
CPSC 532D, Fall 2025: Assignment 3
due Friday, 14 November 2025, 11:59 pm

You can do this assignment, and future ones, with a partner. Read the website section on academic
integrity here for what you’re allowed to do and not do; in particular, cite your sources (including people
you talked to!) and don’t use ChatGPT/etc for anything content-related. If you’re not sure if something is
okay, ask.

Prepare your answers to these questions using LATEX; hopefully you’re reasonably familiar with it, but if
not, try using Overleaf and looking around for tutorials online. Feel free to ask questions if you get stuck
on things on Piazza (but remove any details about the actual answers to the questions. . .make a private
post if that’s tough). If you prefer, the .tex source for this file is available on the course website, and you
can put your answers in \begin{answer} My answer here... \end{answer} environments to make them
stand out; feel free to delete whatever boilerplate you want. Or answer in a fresh document if you’d prefer.

Submit your answers as a single PDF on Gradescope: here’s the link. You’ll be prompted to mark where each
question is in your PDF; make sure you mark all relevant pages for each part (which saves us a surprising
amount of grading time).

Make sure you submit using Gradescope’s group feature if you’re submitting a joint assignment, and put
both your names on the first page to be safe; if you did the assignment partially together and partially
separately, hand in separate PDFs, and put a note on each question where you worked together like I did
this problem with Alice so we don’t think you cheated. :)

On the off chance something goes wrong, you can also email your assignment to me directly (dsuth@cs.ubc.ca).
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https://www.cs.ubc.ca/~dsuth/532D/25w1/#policies
https://canvas.ubc.ca/courses/172832/external_tools/62337?display=borderless


1 Rademacher complexity of deep networks [45 points]

As promised in class, we’re now going to prove a Rademacher complexity bound for deep networks. To do
that, we’re going to build up our repertoire of Rademacher properties a bit first.

Lemma 1.1. If V ⊆ W , then Rad(V ) ≤ Rad(W ).

[1.1] [5 points] Prove Lemma 1.1.

Answer: TODO

Lemma 1.2. Consider finitely many sets Vi such that for all σ ∈ {−1, 1}m, it holds that supv∈Vi
v · σ ≥ 0;

for instance, this holds if 0 ∈ Vi, or if for all v ∈ Vi we also have −v ∈ Vi. Then Rad(∪iVi) ≤
∑

i Rad(Vi).

[1.2] [5 points] Prove Lemma 1.2.

Answer: TODO

The convex hull of a set V is the set of all convex combinations of points in V :

conv(V ) =
⋃
k≥1

{
k∑

i=1

αivi : αi ≥ 0;
k∑

i=1

αi = 1; v1, . . . , vk ∈ V

}
.

Lemma 1.3. For any set V , Rad(conv(V )) = Rad(V ).

[1.3] [10 points] Prove Lemma 1.3.

Answer: TODO

Lemma 1.4. For any set V , Rad
({∑d

i=1 wivi : wi ∈ R,
∑d

i=1|wi| ≤ B, vi ∈ V
})

≤ BRad(V ∪ (−V )).

[1.4] [10 points] Prove Lemma 1.4. Hint: You might want to apply Lemmas 1.2 and 1.3.

Answer: TODO

Now we’re ready to bound a class of multilayer perceptrons (without bias terms because it makes things
look a little cleaner – in practice, you should use bias terms!). Specifically,

HD = {x 7→ σD(WDσD−1(· · ·σ1(W1x) · · · )) : W1 ∈ W1, . . . ,WD ∈ WD}.

The σi are Mi-Lipschitz elementwise activation functions such that σi(0) = 0; for example, ReLU(x) =
[max(xi, 0)]. The Wi are matrices of shape di × di−1, where the input dimension is d0 = d, the output
dimension is dD = 1, and the in-between dimensions are some arbitrary, fixed sequence. The constraints are

Wi =

W ∈ Rdi×di−1 : ∀j ∈ [di],

di−1∑
k=1

|Wjk| ≤ Bi

 .

