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• A good thing for deep learning: universal approximation


• Two major challenges for using ERM to explain deep learning:

• We don’t do ERM, because it’s NP-hard to compute

• Uniform convergence ERM bounds might not be enough for generalization
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Deep learning: VC dimension
• For ReLU (or general piecewise-linear) nets with  params and depth :


• VCdim = , , so nearly tight [BHLM19]


•  for fully-connected networks


• For piecewise-constant, e.g. threshold functions, VCdim = 

• For piecewise-polynomial, ,  with  units

• For sigmoids/similar,  and 

• Theorem 8.13/8.14 of Anthony & Bartlett (1999) textbook - UBC access 

P D
𝒪(PD log P) Ω(PD log P

D )
P =

D

∏
k=1

dℓ−1dℓ

Θ(P log P)
𝒪(PD2 + PD log P) 𝒪(PU) U

𝒪(P2U2) Ω(P2)

3

https://jmlr.org/papers/v20/17-612.html
https://go.exlibris.link/dfCmBkCW


Problems with parameter counting
• We use networks with a lot of parameters

• ResNet-50 has ~25 million parameters and depth 50: VCdim > 1 billion 

• We can train our networks to get zero error even for random labels

• Even AlexNet can shatter CIFAR-10, almost shatter ImageNet

• Neyshabur et al. (2015), Zhang et al. (2017)
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• But these architectures do generalize well – VC of arch. can’t explain that 

• Making hidden layers wider can often improve generalization, 
but worsens parameter counting-based bounds


• Remember that  has infinite VCdim for universal kernels, 
but we can still learn with small-norm predictors

ℋk
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Rademacher complexity
• My solution to assignment 2, question 3 showed:

• for depth-  nets whose weights  have all rows  and no intercept,


• if they use componentwise -Lipschitz activations with ,


• if  a.s., the Rademacher complexity 


• A similar but fancier proof (see here) gives that if  and all ,


• the Rademacher complexity 


• Another way via covering numbers gives bound based on 


• Product of spectral norms upper bounds the Lipschitz constant of the net
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https://mjt.cs.illinois.edu/dlt/#second-layer-peeling-proof-frobenius-norm
https://arxiv.org/abs/1706.08498


Problem with norm-based bounds
• These kinds of bounds tend to be “vacuous” (e.g. prove 0-1 error is less 

than 17) for realistic problems
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degree 1: 
ERM is unique

Some ERMs actually might not generalize
degree 10: 

ERM is unique
degree 20: 

ERM is unique
degree 20: 

ERM is unique

(m = 20, y = cubic(x) + noise)

inspired by Nakkiran et al. blog post's companion notebook

degree 25: 
multiple ERMs. some okay…

degree 25: 
some bad!

“best” =  for min
h:LS(h)=0

L𝒟(h) 𝒟x = Uniform([−1,1])

https://windowsontheory.org/2019/12/05/deep-double-descent/
https://colab.research.google.com/drive/1oMuUz3_BOENSoaOVOymLoB2mHeYBex8S


Some algorithms generalize, some don’t
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degree 1,000:

min
LS(h)=0

L𝒟(h) , using Legendre basis


linear combination of orthogonal polynomials

min
LS(h)=0

∥h∥ , using Vandermonde form
min
LS(h)=0

∥h∥

h(x) = w0 + w1x + w2x2 + … + wdxd

∥h∥Legendre ≈ 2 ∥h∥Legendre ≈ 700,000

,  okay-ishLS(h) = 0 L𝒟(h),  almost Bayes errorLS(h) = 0 L𝒟(h) ,  awfulLS(h) = 0 L𝒟(h)

∥h∥Vandermonde ≈ 2,000,000,000,000 ∥h∥Vandermonde ≈ 2,000,000



10 Belkin/Hsu/Ma/Mandal, PNAS 2019

Double descent

Classical regime 
(left of peak): 
unique ERM

Interpolating regime 
(right of peak): 
many possible 
interpolators

which one we get 
depends on

the algorithm

https://www.pnas.org/doi/abs/10.1073/pnas.1903070116
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https://arxiv.org/abs/1912.02292
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• Claim: double descent isn’t “really” about interpolation

• For trees, gradient boosting: previous experiments start ensembling 

after the model interpolates (so you can keep adding parameters)

• For linear regression: more subtle, but can view it that way too

• Red regime actually decreases (one notion of) “effective” parameters


• This paper (October 29) doesn’t try to  
explain the neural setting
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https://arxiv.org/pdf/2310.18988v1.pdf

