ β. Then, via Cauchy-Schwarz,∥∥∥∥∥∥∥∑i λi⟨vi , v⟩vi

∥∥∥∥∥∥∥
2

≤
∑
i

λ2
i ⟨vi , v⟩

2 ≤
∑
i

λ2
i ≤ β2;

thus ∥∇f (w + tv) − ∇f (w) − t2ξ∥ ≤ tβ. Rewriting this we get∥∥∥∥∥∇f (w + tv) − ∇f (w)
t

− tξ
∥∥∥∥∥ ≤ β;

taking the limit as t → 0, this becomes that the directional derivative of ∇f at w
in the direction v has norm at most β. Integrating along the line from w to any
w′, as in the proof of Lemma 4.4, thus shows that ∥∇f (w′) − ∇f (w)∥ ≤ β∥w′ − w∥ as
desired.

Proposition 11.3. Suppose f is β-smooth. Then for any w and w′ such that the line
segment from w to w′ is in its domain,

|f (w′) − f (w) − ⟨∇f (w), w′ − w⟩| ≤ 1
2
β∥w − w′∥2 :

its deviation from its tangent planes is upper-bounded by a quadratic.

Proof. By the Lagrange form of Taylor’s theorem, we have that

f (w′) = f (w) + ⟨∇f (w), w′ − w⟩ +
1
2
⟨w′ − w,∇2f (q) (w′ − w)⟩

for some q on a line segment between w and w′.

Eigendecompose ∇2f (q) =
∑
i
λiviv

T
i , where the vi are orothonormal; then we have

⟨w′ − w,∇2f (q) (w′ − w)⟩ =
〈
w′ − w,

∑
i

λi⟨w′ − w, vi⟩vi
〉

=
∑
i

λi⟨w′ − w, vi⟩2,

and so∣∣∣⟨w′ − w,∇2f (q) (w′ − w)⟩
∣∣∣ ≤∑

i

|λi |⟨w′ − w, vi⟩2 ≤
(
max

i
|λi |

)∑
i

⟨w′ − w, vi⟩2.

But since the vi form an orthonormal basis, that last sum is just ∥w′ − w∥2: we’re
taking the coordinates in the basis corresponding to the eigenvectors, and summing

3

them up. Another way to say that is that for any x,∑
i

⟨x, vi⟩2 =
∑
i

⟨x, vi⟩⟨vi , x⟩ =
∑
i

⟨x, vivTi x⟩ =
〈
x,
(∑

i

viv
T
i

)
x
〉

= ⟨x, x⟩ = ∥x∥2,

where
∑
i
viv

T
i = I holds for any orthonormal basis:

∑
i
viv

T
i y = y is basically defini-

tional. The desired result follows by Proposition 11.2.

Lemma 11.4 (Descent lemma). Let w+ = w − η∇f (w) for a β-smooth function f , where
0 < η < 2/β. Then

f (w) − f (w+) ≥ η

(
1 − 1

2
ηβ

)
∥∇f (w)∥2,

and hence either ∇f (w) = 0 or f (w+) < f (w).

Proof. By Proposition 11.3, we have

f (w+) ≤ f (w) + ⟨∇f (w), w+ − w⟩ +
1
2
β∥w+ − w∥2

= f (w) − η⟨∇f (w),∇f (w)⟩ +
1
2
β∥−η∇f (w)∥2

= f (w) − η
(
1 − 1

2
ηβ

)
∥∇f (w)∥2.

Since we assumed 0 < η < 2/β, η(1 − ηβ/2) > 0. The claim follows.

So, this means that gradient descent with a small-enough learning rate is a “descent
method”: each step decreases the objective, unless ∇f (wt) = 0 for some t, in which
case wt+1 = wt and we’re stuck forever. If we never hit such a point, then f (wt) must
strictly decrease forever.

Suppose infw f (w) ≥ a for some finite a, for example LS with a bounded loss. Then
we necessarily have f (wt)→ f∞ ≥ a, called the monotone convergence theorem. If
so, then since f (wt) − f (wt+1) → 0, the descent lemma implies ∥∇f (w)∥ → 0; we
either converge to a stationary point, or else our iterates diverge in a way where
the loss still converges. The latter case happens e.g. for logistic regression with
separable data: no finite w achives zero logistic loss, but we can get closer and closer
to zero loss by letting ∥wt∥ → ∞ but wt/∥wt∥ → w∗ where w∗ achieves zero training
errors (0-1 loss).

For convex functions, any stationary point – one with ∇f (w) = 0 – is a global min.
This is why convex optimization is nice! But for nonconvex functions, we can only
say that it’s a stationary point: it might be a local but non-global minimizer, or a
saddle point. (A local max could only happen if we happened to initialize exactly
on it.)