Since HD has a nice recursive form, let’s think about “peeling off” a layer at a time: bounding Rad(HD) in
terms of Rad(HD−1). To do this, recall that since we’re dealing with a real-valued network, WD is of shape
1× dD−1, and then notice that for D ≥ 2,

HD ⊆

x 7→ σD

dD−1∑
j=1

(WD)j hj(x)

 : h1, . . . , hdD−1
∈ HD−1,WD ∈ WD

 . (1)
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https://en.wikipedia.org/wiki/Convex_hull


[1.5] [5 points] Prove that Rad(HD|Sx) ≤ 2MDBD Rad(HD−1|Sx).

Answer: TODO

If we define H0 in a way so that (1) also makes sense for D = 1, this leaves us with a bound of the form

Rad(H|Sx
) ≤

(∏D
i=1(2MiBi)

)
Rad(H0|Sx

).

[1.6] [10 points] Give a definition of H0 so that (1) makes sense for D = 1. Bound Rad(H0|Sx) under
the assumption that maxx∈Sx

∥x∥p ≤ C, for some p ∈ [1,∞] of your choice. Your bound should be
O(1/

√
m), treating everything but m as a constant.

Answer: TODO

Armed with this bound, we can show generalization bounds for scalar-output MLPs in the same way as for
anything else: for example, we can immediately get an expectation bound on LD(ERMHD

) for any Lipschitz
loss, and if the loss is also bounded (either “naturally” or based on a bound of |h(x)| as for logistic regression)
then we can get a high-probability bound too. (The bound won’t be very good for very deep networks, though
– it’s exponential in the depth! It’s possible to improve on this somewhat with fancier techniques, but if the
Wi are all norm balls, a dependence on the product of those norms is unavoidable.)
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2 Threshold functions [20 points]

This question is about the class of threshold functions on R:

H = {x 7→ 1(x ≥ θ) : θ ∈ R} .

We showed in class (notes section 6.4.1.1) that VCdim(H) = 1: it can shatter a single point, but it cannot
shatter any set of size two (since it can’t label the left point 1 and the right point 0).

[2.1] [5 points] Use Sauer-Shelah (Lemma 6.12), and also the simpler Corollary 6.10, to give two upper
bounds on the growth function ΓH(m).

Answer: TODO

[2.2] [5 points] Directly derive the exact value of the growth function ΠH from its definition. How tight are
the upper bounds from Question [2.1]?

Answer: TODO

[2.3] [5 points] Plug the previous parts in to upper bound Rad(H|Sx
) for an S containing m distinct real

numbers. You should give multiple bounds here: one for each bound, and one for the exact value of
the growth function.

Answer: TODO

[2.4] [5 points] Give the asymptotic value of Rad(H|Sx
) for an Sx containing m distinct real numbers. Your

answer might look something like “Rad(H|Sx
) = 7m + O(1),” with a justification. To be clear, this

means that 7m− an ≤ Rad(H|Sx
) ≤ 7m+ an for some am = O(1). How does it compare to the bound

from Question [2.3]?

Hint: Imagine playing a (pretty boring) betting game where you bet $1 whether a coin I’m flipping
comes up heads or tails, with even odds. Since all physical coin flips are unbiased, you have a 50-50 shot
of getting it right. The distribution of how much money I owe you is known as a simple random walk.
Your expected winnings at any time t are always 0 (it’s the sum of a bunch of mean-zero variables).
If we play for a while, and then you conveniently “lose” the records of what happened after some time
t that just so happens to be the best possible time for you to have forgotten, you’ll probably be able to
win some money: the expected maximum value achieved at any point during a simple random walk of

length m turns out to be
√

2m
π − 1

2 +O(m− 1
2 ). (This is from equations (4) and (7) of the linked paper,

which you don’t need to read, just FYI.)

