CPSC 532D — 10. ONLINE LEARNING: REALIZABLE BINARY
CLASSIFICATION

Danica J. Sutherland and Bingshan Hu

University of British Columbia, Vancouver

Fall 2025

We’ll now complete our study of what’s learnable specifically for binary classification,
by doing a change of setting.

So far, we’ve been considering batch or offline learning settings: we first get a training
set S of m (x, p) pairs, pick a hypothesis /, and then use that / to predict forever on
novel xs.

Online learning settings instead model the process of learning over time. An x comes
in, we make a prediction based on our current understanding of the world, and then
we get to see whether we were right. Then we update our beliefs about the world,
and the process repeats, potentially indefinitely.

We still have an instance space &, a label space Y =)> = {-1, 1}, a hypothesis class
H of functions X — J, and the 0-1 loss function [,(9) = 1(y #). We frame this
as a sequential game, with two players: Learner, who makes predictions (us), and
Nature, who provides us with what’s going on in the world.

Ineachround t=1,2,...,T,
1. Nature selects x; € X and reveals it to Learner.
2. Learner predicts 9; €).
3. Nature plays label y; € Y and reveals it to Learner.
4. Learner suffers loss 1, (9;) = 1(y; # 9;).

If the loss is 1, we say Learner makes a mistake in round t. The goal of Learner is to
make as few mistakes as possible.

Quite differently than our analysis in the batch/offline setting, we won’t assume that
the data sequence S is iid. In fact, we’ll have no statistical assumption at all.

But then it’s hopeless to do anything in general; Nature could always simply play
9; = —v;. So we'll need to put some constraints on what Nature is allowed to do.

For today, we’ll start with something simple: we’ll assume that Nature has promised
Learner that it will play labels consistently with some h* € H, for a H known to
Learner. Now, we can hopefully actually learn something. ..ideally, we’d eventually
identify the correct /", and then necessarily never make a mistake again. But how
many mistakes might we make before that point?

10.1 FINITE H

We know that Nature is constrained to always play according to some perfect
hypothesis; we just don’t know what it is. But if we see an (x, y) pair for which

For more, visit https://cs.ubc.ca/~dsuth/532D/25w1/.

There are of course
variations other than binary
classification; we’ll discuss
some later on.

https://cs.ubc.ca/~dsuth/532D/25w1/

y # h(x), then we know that h* cannot be h. This suggests the idea of maintaining a
set of which hypotheses might be correct. This is usually called a version space.

After t rounds, the version space is the set of hypotheses consistent with what we’ve
seen so far:
H;={heH:Vielt], h(x;) = v}

We start with Hy = H, then have H; € Hy, H, € H;, and so on. It’s never possible
for us to eliminate h*, so we always have {h*} C H;,.

This idea gives us an algorithm, called ConsisTENT, when H is finite:

Set Hy = H.
Ineachround t=1,2,...,
1. Learner observes x;.
2. Learner chooses any h; € H;_; and predicts 9; = h;(x;).
3. Nature reveals the true label y; = h*(x;).
4. Learner updates H; = {h € H;_1 : h(x;) = v}

T
How many mistakes can we make in this process? That is, how big is }_ [, (9;)? If we
t=1

get really lucky, we just happen to pick h* at first, and we never make any mistakes.
But in the worst case, at each step, either we were right (and so add zero mistakes),
or we we were wrong, in which case H; eliminates at least one hypothesis from H;_;
(the one we played). This second case can only possibly happen |H| — 1 times, since
we always have {h*} C H;. So, no matter how long we play this game, Nature can
only force us to make at most |H| — 1 mistakes.

Can we do better than that? Absolutely. The idea is to make sure that if we make a
mistake, it gives us a lot of information. We can do this if, rather than choosing our
prediction according to an arbitrary h;, we take a majority vote. (We can break ties
arbitrarily.) Then, either we’re right (and so make zero mistakes), or we eliminate
at least half of the hypotheses in the version space, since a majority of them were
wrong. This gives us an algorithm called Harving.

Set Hy = H.
Inroundt=1,2,...,
1. Learner observes x;.
2. Learner predicts 9; € arg maxyey|{h € Hi_q: h(xy) = y}|.
3. Nature reveals the true label y; = h*(x;).
4. Learner updates H; = {h € H;_1 : h(x;) = y;}.

\.

Tueorem 10.1. The algorithm HALVING makes at most log,|H| mistakes.

Proof. After each mistake, the version space is at most half of its previous size.
Letting M be the total number of mistakes at time T, this gives us that

[Hr| < |[Hol2™ = |H|27™.
But since h* € Hry, |[Ht| > 1, and so this means that we must have M <log,|H|. [

2

10.2 POTENTIALLY INFINITE H

While log,|H]| is nice when H is small, in the batch setting, we could learn lots of
infinite hypothesis classes too: those with finite VC dimension. There turns out
to be a similar notion that characterizes online learnability, called the Littlestone
dimension [Lit88], Ldim(H). We’ll see that Nature is going to be able to force any
learning algorithm to make at least Ldim(+) mistakes, no matter the algorithm. On
the other hand, we’ll actually see a particular algorithm (though it may be very hard
to implement) that always makes no more than Ldim() mistakes.