11.3 aside: convex functions

For convex functions in particular (with a slightly smaller learning rate), we can
turn the descent lemma into a proof of gradient descent convergence.

Theorem 11.5. Let f be a convex, β-smooth function. Begin with w0 and then let

wt+1 = wt − η∇f (wt), for some 0 < η ≤ 1/β. Let w̄s = 1
T−s+1

T∑
t=T−s+1

wt be the average

4

https://en.wikipedia.org/wiki/Monotone_convergence_theorem

of the last s iterates; particular examples include w̄1 = wT and w̄T = 1
T

T∑
t=1

wt. For any

1 ≤ s ≤ T, it holds that

f (w̄s) ≤
1

2ηT
∥w0 − w∗∥.

Proof. We’re going to want to bound the improvement in each step of gradient
descent: f (wt) − f (wt+1). By convexity (in particular, Proposition C.3), we have that

f (wt) − f (w∗) ≤ ⟨wt − w∗,∇f (wt)⟩.

To see what that right-hand side is, we’ll use

∥wt − η∇f (wt) − w∗∥2 = ∥wt − w∗∥2 − 2η⟨wt − w∗,∇f (wt)⟩ + η2∥∇f (wt)∥2,

and rearrange into

f (wt) − f (w∗) ≤ ⟨wt − w∗,∇f (wt)⟩ =
1

2η

[
∥wt − w∗∥2 − ∥wt+1 − w∗∥2

]
+
η

2
∥∇f (wt)∥2.

Now we can use the descent lemma to deal with that last term: since η ≤ 1/β,
1 − 1

2ηβ ≥
1
2 , and Lemma 11.4 becomes

f (wt) − f (wt+1) ≥ 1
2
η∥∇f (w)∥2.

We’ve therefore obtained

f (wt) − f (w∗) ≤
1

2η

[
∥wt − w∗∥2 − ∥wt+1 − w∗∥2

]
+ f (wt) − f (wt+1),

which we can simplify to

f (wt+1) − f (w∗) ≤ 1
2η

[
∥wt − w∗∥2 − ∥wt+1 − w∗∥2

]
or equivalently

f (wt) − f (w∗) ≤ 1
2η

[
∥wt−1 − w∗∥2 − ∥wt − w∗∥2

]
.

This holds for each t from 1 to T; let’s the take the average of them all, obtaining

1
T

T∑
t=1

f (wt) − f (w∗) ≤ 1
2ηT

T∑
t=1

[
∥wt−1 − w∗∥2 − ∥wt − w∗∥2

]
=

1
2ηT

[
∥w0 − w∗∥2 − ∥w1 − w∗∥2 + ∥w1 − w∗∥2 − · · · − ∥wT − w∗∥2

]
=

1
2ηT

[
∥w0 − w∗∥2 − ∥wT − w∗∥2

]
≤ 1

2ηT
∥w0 − w∗∥2.

Notice that by the descent lemma, f (wt) is weakly decreasing; thus

1
T − s + 1

T∑
t=T−s+1

f (wt) ≤
1
T

T∑
t=1

f (wt) ≤ f (w∗) +
1

2ηT
∥w0 − w∗∥2.

5

But by Jensen’s inequality, since f is convex,

f (w̄s) = f

 1
T − s + 1

T∑
t=T−s+1

wt

 ≤ 1
T − s + 1

T∑
t=T−s+1

f (wt).

Much faster rates are available if f is smooth and strongly convex.

11.3.1 Aside: SGD non-convex convergence

The analysis above can be pretty-easily extended to SGD; see e.g. Chapter 14 of
Shalev-Shwartz and Ben-David [SSBD14] or the recent survey of Garrigos and Gower
[GG23]. It can be generalized further, though more complicatedly, to show that even
SGD eventually reaches a stationary point, even for non-convex functions:

Proposition 11.6 (Corollary 1 of [KR23]). Let f be β-smooth, with infx f (x) ≥ f inf >
−∞. Let ĝt | xt be independent such that E[ĝt | xt] = ∇f (xt) and

E[∥ĝt∥2 | xt] ≤ 2A(f (xt) − f inf) + B∥∇f (xt)∥2 + C

for some A, B, C ≥ 0. Fix ε > 0, and pick η = min
{

1√
βAT

, 1
βB ,

ε
2βC

}
. Initialize stochastic

gradient descent at x0, with δ0 = f (x0) − f inf, and xt+1 = xt − ηĝt. As long as T ≥
12δ0β

ε2 max
{
B, 12δ0A

ε2 , 2C
ε2

}
, it holds that min1≤t≤T E[∥∇f (xt)∥] ≤ ε.

That is, the best iterate achieves ε suboptimality (in expectation) with O(1/ε4) steps.
The assumption on ĝt is satisfied for example if the ĝt have a bounded variance, or
if we choose ĝt as the gradient of LS′ for S′ ⊆ S chosen randomly and the loss being
Lipschitz, or various other settings.

