
CPSC 532D — 9. MARGINS AND SVMS

Danica J. Sutherland

University of British Columbia, Vancouver

Fall 2023

1 motivation

Recall sgn(t) is 1 if t ≥ 0,
−1 otherwise.Remember that a linear classifier is given by h(x) = sgn(w · x + b ≥ 0); a homogeneous

linear classifier is h(x) = sgn(w · x). You can reduce from a general linear classifier
to a homogeneous one by changing the data: use x̃ =

[
1 x

]
∈ Rd+1 and w̃ =

[
b w

]
.

So, for now, we’re only going to worry about homogeneous classifiers. (Sometimes
adding an intercept back in ends up being nontrivial, though – pay attention to that
step!)

Letting H = {x 7→ sgn(w · x) : w ∈ Rd}, we know from our study of VC theory that
VCdim (H) = d and each of the following hold for 0-1 loss with probability at least
1 − δ over the choice of S ∼ Dm:

sup
h∈H

LD(h) − LS(h) ≤
√

2d
m

[logm + 1 − log d] +

√
1

2m
log

1
δ

LD(ĥS) − inf
h∈H

LD(h) ≤
√

2d
m

[logm + 1 − log d] +

√
2
m

log
2
δ

where ĥS is any ERM.

So, for any fixed d, this means that ERM will work once m is big enough. But
sometimes we have a really big d, and this doesn’t tell us anything until m/ logm >
2d. Sometimes we even have an infinite d, and then this doesn’t tell us anything at
all; this is often the case with kernel methods.

Often, though, when d is big we end up with a hypothesis h that has small norm. This
might be because we explicitly try to find a small-norm solution, and/or because
our optimization algorithm implicitly prefers small-norm solutions; more on both
situations later in the course.

To analyze that, let’s again use HB = {x 7→ w · x : ∥w∥ ≤ B} – note this is a class that
outputs continuous real numbers, not “hard” classifications, but we can get a class
of binary classifiers out with sgn ◦HB.

But note that VCdim(sgn ◦HB) = d for any B: since VC dimension is worst-case
over all possible input distributions, we can take any set that the full H can shatter
and just scale it up so that we can still shatter it with a small-norm predictor. So,
we’ll need a distribution-dependent notion of complexity to do better than this;
something like Rademacher complexity.

Now, recall from the Rademacher notes that ES Rad
(
HB

∣∣∣
Sx

)
≤ B√

m

√
E ∥x∥2. To

use this in a generalization bound for the 0-1 loss, though, we’d need to bound
ES Rad

(
(ℓ0−1 ◦ sgn ◦HB)

∣∣∣
S

)
. The only way we really know how to deal with “peeling”

off functions like that is Lipschitz functions, with Talagrand’s lemma. But ℓ0−1 ◦ sgn

For more, visit https://cs.ubc.ca/˜dsuth/532D/23w1/.

1

https://cs.ubc.ca/~dsuth/532D/23w1/notes/6-vc.pdf
https://cs.ubc.ca/~dsuth/532D/23w1/notes/5-rad.pdf
https://cs.ubc.ca/~dsuth/532D/23w1/

9. Margins and SVMs CPSC 532D

isn’t Lipschitz: it changes suddenly from 0 to 1 when the prediction shifts from zero
to anything negative.

(In the VC derivation we pretended ℓ0−1 was Lipschitz, but we could only do that
because our H mapped to {−1,1}; we can’t play any similar trick with sgn for HB
mapping to continuous values in R.)

Another problem is that computing the ERM with respect to 0-1 loss, in the case
where LD(h∗) > 0, is actually NP-hard [BS00]! (You can reduce a SAT variant to it.)

2 surrogate losses

We can work around both problems with surrogate losses.

One version we’ve already talked about is by using the logistic loss, which is 1-
Lipschitz, so we can apply Talagrand. But this bounds things only in terms of the
logistic loss. It turns out, though, that we’ll be able to use this to say something
about accuracy.

In particular, if yh(x) > 0, then ℓ0−1(h, z) = 0 < ℓlogistic(h, z). Otherwise, if yh(x) ≤ 0,
then llogistic ≥ log(1 + exp(0)) = log 2, and so 1

log 2 llogistic(h, z) ≥ 1 ≥ l0−1(sgn ◦h, z).

So, suppose that we have some loss ℓsurr such that ℓsurr(h, z) ≥ ℓ0−1(sgn ◦h, z) for all
h, z. Then Lsurr

D (h) = Ez ℓsurr(h, z) ≥ Ez ℓ0−1(sgn ◦h, z) = L0−1
D (sgn ◦h). Thus, if we

pick such a surrogate loss that’s also ρ-Lipschitz and bounded in [a, b], we get by
Talagrand and our Rademacher concentration results that with probability at least
1 − δ,

L0−1
D (sgn ◦h) ≤ Lsurr

D (h) ≤ Lsurr
S (h) + 2ρE

S
Rad(H|Sx

) + (b − a)

√
1

2m
log

1
δ
.

