
CPSC 532D — 10. ONLINE LEARNING: REALIZABLE BINARY

CLASSIFICATION

Danica J. Sutherland and Bingshan Hu

University of British Columbia, Vancouver

Fall 2025

We’ll now complete our study of what’s learnable specifically for binary classification,
by doing a change of setting.

So far, we’ve been considering batch or offline learning settings: we first get a training
set S of m (x, y) pairs, pick a hypothesis h, and then use that h to predict forever on
novel xs.

Online learning settings instead model the process of learning over time. An x comes
in, we make a prediction based on our current understanding of the world, and then
we get to see whether we were right. Then we update our beliefs about the world,
and the process repeats, potentially indefinitely.

We still have an instance space X , a label space Y = Ŷ = {−1, 1}, a hypothesis class
H of functions X → Y , and the 0-1 loss function ly(ŷ) = 1(y , ŷ). We frame this
as a sequential game, with two players: Learner, who makes predictions (us), and
Nature, who provides us with what’s going on in the world.

There are of course
variations other than binary
classification; we’ll discuss
some later on.

In each round t = 1, 2, . . . , T,
1. Nature selects xt ∈ X and reveals it to Learner.
2. Learner predicts ŷt ∈ Ŷ .
3. Nature plays label yt ∈ Y and reveals it to Learner.
4. Learner suffers loss lyt (ŷt) = 1(yt , ŷt).

If the loss is 1, we say Learner makes a mistake in round t. The goal of Learner is to
make as few mistakes as possible.

Quite differently than our analysis in the batch/offline setting, we won’t assume that
the data sequence S is iid. In fact, we’ll have no statistical assumption at all.

But then it’s hopeless to do anything in general; Nature could always simply play
ŷt = −yt. So we’ll need to put some constraints on what Nature is allowed to do.

For today, we’ll start with something simple: we’ll assume that Nature has promised
Learner that it will play labels consistently with some h∗ ∈ H, for a H known to
Learner. Now, we can hopefully actually learn something. . . ideally, we’d eventually
identify the correct h∗, and then necessarily never make a mistake again. But how
many mistakes might we make before that point?

10.1 finite H

We know that Nature is constrained to always play according to some perfect
hypothesis; we just don’t know what it is. But if we see an (x, y) pair for which

For more, visit https://cs.ubc.ca/˜dsuth/532D/25w1/.

1

https://cs.ubc.ca/~dsuth/532D/25w1/

y , h(x), then we know that h∗ cannot be h. This suggests the idea of maintaining a
set of which hypotheses might be correct. This is usually called a version space.

After t rounds, the version space is the set of hypotheses consistent with what we’ve
seen so far:

Ht = {h ∈ H : ∀i ∈ [t], h(xt) = yt}.

We start with H0 = H, then have H1 ⊆ H0, H2 ⊆ H1, and so on. It’s never possible
for us to eliminate h∗, so we always have {h∗} ⊆ Ht.

This idea gives us an algorithm, called Consistent, when H is finite:

Set H0 = H.
In each round t = 1, 2, . . . ,

1. Learner observes xt.
2. Learner chooses any ht ∈ Ht−1 and predicts ŷt = ht(xt).
3. Nature reveals the true label yt = h∗(xt).
4. Learner updates Ht = {h ∈ Ht−1 : h(xt) = yt}.

How many mistakes can we make in this process? That is, how big is
T∑
t=1

lyt (ŷt)? If we

get really lucky, we just happen to pick h∗ at first, and we never make any mistakes.
But in the worst case, at each step, either we were right (and so add zero mistakes),
or we we were wrong, in which case Ht eliminates at least one hypothesis from Ht−1
(the one we played). This second case can only possibly happen |H| − 1 times, since
we always have {h∗} ⊆ Ht. So, no matter how long we play this game, Nature can
only force us to make at most |H| − 1 mistakes.

Can we do better than that? Absolutely. The idea is to make sure that if we make a
mistake, it gives us a lot of information. We can do this if, rather than choosing our
prediction according to an arbitrary ht, we take a majority vote. (We can break ties
arbitrarily.) Then, either we’re right (and so make zero mistakes), or we eliminate
at least half of the hypotheses in the version space, since a majority of them were
wrong. This gives us an algorithm called Halving.

Set H0 = H.
In round t = 1, 2, . . . ,

1. Learner observes xt.
2. Learner predicts ŷt ∈ arg maxy∈Ŷ

∣∣∣{h ∈ Ht−1 : h(xt) = y}
∣∣∣.

3. Nature reveals the true label yt = h∗(xt).
4. Learner updates Ht = {h ∈ Ht−1 : h(xt) = yt}.

Theorem 10.1. The algorithm Halving makes at most log2|H| mistakes.

Proof. After each mistake, the version space is at most half of its previous size.
Letting M be the total number of mistakes at time T, this gives us that

|HT| ≤ |H0|2−M = |H|2−M.

But since h∗ ∈ HT, |HT| ≥ 1, and so this means that we must have M ≤ log2|H|.

2

10.2 potentially infinite H

While log2|H| is nice when H is small, in the batch setting, we could learn lots of
infinite hypothesis classes too: those with finite VC dimension. There turns out
to be a similar notion that characterizes online learnability, called the Littlestone
dimension [Lit88], Ldim(H). We’ll see that Nature is going to be able to force any
learning algorithm to make at least Ldim(H) mistakes, no matter the algorithm. On
the other hand, we’ll actually see a particular algorithm (though it may be very hard
to implement) that always makes no more than Ldim(H) mistakes.