11.4 are deep networks β-smooth?

Is f (w) = LS(hw) for hw a class of deep networks β-smooth?

Consider the very simple network

hW,v(x) = v · σ(Wx),

where σ is itself β-smooth. Then the square loss for a single data point is

f (W, v) = (vTσ(Wx) − y)2 = vTσ(Wx)σ(Wx)Tv − 2yσ(Wx)Tv + y2,

and we have

∇vf (W, v) = 2(σ(Wx)Tv − y)σ(Wx)If this is unfamiliar, try
looking at individual partial

derivatives to see that they
line up.

∇2
vf (W, v) = 2σ(Wx)σ(Wx)T.

The Jacobian with W is more annoying, since we’d have to flatten W and reshape
and stuff.Autodiff is nice. . . . But the overall Hessian of f with respect to its input parameters will have
∇2
vf as a block in it, and so its largest eigenvalue will depend on W: if σ is the ReLU

or something similar, then large values of W will result in much larger Hessians.
Thus the loss is only going to be fully β-smooth if you bound the set of possible Ws,
but for any particular parameters it’s going to be “locally” smooth.

Notice that the descent lemma doesn’t actually need a global upper bound on the

6

smoothness, just along the path from xt to xt+1. So, intuitively, we should roughly
expect (stochastic) gradient descent to reach a stationary point of the loss as long
as ∇2f doesn’t blow up, i.e. in typical situations as long as none of the parameters
blows up. (All of this also requires that σ itself be β-smooth; ReLU is not.)

Aside: edge of stability

So, if we’re optimizing a deep network with a fixed learning rate η, whether the
descent lemma applies or not – whether gradient descent is “stable” or not – depends
on whether η < 2

β
, or more relevantly β < 2

η
, for the “local” value of β. Note that the “local β”

might be larger than
max(∇2f (xt),∇2f (xt+1):
you might go through a
sharper point on the way.
For instance, consider
f (x) = |x| on the reals:
f ′′(x) = 0 for all x , 0, but
the descent lemma might not
apply when you switch signs,
since you go through 0
which has “infinite second
derivative.”

We can roughly

get this local value of β by just checking the largest eigenvalue of ∇2f (xt), and see
whether it stays in a “stable” regime or not.

Cohen et al. [Coh+21] demonstrated that in fact, optimization typically exhibits
“progressive sharpening” where β increases up to 2/η, then hovers around there on
the “edge of stability” [also see Fox23]. Damian, Nichani, and Lee [DNL23] have
recently proposed a mechanism for how this happens, based on Taylor expansions
of the training process.

11.5 is a stationary point enough?

One model we can look at is deep linear nets, f (x) = wdWd−1 · · ·W2W1x. These are
just linear models, but they’re nonconvex and hierarchical and so exhibit some of
the same behaviour as regular deep nets. It’s reasonable to expect that, generally
speaking, if something doesn’t work on deep linear nets, it won’t work on deep
nonlinear nets either.

To see that they’re nonconvex: consider just a depth two model on scalars, f (x) =
vwx for v, w ∈ R. Consider square loss with the training set S = ((1,1)). Then
LS(f) = (vw − 1)2, whose minimizers are

{(v, w) : vw = 1} = {(v, 1/v) : v , 0}.

But this is not a convex set: it’s a line in R2 with the point (0, 0) cut out of it. The set
of minimizers of convex functions must be convex, so therefore LS is not convex.

It turns out that for deep linear nets:

• Fortunately, all local minima in deep linear nets are global minima [Kaw16;
LvB18].

• Unfortunately, stationary points can also be saddle points – including poten-
tially “bad” saddles with λmin(∇2f) = 0 even though they’re not local minima.
(For example, x3 has a saddle point like this at x = 0; they can be even worse
in high dimensions.)

• Fortunately, in general, gradient descent almost surely converges to local
minimizers, not saddles (or local maxes) [LSJR16].

• Unfortunately, doing so can take exponential time [Du+17].

• Fortunately, this doesn’t happen for deep linear networks, under some condi-
tions [ACGH19].

Unfortunately, there are bad local minima in nonlinear networks. For a very simple
example, consider the network h : R→ R given by h(x) = ReLU(wx), where w ∈ R;

7

use square loss with a single example, (1, 1). Then the loss is

ℓ(hw, (1, 1)) =

(w − 1)2 w ≥ 0

1 w ≤ 0
.

−3 −2 −1 0 1 2 3
0

1

2

3

w

ℓ(
h
w
,(

1,
1)

)

Any negative input is a (non-strict) local min (since f (w) ≥ f (v) for all v in a
neighbourhood of w), but it’s not a global min (since f (1) = 0). Thus, if you start
gradient descent with a negative w, it’s just stuck. In fact, bad (strict) local minima
can appear for almost any activation function [DLS20], and with more units, the
loss landscape has such points almost all the time.

