CPSC 532D, Fall 2025: Assignment 3
due Friday, 14 November 2025, 11:59 pm

You can do this assignment, and future ones, with a partner. Read the website section on academic
integrity here for what you're allowed to do and not do; in particular, cite your sources (including people
you talked to!) and don’t use ChatGPT /etc for anything content-related. If you're not sure if something is
okay, ask.

Prepare your answers to these questions using IXTEX; hopefully you’re reasonably familiar with it, but if
not, try using Overleaf and looking around for tutorials online. Feel free to ask questions if you get stuck
on things on Piazza (but remove any details about the actual answers to the questions...make a private
post if that’s tough). If you prefer, the .tex source for this file is available on the course website, and you
can put your answers in \begin{answer} My answer here... \end{answer} environments to make them
stand out; feel free to delete whatever boilerplate you want. Or answer in a fresh document if you’d prefer.

Submit your answers as a single PDF on Gradescope: here’s the link. You’ll be prompted to mark where each
question is in your PDF; make sure you mark all relevant pages for each part (which saves us a surprising
amount of grading time).

Make sure you submit using Gradescope’s group feature if you're submitting a joint assignment, and put
both your names on the first page to be safe; if you did the assignment partially together and partially
separately, hand in separate PDFs, and put a note on each question where you worked together like I did
this problem with Alice so we don’t think you cheated. :)

On the off chance something goes wrong, you can also email your assignment to me directly (dsuth@cs.ubc.ca).


https://www.cs.ubc.ca/~dsuth/532D/25w1/#policies
https://canvas.ubc.ca/courses/172832/external_tools/62337?display=borderless

1 Rademacher complexity of deep networks [45 points|

As promised in class, we’re now going to prove a Rademacher complexity bound for deep networks. To do
that, we’re going to build up our repertoire of Rademacher properties a bit first.

Lemma 1.1. If V C W, then Rad(V) < Rad(W).
[1.1] [5 points] Prove Lemma 1.1.
Answer: TODO

Lemma 1.2. Consider finitely many sets V; such that for all o € {—1,1}™, it holds that sup,cy, v- o > 0;
for instance, this holds if 0 € V;, or if for all v € V; we also have —v € V;. Then Rad(U;V;) < >, Rad(V;).

[1.2] [5 points] Prove Lemma 1.2.
Answer: TODO

The convex hull of a set V is the set of all convex combinations of points in V:

conv( U{Zavz al>OZal—1v1,...,vk€V}.

k>1

Lemma 1.3. For any set V, Rad(conv(V)) = Rad(V).
[1.3] [10 points] Prove Lemma 1.3.
Answer: TODO
Lemma 1.4. For any set V, Rad ({ZZ L WYt w; € R, ZZ |wil < B,v; € V}) < BRad(V U (=V)).

[1.4] [10 points] Prove Lemma 1.4. Hint: You might want to apply Lemmas 1.2 and 1.35.
Answer: TODO

Now we’re ready to bound a class of multilayer perceptrons (without bias terms because it makes things
look a little cleaner — in practice, you should use bias terms!). Specifically,

Hp = {33 '—)O'D(WDO'D_l('-'Ul(Wlx)--~)) Wi eWy,...,Wp e WD}.

The o, are M;-Lipschitz elementwise activation functions such that o;(0) = 0; for example, ReLU(x) =
[max(z;,0)]. The W; are matrices of shape d; x d;_1, where the input dimension is dy = d, the output
dimension is dp = 1, and the in-between dimensions are some arbitrary, fixed sequence. The constraints are

di—1
W; = W e R 4=1 15 € [dy], Z|ij| < B;

Since Hp has a nice recursive form, let’s think about “peeling off” a layer at a time: bounding Rad(Hp) in
terms of Rad(Hp—1). To do this, recall that since we're dealing with a real-valued network, Wp, is of shape
1 X dp_1, and then notice that for D > 2,

dp_1
Hp Clawrop | > (Wp)jhj(x) | :hi,...,hap_, € Hp_1,Wp € Wp ¢ (1)
j=1


https://en.wikipedia.org/wiki/Convex_hull

[1.5] [5 points| Prove that Rad(Hp|s,) < 2MpBp Rad(Hp_1ls,)-
Answer: TODO

If we define Hp in a way so that (1) also makes sense for D = 1, this leaves us with a bound of the form
Rad(Hls,) < (T2, (2M; B:) ) Rad(Hals,).

[1.6] [10 points] Give a definition of Ho so that (1) makes sense for D = 1. Bound Rad(Ho|s,) under
the assumption that max,eg, ||z||, < C, for some p € [1,00] of your choice. Your bound should be
O(1/y/m), treating everything but m as a constant.

Answer: TODO

Armed with this bound, we can show generalization bounds for scalar-output MLPs in the same way as for
anything else: for example, we can immediately get an expectation bound on Lp(ERMy ) for any Lipschitz
loss, and if the loss is also bounded (either “naturally” or based on a bound of |h(x)| as for logistic regression)
then we can get a high-probability bound too. (The bound won’t be very good for very deep networks, though
— it’s exponential in the depth! It’s possible to improve on this somewhat with fancier techniques, but if the
W; are all norm balls, a dependence on the product of those norms is unavoidable.)



2 Threshold functions [20 points]

This question is about the class of threshold functions on R:

H={z—1(x>0):0cR}.