Definition 10.2. A game tree is a binary tree describing the possible behaviours
of Nature. Each interior node of the tree is associated with a point x ∈ X ; moving
from a parent node to its left child is associated with the label −1, while moving
to its right child is associated with the label 1. A path through the game tree is a
sequence S =

(
(x1, y1), (x2, y2), . . . , (xT, yT)

)
, where x1 is the point associated with the

root node, y1 is which edge we follow down from the root, x2 is the point associated
with either its left or right child depending on y1, and so on.

To maximize the number of mistakes, we’ll want to make sure that no matter what
prediction Learner plays, Nature can always say “no, you’re wrong,” at least for a
while. This is possible exactly if the tree is shattered:

Definition 10.3. A game tree is shattered by H if, for every path through the tree,
there exists an h ∈ H which achieves h(xt) = yt for all t in the path.

Definition 10.4. The Littlestone dimension of H, denoted Ldim(H), is the largest
integer d such that there exists a tree of depth d shattered by H. If there is no such
largest d, the Littlestone dimension is infinite.

Theorem 10.5. Nature can force any Learner to make at least Ldim(H) mistakes.

Proof. Consider a shattered tree of depth Ldim(H). Nature will first play x1 as the
root label of the tree, then wait to see which prediction ŷ1 Learner makes; it will
declare y1 = −ŷ1, a mistake, then play x2 according to the child node consistent with
label y1. This process continues down the tree, with Learner making a mistake at
each of the Ldim(H) rounds. SinceH shatters the tree, there does indeed exist an h∗ ∈
H consistent with the path through the game tree which Nature has followed.

This gives us our lower bound. The next step to showing Littlestone dimension is the
right characterization of online learnability (in the realizable binary classification
setting) is to show an algorithm that only makes Ldim(H) mistakes. This Standard
Optimal Algorithm is exactly like Halving, except instead of asking which subset
of the version space is larger, we ask which one has higher Littlestone dimension.

Set H0 = H.
In round t = 1, 2, . . . ,

1. Learner observes xt.
2. Learner predicts ŷt ∈ arg maxy∈Ŷ Ldim ({h ∈ Ht−1 : h(xt) = y}).
3. Nature reveals the true label yt = h∗(xt).
4. Learner updates Ht = {h ∈ Ht−1 : h(xt) = yt}.

Theorem 10.6. The Standard Optimal Algorithm makes at most Ldim(H) mistakes.

3

Proof. What we’ll want to show is that if Learner makes a mistake in round t, i.e. if
ŷt , yt, then Ldim(Ht) ≤ Ldim(Ht−1) − 1. Since Ldim({h∗}) = 1, this will show our
desired result.

We cannot have Ldim(Ht) > Ldim(Ht−1), so assume for the sake of contradiction

that Ldim(Ht) = Ldim(Ht−1). Let’s also name H(y)
t−1 = {h ∈ Ht−1 : h(xt) = y}.

Since Learner played ŷt , yt, Ldim(H(ŷt)
t−1) ≥ Ldim(H(yt)

t−1). But since Ht = H(yt)
t−1, our

assumption is that Ldim(H(yt)
t−1) = Ldim(Ht−1). We also know, since H(ŷt)

t−1 ⊆ Ht−1,

that Ldim(H(ŷt)
t−1) ≤ Ldim(Ht−1). Thus Ldim(H(ŷt)

t−1) = Ldim(Ht−1) = Ldim(H(yt)
t−1).

Now, construct a tree with xt at its root, one subtree a tree of depth Ldim(Ht−1)

shattered by H(ŷt)
t−1, and the other a tree of depth Ldim(Ht−1) shattered by H(yt)

t−1. This
tree, which is of depth Ldim(Ht−1) + 1, is shattered by Ht−1: a contradiction.

Proposition 10.7. If H is finite, Ldim(H) ≤ log2|H|.

Proof. Combine Theorems 10.1 and 10.5.

Proposition 10.8. For any H, Ldim(H) ≥ VCdim(H).

Proof. Let {x1, . . . , xVCdim(H)} be a set shattered by H. Construct a complete binary
tree with root x1, both children x2, all four grandchildren of the root x3, and so on.
This is a tree of depth VCdim(H) which is shattered by H.

Proposition 10.9. Let X = [0,1] and H = {x 7→ 1(x ≥ a) : a ∈ [0, 1]} be the class of
thresholds. Then, we have VCdim(H) = 1, but Ldim(H) = ∞.

Proof. The VC dimension calculation was in Section 6.4.1.1.

For the Littlestone dimension: let x∗ be the maximum of the points for which Nature
has provided a negative label (or 0 if no negative labels have been given), and x∗ the
minimum of the points for which Nature has provided a positive label (or 1 if no
positive labels have been given). Have Nature play xt = (x∗ + x∗)/2, and whichever
label ŷt is given by Learner, assign the label −ŷt, which is indeed realizable by a
threshold between xt and either x∗ or x∗. Repeating this process indefinitely, Learner
can always be made to make a mistake at each step.

It turns out that actually, Littlestone dimension also characterizes which hypothesis
classes can be privately PAC-learned [Alo+22; Lyu25].

references

[Alo+22] Noga Alon, Mark Bun, Roi Livni, Maryanthe Malliaris, and Shay Moran.
Private and Online Learnability Are Equivalent. Journal of the ACM 69.4
(August 2022).

[Lit88] Nick Littlestone. Learning Quickly When Irrelevant Attributes Abound:
A New Linear-Threshold Algorithm. Machine Learning 2 (1988), pages 285–
318.

[Lyu25] Xin Lyu. Private Learning of Littlestone Classes, Revisited. 2025. arXiv:
2510.00076.

4

http://dx.doi.org/10.1145/3526074
https://rdcu.be/eL69r
https://rdcu.be/eL69r
https://arxiv.org/abs/2510.00076
https://arxiv.org/abs/2510.00076

	Finite hypothesis class
	Potentially infinite hypothesis class