But, do bad local minima exist for realistic networks, with realistic data? Even if
they do, does SGD find them? Moreover, even if I find a good local min of LS, does
that imply I get a good LD for realistic networks?

references

[ACGH19] Sanjeev Arora, Nadav Cohen, Noah Golowich, and Wei Hu. “A Conver-
gence Analysis of Gradient Descent for Deep Linear Neural Networks”.
ICLR. 2019. arXiv: 1810.02281.

[Bub15] Sébastien Bubeck. Convex Optimization: Algorithms and Complexity.
Foundations and Trends in Machine Learning 8.3-4 (2015). arXiv: 1405.
4980.

[BV04] Stephen Boyd and Lieven Vandenbreghe. Convex Optimization. Cam-
bridge University Press, 2004.

[Coh+21] Jeremy M. Cohen, Simran Kaur, Yuanzhi Li, J. Zico Kolter, and Ameet
Talwalkar. “Gradient Descent on Neural Networks Typically Occurs at
the Edge of Stability”. ICLR. 2021. arXiv: 2103.00065.

[DLS20] Tian Ding, Dawei Li, and Ruoyu Sun. Sub-Optimal Local Minima Exist
for Neural Networks with Almost All Non-Linear Activations. 2020. arXiv:
1911.01413.

[DNL23] Alex Damian, Eshaan Nichani, and Jason D. Lee. “Self-Stabilization:
The Implicit Bias of Gradient Descent at the Edge of Stability”. ICLR.
2023. arXiv: 2209.15594.

[Du+17] Simon S. Du, Chi Jin, Jason D. Lee, Michael I. Jordan, Barnabás Póczos,
and Aarti Singh. “Gradient Descent Can Take Exponential Time to
Escape Saddle Points”. NeurIPS. 2017. arXiv: 1705.10412.

8

https://arxiv.org/abs/1810.02281
https://arxiv.org/abs/1810.02281
https://arxiv.org/abs/1810.02281
https://arxiv.org/abs/1405.4980
https://arxiv.org/abs/1405.4980
https://arxiv.org/abs/1405.4980
https://web.stanford.edu/~boyd/cvxbook/
https://arxiv.org/abs/2103.00065
https://arxiv.org/abs/2103.00065
https://arxiv.org/abs/2103.00065
https://arxiv.org/abs/1911.01413
https://arxiv.org/abs/1911.01413
https://arxiv.org/abs/1911.01413
https://arxiv.org/abs/2209.15594
https://arxiv.org/abs/2209.15594
https://arxiv.org/abs/2209.15594
https://arxiv.org/abs/1705.10412
https://arxiv.org/abs/1705.10412
https://arxiv.org/abs/1705.10412

REFERENCES

[Fox23] Curtis Fox. “A study of the edge of stability in deep learning”. MSc.
Thesis. University of British Columbia, 2023.

[GG23] Guillaume Garrigos and Robert M. Gower. Handbook of Convergence
Theorems for (Stochastic) Gradient Methods. 2023. arXiv: 2301.11235.

[Kaw16] Kenji Kawaguchi. “Deep Learning without Poor Local Minima”. NeurIPS.
2016. arXiv: 1605.07110.

[KR23] Ahmed Khaled and Peter Richtárik. Better Theory for SGD in the
Nonconvex World. TMLR (2023).

[LSJR16] Jason D. Lee, Max Simchowitz, Michael I. Jordan, and Benjamin Recht.
“Gradient Descent Only Converges to Minimizers”. COLT. 2016.

[LvB18] Thomas Laurent and James von Brecht. “Deep Linear Networks with
Arbitrary Loss: All Local Minima Are Global”. ICML. 2018.

[NW06] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer,
2006.

[SSBD14] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learn-
ing: From Theory to Algorithms. Cambridge University Press, 2014.

9

http://dx.doi.org/10.14288/1.0435607
https://arxiv.org/abs/2301.11235
https://arxiv.org/abs/2301.11235
https://arxiv.org/abs/2301.11235
https://arxiv.org/abs/1605.07110
https://arxiv.org/abs/1605.07110
https://openreview.net/forum?id=AU4qHN2VkS
https://openreview.net/forum?id=AU4qHN2VkS
https://proceedings.mlr.press/v49/lee16.html
https://proceedings.mlr.press/v80/laurent18a.html
https://proceedings.mlr.press/v80/laurent18a.html
http://dx.doi.org/10.1007/978-0-387-40065-5
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/copy.html
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/copy.html

	Gradient descent
	-smooth functions
	Aside: convex functions
	Aside: SGD non-convex convergence

	Are deep networks -smooth?
	Is a stationary point enough?