We showed in class (notes section 6.4.1.1) that VCdim(#H) = 1: it can shatter a single point, but it cannot
shatter any set of size two (since it can’t label the left point 1 and the right point 0).

[2.1]

[2.2]

[2.3]

[2.4]

[5 points] Use Sauer-Shelah (Lemma 6.12), and also the simpler Corollary 6.10, to give two upper
bounds on the growth function I'y (m).

Answer: TODO

[5 points] Directly derive the exact value of the growth function I3 from its definition. How tight are
the upper bounds from Question [2.1]?

Answer: TODO

[5 points] Plug the previous parts in to upper bound Rad(H|g,) for an S containing m distinct real
numbers. You should give multiple bounds here: one for each bound, and one for the exact value of
the growth function.

Answer: TODO

[5 points] Give the asymptotic value of Rad(H|g,) for an S, containing m distinct real numbers. Your
answer might look something like “Rad(H|s,) = 7m + O(1),” with a justification. To be clear, this
means that 7m — a, < Rad(H|s,) < 7m+ a,, for some a,, = O(1). How does it compare to the bound
from Question [2.3]?

Hint:  Imagine playing a (pretty boring) betting game where you bet $1 whether a coin I'm flipping
comes up heads or tails, with even odds. Since all physical coin flips are unbiased, you have a 50-50 shot
of getting it right. The distribution of how much money I owe you is known as a simple random walk.
Your expected winnings at any time t are always 0 (it’s the sum of a bunch of mean-zero variables).
If we play for a while, and then you conveniently “lose” the records of what happened after some time
t that just so happens to be the best possible time for you to have forgotten, you’ll probably be able to
win some money: the erpected maximum value achieved at any point during a simple random walk of

length m turns out to be 4/ 277" — % + O(m’%). (This is from equations (4) and (7) of the linked paper,
which you don’t need to read, just FYI.)

Answer: TODO


http://www.stat.columbia.edu/~gelman/research/published/diceRev2.pdf
https://arxiv.org/abs/cond-mat/0506195

3 Piecewise-constant functions [25 points + 10 challenge points]

Let a = (a1,a9,...,ax,0,0,...) be an eventually-zero sequence with entries a; € {0,1}. Then define a
hypothesis h, : R~ — {0,1} by

a; if0<ax<l1
ha(x):a[,ﬂ: as 1f1<x§2

Consider the hypothesis class of all such functions: H = {h, : Vi € N,a; € {0,1} and a is eventually zero}.
We'll use the 0-1 loss in this question.

[3.1] [5 points] Show VCdim(H) = oo.
Answer: TODO

[3.2] [5 points] Give an example of a continuous distribution D, on (a subset of) Rs¢ where, for some
m < VCdim(H), samples S, ~ DI have probability zero of being shattered by #. Thus prove that,
for any D with this  marginal D,, ERM over H obtains error at most infpey Lp(h) + e(m, d) with

probability at least 1 — d, where £(m, ) is some finite quantity such that lim,, . £(m,d) = 0 for each
0. By comparison, the VC bound would only show the approximation error is at most oo.

Answer: TODO

[3.3] [5 points] Write H = Hy1 U Ha U - -+, where each Hy has a finite VC dimension, and write down an
explicit SRM algorithm that nonuniformly learns .

By “an explicit algorithm,” I mean to expand out things like the uniform convergence bound for Hy.
It’s okay to write something as an argmin over H like in equation (8.3) of the notes, if you say what
ky, is for a given h and give the value of the corresponding Rademacher complezity. It’s also okay to
appeal to the SRM algorithm pseudocode from the notes, as long as you say what’s in each Hy, what
the i functions are, and how to compute the stopping condition.

Answer: TODO

[3.4] [5 challenge points] Challenge question: Suppose that instead of eventually-zero sequences, we
allowed all possible sequences a € {0,1}", e.g. the a that infinitely alternates between 0 and 1 is now
an option. Prove that this bigger H’ is not nonuniformly learnable. This implies a sort of no-free-lunch
theorem for nonuniform learnability.

Hint: Try a diagonalization argument.
Answer: TODO
The following result will be useful momentarily:

Proposition 3.1. Let D be any distribution over the positive integers N, and S ~ D™. Define a random
variable Qg to be the number of unique samples seen out of m draws, Qs = |{n:n € S}|. ThenE Qg = o(m).

(Recall little-o notation in this case is equivalent to saying lim,, Egs =0.)

[3.5] [5 points| Prove that, for any D, Es, ~pm Rad(H|s,) — 0 as m — oo.
Hint: You can use Proposition 3.1, if you reframe the problem slightly.
Answer: TODO

[3.6] [5 challenge points] Challenge question: Prove Proposition 3.1.
Answer: TODO


https://en.wikipedia.org/wiki/Cantor's_diagonal_argument
https://en.wikipedia.org/wiki/Big_O_notation#Little-o_notation

[3.7] [5 points|] An absentminded professor once made the following argument on the final ezam for a course:

If a hypothesis class has Es,~pm Rad(H|s,) — 0 for all D, then for all realizable D,

. 1 1
< \/=—log = — 0.
Lp(hs) < SX@D? Rad(H|s,) + 5 log 5 0

Thus, by the “fundamental theorem of statistical learning,” H must have finite VC dimension.

Clearly this argument is wrong, since it puts Questions [3.1] and [3.5] in contradiction. What was her
mistake?

Answer: TODO
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