Ideally, we’d have a surrogate loss that also makes ERM easy to solve with respect
to that loss; if Lsurr

S (h) is small, this would give small 0-1 loss as well. Logistic
regression is one, when ∥x∥ is bounded: we can just multiply our previous bound by
log 2 and get a bound on the accuracy.

Logistic regression is a pretty loose upper bound, though: if h is really wrong, this
ℓsurr grows without bound, while ℓ0−1 ◦ sgn stays just 1. So let’s look at a tighter
analysis and not worry about solving it first.

3 analysis with ramp loss

One natural way to get a bounded, 1-Lipschitz upper bound on the 0-1 loss is with
the ramp loss

ℓramp(h, (x, y)) = l
ramp
y (h(x)) =

1 yh(x) ≤ 0

1 − yh(x) 0 ≤ yh(x) ≤ 1

0 1 ≤ yh(x)

.

That is, if we make an incorrect prediction, sgn(h(x)) , y, we get 1 loss. If we make
a correct prediction and are confident enough in it, |h(x)| ≥ 1, we get 0 loss. But in
between, when we’re right but not very confident, we incur some partial loss. This
is indeed an upper bound on the 0-1 loss, lramp

y is 1-Lipschitz, and it’s bounded in

2

[0, 1], so we have with probability at least 1 − δ for all h in a real-valued H that

L0−1
D (sgn ◦h) ≤ Lramp

D (h) ≤ Lramp
S (h) + 2E

S
Rad(H|Sx

) +

√
1

2m
log

1
δ
. (1)

Now let’s look at linear classifiers, and assume E ∥x∥2 ≤ C2. For predictors from
HB = {x 7→ w · x : ∥w∥ ≤ B}, we have

L0−1
D (h) ≤ Lramp

S (h) +
2BC
√
m

+

√
1

2m
log

1
δ
. (2)

What about that ramp loss term?

One nice special case when the distribution is separable with margin 1, mean-
ing that there’s a w∗ such that Pr(x,y)∼D (yx · w∗ ≥ 1) = 1. Then we know that
infh∈H∥w∗∥ Lramp

D (h) = 0. Plugging into (2) tells us that any predictor ĥ = hŵ = ŵ · x
with Lramp

S (ĥ) = 0 and ∥ŵ∥ ≤ ∥w∗∥ has

L0−1
D (sgn ◦ĥ) ≤ 2C ∥w∗∥√

m
+

√
1

2m
log

1
δ
. (3)

Notice that if the distribution is separable with margin γ, scaling w by 1/γ makes it
separable with margin 1. So, if the distribution is separable with any finite margin,
then there is some h∗ = hw∗ that separates with margin 1, i.e. achieves Lramp

S (h∗) = 0.
Ramp-loss ERM on H∥w∗∥ would then necessarily get zero sample ramp loss, and

achieve generalization 0-1 error of 2C∥w∗∥√
m

+
√

2
m log 2

δ
.

The problem is, though, we presumably don’t know ∥w∗∥ in advance, and so it’s
not obvious what H to use for ERM. We could do some version of SRM, but if
the distribution is separable with a margin, we can actually still do ERM without
explicitly knowing the hypothesis class beforehand by finding “Interpolator” in this

context means “something
that achieves zero sample
error,” generalizing the
notion of, say, polynomial
interpolation.

the minimum-norm
interpolator:

ŵ = arg min ∥w∥ s.t. Lramp
S (hw) = 0. (4)

This will have ∥ŵ∥ ≤ ∥w∗∥, so it is an ERM in for separable data, meaning it’s a decent
learning algorithm on separable data. We’ll think about this algorithm more in a
moment.

The actual value of the bound in (3), though, depends on ∥w∗∥, which we don’t know
– the disadvantage of using an implicit H! But we can use an argument like the one
we used for SRM to get a bound that only depends on ∥ŵ∥:

proposition 1. Let E(x,y)∼D ∥x∥2 ≤ C2, and hw(x) = sgn(ŵ · x). You can think of either
r = 1 or r small; it’s an
annoying technicality. (The
best choice is r = ∥ŵ∥, but
we can’t choose it based on
data.) Theorem 26.14 of
[SSBD] doesn’t have it, but
that’s because that
theorem is wrong.

Then for any δ ∈ (0, 1)
and r > 0 fixed independent of the data, we have with probability at least 1 − δ over the
choice of sample S ∼ Dm that for all w ∈ Rd ,

L0−1
D (sgn ◦hw) ≤ Lramp

S (hw)+
1
√
m

√1
2 log 2

δ
+

4Cr if ∥w∥ ≤ r

4C ∥w∥ +
√

log log2
2∥w∥
r if ∥w∥ ≥ r

 .

Proof. Define Bk = r2k and δk = 6δ
π2k2 for all k ≥ 1, noting

∞∑
k=1

δk = δ. For each k, it

3

9. Margins and SVMs CPSC 532D

holds with probability at least 1 − δk that

∀h ∈ HBk
. L0−1

D (sgn ◦h) ≤ Lramp
D (h) ≤ Lramp

S (h) +
2BkC
√
m

+

√
1

2m
log

1
δk

. (5)

For any h = hw with ∥w∥ ≤ r = 1
2 B1,This bit of the analysis

would work for ∥w∥ ≤ 2r,
but the final bound will be

continuous (though slightly
looser) if we switch at norm

r instead.

we have h ∈ HB1
, which has δ1 = 6δ/π2.

