CPSC 532D, Fall 2025: Assignment 1
due Monday, 15 September 2025, 11:59 pm

Do assignment 1 alone; future ones will allow partners. Read the website section on academic integrity
here for what you're allowed to do and not do; in particular, cite your sources (including people you talked
to!) and don’t use ChatGPT /etc for anything content-related. If you're not sure if something is okay, ask.

Prepare your answers to these questions using I#TEX; hopefully you’re reasonably familiar with it, but if
not, try using Overleaf and looking around for tutorials online. Feel free to ask questions if you get stuck
on things on Piazza (but remove any details about the actual answers to the questions...make a private
post if that’s tough). If you prefer, the .tex source for this file is available on the course website, and you
can put your answers in \begin{answer} My answer here... \end{answer} environments to make them
stand out; feel free to delete whatever boilerplate you want. Or answer in a fresh document if you’d prefer.

Submit your answers as a single PDF on Gradescope: here’s the link. You’ll be prompted to mark where each
question is in your PDF; make sure you mark all relevant pages for each part (which saves us a surprising
amount of grading time).

On the off chance something goes wrong, you can also email your assignment to me directly (dsuth@cs.ubc.ca).


https://www.cs.ubc.ca/~dsuth/532D/25w1/#policies
https://canvas.ubc.ca/courses/172832/external_tools/62337?display=borderless

1 Loss functions [50 points]

As a reminder, the general form of learning problems we’ll usually work with in this course is as follows: D
is some distribution over a space Z, and £ : H x Z — R is a loss function.

For example, classification problems are often framed with Z = X x ), with the zero-one loss function
L(h,(z,y)) = L(h(z) # y). The true risk is Lp(h) = E,.pl(h,z), and the empirical risk is Lg(h) =
LS~ U(h, z;) for a sample S = (z1,...,2y,) ~ D™, ie. the z; are iid following D.

m

(1.1) [5 points] Show the empirical risk is an unbiased estimator of the true risk: E Lg(h) = Lp(h) for all
heH.

Answer: TODO

(1.2) [5 points] Show that the expected zero-one loss for k-way classification (Y = [k] = {1,...,k}) is equal
to one minus the expected accuracy (the portion of correct answers on samples from D).

Answer: TODO

(1.3) [10 points] For the canonical ImageNet Large Scale Visual Recognition Challenge, images are given
with one of a thousand possible labels, and one major way of evaluating those models is the top-5
error rate: models can make 5 guesses at the label, and we count how often the correct label is not
any of those 5 guesses. Frame this in the language above: what kind of object does h(zx) output, and
what does £(h, (z,y)) look like?

Answer: TODO

(1.4) [10 points] Semantic segmentation is a computer vision problem where we try to label each pixel of an
image as belonging to one of k classes (“tree,” “street,” “dog,” etc.). Let S = ((x1,y1), -, (Zn,Yn))
where z; are the given input images in, say, R**%*3 and y; € [k]"** are their corresponding pixel
labels.! One typical evaluation metric is called mIoU (“mean intersection over union”). One minus
the mIOU (to make it a nonnegative “loss” to minimize) is measured on a test set as follows:

Qs =1 1 zk: # of pixels from all images in S that are correctly predicted as ¢
5 k pat # of pixels from all images in S that are predicted as ¢ and/or have true label ¢’

Argue that this metric cannot be expressed using the form of loss function above on the given S. (A
formal proof isn’t necessary on this question, just a good convincing intuitive argument — but a formal
proof is one way to be very convincing.)

Answer: TODO

(1.5) [10 points] Principal component analysis (PCA) is a common technique that can try to find an under-
lying low-dimensional structure by a linear mapping to a low-dimensional space: a data point z € R?
is mapped to a latent code z = Wz € R, where W € RF*¢ is a matrix with orthonormal rows
(WW'T = I) that we want to learn. To reconstruct a point from its latent code z, we take W' z. To
find W, we minimize the squared reconstruction error on a training set:

arg min ZHWTWl‘Z — % (PCA)
WWWT=I5"7

Frame PCA as an empirical risk minimization problem: what are the data domain Z, the sample S,
the hypothesis class H, and the loss function ¢ : H x Z — R such that the set of ERMs is exactly the
set of solutions to (PCA)?

Answer: TODO

L[k] is semi-common notation for {1,2,...,k}; thus y; is an h x w array of integers between 1 and k.




(1.6) [10 points] Frame the problem of fitting a Gaussian distribution to a set of independent scalar obser-
vations as loss minimization, like above: what are the data domain Z, the sample S, the hypothesis
class H, and the loss function £ : H x Z — R such that the ERM agrees with the maximum likelihood
estimate? You can assume that the maximum-likelihood Gaussian is non-degenerate, i.e. has strictly
positive variance.

Answer: TODO



2 Bayes optimality [40 points]

A Bayes-optimal predictor is a predictor which achieves the lowest possible error for any function, regardless
of a choice of hypothesis class.?