Answer: TODO
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http://www.stat.columbia.edu/~gelman/research/published/diceRev2.pdf
https://arxiv.org/abs/cond-mat/0506195


3 Piecewise-constant functions [25 points + 10 challenge points]

Let a = (a1, a2, . . . , ak, 0, 0, . . . ) be an eventually-zero sequence with entries ai ∈ {0, 1}. Then define a
hypothesis ha : R>0 → {0, 1} by

ha(x) = a⌈x⌉ =


a1 if 0 < x ≤ 1

a2 if 1 < x ≤ 2
...

.

Consider the hypothesis class of all such functions: H = {ha : ∀i ∈ N, ai ∈ {0, 1} and a is eventually zero}.
We’ll use the 0-1 loss in this question.

[3.1] [5 points] Show VCdim(H) = ∞.

Answer: TODO

[3.2] [5 points] Give an example of a continuous distribution Dx on (a subset of) R>0 where, for some
m < VCdim(H), samples Sx ∼ Dm

x have probability zero of being shattered by H. Thus prove that,
for any D with this x marginal Dx, ERM over H obtains error at most infh∈H LD(h) + ε(m, δ) with
probability at least 1− δ, where ε(m, δ) is some finite quantity such that limm→∞ ε(m, δ) = 0 for each
δ. By comparison, the VC bound would only show the approximation error is at most ∞.

Answer: TODO

[3.3] [5 points] Write H = H1 ∪ H2 ∪ · · · , where each Hk has a finite VC dimension, and write down an
explicit SRM algorithm that nonuniformly learns H.

By “an explicit algorithm,” I mean to expand out things like the uniform convergence bound for Hk.
It’s okay to write something as an argmin over H like in equation (8.3) of the notes, if you say what
kh is for a given h and give the value of the corresponding Rademacher complexity. It’s also okay to
appeal to the SRM algorithm pseudocode from the notes, as long as you say what’s in each Hk, what
the εk functions are, and how to compute the stopping condition.

Answer: TODO

[3.4] [5 challenge points] Challenge question: Suppose that instead of eventually-zero sequences, we
allowed all possible sequences a ∈ {0, 1}N, e.g. the a that infinitely alternates between 0 and 1 is now
an option. Prove that this bigger H′ is not nonuniformly learnable. This implies a sort of no-free-lunch
theorem for nonuniform learnability.

Hint: Try a diagonalization argument.

Answer: TODO

The following result will be useful momentarily:

Proposition 3.1. Let D be any distribution over the positive integers N, and S ∼ Dm. Define a random
variable QS to be the number of unique samples seen out of m draws, QS = |

{
n : n ∈ S

}
|. Then EQS = o(m).

(Recall little-o notation in this case is equivalent to saying limm→∞
EQS

m = 0.)

[3.5] [5 points] Prove that, for any Dx, ESx∼Dm
x
Rad(H|Sx

) → 0 as m → ∞.

Hint: You can use Proposition 3.1, if you reframe the problem slightly.

Answer: TODO

[3.6] [5 challenge points] Challenge question: Prove Proposition 3.1.

Answer: TODO
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https://en.wikipedia.org/wiki/Cantor's_diagonal_argument
https://en.wikipedia.org/wiki/Big_O_notation#Little-o_notation


[3.7] [5 points] An absentminded professor once made the following argument on the final exam for a course:

If a hypothesis class has ESx∼Dm
x
Rad(H|Sx

) → 0 for all Dx, then for all realizable D,

LD(ĥS) ≤ E
SX∼Dm

x

Rad(H|Sx) +

√
1

2m
log

1

δ
→ 0.

Thus, by the “fundamental theorem of statistical learning,” H must have finite VC dimension.

Clearly this argument is wrong, since it puts Questions [3.1] and [3.5] in contradiction. What was her
mistake?

Answer: TODO
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