DerINITION 10.2. A game tree is a binary tree describing the possible behaviours
of Nature. Each interior node of the tree is associated with a point x € X’; moving
from a parent node to its left child is associated with the label —1, while moving
to its right child is associated with the label 1. A path through the game tree is a
sequence S = ((xl, V1), (X2, ¥2), .o (XT, yT)), where x; is the point associated with the
root node, y; is which edge we follow down from the root, x; is the point associated
with either its left or right child depending on y;, and so on.

To maximize the number of mistakes, we’ll want to make sure that no matter what
prediction Learner plays, Nature can always say “no, you’re wrong,” at least for a
while. This is possible exactly if the tree is shattered:

DEerINITION 10.3. A game tree is shattered by H if, for every path through the tree,
there exists an h € H which achieves h(x;) = y; for all ¢ in the path.

DeriNiTION 10.4. The Littlestone dimension of H, denoted Ldim(H), is the largest
integer d such that there exists a tree of depth d shattered by H. If there is no such
largest d, the Littlestone dimension is infinite.

THeOREM 10.5. Nature can force any Learner to make at least Ldim(H) mistakes.

Proof. Consider a shattered tree of depth Ldim(H). Nature will first play x; as the
root label of the tree, then wait to see which prediction 7; Learner makes; it will
declare y; = —79;, a mistake, then play x; according to the child node consistent with
label y;. This process continues down the tree, with Learner making a mistake at
each of the Ldim(H) rounds. Since H shatters the tree, there does indeed exist an h* €
H consistent with the path through the game tree which Nature has followed. [J

This gives us our lower bound. The next step to showing Littlestone dimension is the
right characterization of online learnability (in the realizable binary classification
setting) is to show an algorithm that only makes Ldim() mistakes. This STANDARD
OprriMAL ALGORITHM is exactly like HALvING, except instead of asking which subset
of the version space is larger, we ask which one has higher Littlestone dimension.

Set HO = H.
Inroundt=1,2,...,
1. Learner observes x;.
2. Learner predicts y; € arg max,cy Ldim ({h € H;_1 : h(x;) = v}).
3. Nature reveals the true label y; = h*(x;).
4. Learner updates H; = {h € H;_1 : h(x;) = v}

THEOREM 10.6. The STANDARD OPTIMAL ALGORITHM makes at most Ldim(H) mistakes.

3

Proof. What we’ll want to show is that if Learner makes a mistake in round ¢, i.e. if
vy # vy, then Ldim(H;) < Ldim(H;_;) — 1. Since Ldim({h*}) = 1, this will show our
desired result.

We cannot have Ldim(H;) > Ldim(H,_;), so assume for the sake of contradiction
that Ldim(#,) = Ldim(H,_;). Let’s also name H\) = {h € H,_; : h(x;) = v}.

Since Learner played ¢; = v;, Ldim(H(Ztl)) > Ldim(H(ztl)). But since H; = H(t}fl), our
assumption is that Ldim(H?fl)) = Ldim(H;_;). We also know, since H(t}itl) C Hi1,

that Ldim(H\"")) < Ldim(#,_,). Thus Ldim(H\"")) = Ldim(#,_;) = Ldim(H\%").

Now, construct a tree with x; at its root, one subtree a tree of depth Ldim(H;_;)

shattered by H(Ztl), and the other a tree of depth Ldim(H;_;) shattered by Hgtl). This
tree, which is of depth Ldim(H;_1) + 1, is shattered by H;_1: a contradiction. O

ProrosiTioN 10.7. If H is finite, Ldim(H) < log,|H|.

Proof. Combine Theorems 10.1 and 10.5. O

ProrosiTION 10.8. For any H, Ldim(H) > VCdim(H).

Proof. Let {xy,..., Xycdim(#)} be a set shattered by H. Construct a complete binary
tree with root xy, both children x,, all four grandchildren of the root x5, and so on.
This is a tree of depth VCdim(H) which is shattered by H. O

ProrosiTION 10.9. Let X = [0,1] and H = {x — 1(x > a) : a € [0, 1]} be the class of
thresholds. Then, we have VCdim(H) = 1, but Ldim(H) =

Q.

Proof. The VC dimension calculation was in Section 6.4.1.1.

For the Littlestone dimension: let x, be the maximum of the points for which Nature
has provided a negative label (or 0 if no negative labels have been given), and x” the
minimum of the points for which Nature has provided a positive label (or 1 if no
positive labels have been given). Have Nature play x; = (x. + x*)/2, and whichever
label 9, is given by Learner, assign the label —7;, which is indeed realizable by a
threshold between x; and either x, or x*. Repeating this process indefinitely, Learner
can always be made to make a mistake at each step. O]

It turns out that actually, Littlestone dimension also characterizes which hypothesis
classes can be privately PAC-learned [Alo+22; Lyu25].

REFERENCES

[Alo+22] Noga Alon, Mark Bun, Roi Livni, Maryanthe Malliaris, and Shay Moran.
Private and Online Learnability Are Equivalent. Journal of the ACM 69.4
(August 2022).

[Lit88] Nick Littlestone. Learning Quickly When Irrelevant Attributes Abound:
A New Linear-Threshold Algorithm. Machine Learning 2 (1988), pages 285—
318.

[Lyu25] Xin Lyu. Private Learning of Littlestone Classes, Revisited. 2025. arXiv:
2510.00076.

http://dx.doi.org/10.1145/3526074
https://rdcu.be/eL69r
https://rdcu.be/eL69r
https://arxiv.org/abs/2510.00076
https://arxiv.org/abs/2510.00076

	Finite hypothesis class
	Potentially infinite hypothesis class