We'll consider losses of the form £(h, (z,y)) = I, (h(x)), where h: X — Y and I, : Y — R for each y € V.

A Bayes-optimal predictor has no pesky constraints on the form of function it’s going to be, so it can just
give an arbitrary different prediction for each . Let F(x) denote the conditional distribution of y for a given
z under D: if D is deterministic, this won’t be a very interesting distribution (a point mass), but in general
it might be more complicated. You might find it helpful to also use D, to denote the marginal distribution
of z under D.

(2.1) [10 points] Argue that if » and g are predictors such that for every , E, (4 Iy (h(7)) < Eyor @) ly(9(2)),
then we necessarily have that Lp(h) < Lp(g).

Answer: TODO

Thus, we can find a generic Bayes-optimal predictor according to

fpi(z) €argmin  E  1,(y).
’ gey v~F@)

(2.2) [10 points| Use the above formulation to argue that

1 if Pryormy=1) >1
s1(x) =
fD’Ol( ) {0 otherwise

is Bayes-optimal for binary classification problems with J = {0, 1} under 0-1 loss {,,(9) = 1(y # ).
Answer: TODO

(2.8) [10 points] Use the above formulation to derive the Bayes-optimal predictor for a binary classification
problem with the loss of an “is this mushroom edible” classifier:

0 ifg=y
I,(5) =< 0001 if§=0y=1
1 ifj=1, y=0.

Answer: TODO

(2.4) [10 points] Use the above formulation to argue that

sq\ L) = E
fD7q( ) yw}_(x)y

is Bayes-optimal for scalar regression problems with square loss 1, (§) = (§ — y).

Answer: TODO

2As usual in this course, I'm ignoring issues of measurability; this should all be formalizable by being appropriately careful
and using “disintegrations” of probability measures, etc, but for the purpose of this question you can just ignore such issues.



3 Interpolation learning [10 challenge points]

Assignments in this course will generally have challenge questions. These questions are harder than the
other ones, and worth a total of 10 points, so the effort:points ratio is much higher. If you never touch the
challenge questions but get everything else right, you can still get a 90 (the lowest possible A+) in the course.
But I think they’re interesting questions, so if you have the time to spend, you might learn something.

(This one is not that hard, especially the first parts! Try giving it a shot.)

Consider a supervised learning setup, where H contains functions X — ), and the training data is a subset
of Z =X x ). Let’s restrict ourselves to losses of the form ¢(h, (z,y)) = l,(h(z)) and further assume that
ly(g) > 0 for all y, 3.

Say that a nonnegative loss of this form is strictly proper if a sequence of predictions (g,) satisfies [, (g;) —
if and only if §; — y. The squared loss I, (§) = (y — §)? is strictly proper; something weird like I, (7))

l o

(y—1) - Q)Q is not, and neither is the logistic loss I, () = log(1 + exp(—yy)).

(3.1) [2 points] Show that the set of interpolators, Gg = {h € H : Lg(h) = 0}, is the same for any strictly
proper nonnegative loss.

Answer: TODO

(3.2) [2 points] What does the previous part imply about the set of possible ERMs in H across multiple
strictly proper nonnegative losses?

Answer: TODO

(3.3) [3 points] Let X = RY, Y =R, and H = {h,, = (z = w-z) : w € R4}, Let £ be a strictly proper
nonnegative loss such that for each y € R, [, : R — R is differentiable.
Gather the z; from S into X € R™*? and the y; into y € R™. Suppose that m < d and that X is of
rank m, implying that there are multiple w for which Lg(h,,) = 0.
Thus, there are many possible ERM rules; some of them might generalize well and some might not. As
we’ll explore in more depth later in the course, it’s then interesting to ask which solution a particular
algorithm will find, so that we can then ask whether we expect that algorithm to work well in general.
Consider the following learning algorithm, a simple version of gradient descent:

e Take as input a starting guess wo, a learning rate n > 0, and a dataset S = ((z1,91), -, (T Ym))-

e Fort=0,1,...:
— Let wepy =wy —n = >, by, (wy - i) ;.
We'll prove later in class that under some conditions on S, I, and 7, this algorithm converges: w; —
Weo, Where Wy is an ERM. Assume that this happens in this situation.

Give a closed-form expression for we, in terms of X, y, and wg. This can include things like matriz
multiplication and inversion, but no looping, arg min, etc.

Hint: Consider which directions it is possible for each step to move in, regardless of the particular
choice of loss; it will not be the whole space R?. This will let you characterize a subset of possible
values that the wy could conceivably take. Reconcile that characterization with the set of w for which
Lg(hy) = 0; that will leave you with a matriz expression for we.

Answer: TODO

(3.4) [3 points| Prove that your answer to the previous part implies weo = argmin,,.r, (. )=ollw — wol|: we
converge to the closest interpolator to where we started.



Hint: This part is fairly “geometric,” assuming you got the right answer in the previous part. There
are many good approaches, but my preferred one is usually to write things in terms of the singular value
decomposition; there’s a brief overview of this, if you’re not super familiar, on the course website.

Answer: TODO
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