Upper-bounding π2/6 ≈ 1.64 by 2 for simplicity, loosening (5) for HB1
slightly gives

L0−1
D (sgn ◦h) ≤ Lramp

S (h) +
4Cr
√
m

+

√
1

2m
log

2
δ
.

Otherwise, we have ∥w∥ > r. Let kw =
⌈
log2

∥w∥
r

⌉
≥ 1; then

Bkw = r2kw = r2
⌈
log2

∥w∥
r

⌉
< r21+log2

∥w∥
r = 2 ∥w∥ ,

so that h ∈ HBkw
. Also,

1
δkw

=
π2k2

w

6δ
=

π2/6
δ

⌈
log2

∥w∥
r

⌉2

.

Using that π2/6 < 2 and ⌈log2 a⌉ < log2(a) + 1 = log2(2a),

log
1
δiw
≤ log

2
δ

+ 2 log log2
2 ∥w∥
r

.

Thus (5) shows, with a slight loosening for simplicity,

L0−1
D (sgn ◦h) ≤ Lramp

S (h) +
4C ∥w∥√

m
+

√
1

2m
log

2
δ

+

√
1
m

log log2
2 ∥w∥
r

.

Unioning these bounds over all k ≥ 1 gives the desired result.

If we pick an r that’s much smaller than any reasonable ∥ŵ∥ but not so small that
log log2

1
r is significant, we get for ŵ that separate the sample S with margin 1

that, roughly, L0−1
D (ŵ) ≈ Op(∥ŵ∥ /

√
m). This reinforces that the minimum-norm

interpolator seems like a good idea, when we think the distribution is separable
with a margin.

4 ramp interpolation = hard svm = max margin

How can we find this min-norm interpolator, and what does it mean?

Expanding out the definition of Lramp
S , (4) is equivalent to

ĥ = hŵ; ŵ ∈ arg min
w

∥w∥2 s.t. ∀i ∈ [m], yiw · xi ≥ 1. (HardSVM)

This form is a convex quadratic program, a well-studied class of optimization prob-
lems. This is known as a (hard) support vector machine (SVM).

The usual motivation for SVMs is in terms of margin maximization. We can see this

4

by noting that (HardSVM) is equivalent to

ŵ = arg max
w

1
∥w∥

s.t. ∀i ∈ [m], yiw · xi ≥ 1

= arg max
w

1
∥w∥

min
i∈[m]

w · xi s.t. ∀i ∈ [m], yiw · xi ≥ 1

⊆ arg max
w

min
i∈[m]

w · xi
∥w∥

s.t. ∀i ∈ [m], yiw · xi > 0.

In the second line, mini∈[m] w · xi will equal 1 for any optimal w: it must be at least
1 for the constraint to hold, and if it were bigger we could just scale down w to also
scale down all the predictions, which would improve the objective while keeping
the constraints valid.

In the third line, the objective is invariant to scaling w by a constant, so any multiple
of a w that minimized the second line will minimize the third line.

Also, if we scale any minimizer for the third line by mini∈[m] yiw · xi , we’ll get a
minimizer for the second line. Note that scaling by a positive constant doesn’t
change the hard classifier, sgn(w · x) = sgn(cw · x) for c > 0; it just changes our
confidence score.

The quantity w · xi/ ∥w∥ is the geometric margin of the point xi : it’s the distance of xi
from the hyperplane {z : w · z = 0}. (For a formal proof of this fact, see Claim 15.1 of
[SSBD].)

So, (HardSVM) maximizes the worst-case geometric margin on the training set,
and anything maximizing the geometric margin will be a multiple of a solution to
(HardSVM).

Thus, if Lramp
S (w) = 0, then 1

∥w∥ is at least the worst-case geometric margin (with
equality for the max-margin solution).

For a graphical illustration of these concepts, I should probably add
similar illustrations here.

see Figures 5.1 to 5.3 of [MRT].

Note that, as a convex QP, we can solve (HardSVM) in polynomial time – e.g. with a
generic interior point algorithm [YT89], although there are many specialized solvers

and other possibilities. Thus, if m ≥ 1
ε2

[
2C ∥w∗∥ +

√
2 log 2

δ

]2
then we efficiently

achieve 0-1 loss less than ε with probability at least 1 − δ.

This doesn’t violate NP-hardness for 0-1 loss ERM, since it’s only for separable
distributions. It also doesn’t contradict our VC dimension lower bounds, since we
have two assumptions on D here: separability with a margin and the bound C on
the norm of the data. (It doesn’t even establish nonuniform learning, because of the
dependence on C.)

5 hinge loss and soft svm

When the data isn’t linearly separable, (HardSVM) will just fail: the constraints
aren’t achievable, so it’s minimizing over an empty set.

A natural idea is to try to trade off between having a small Lramp
S (h) and a small

∥w∥. For example, like in SRM, we could try to minimize the upper bound in
Proposition 1. We could try to literally do that, but choosing an r and whatnot is
annoying, so we might prefer to avoid worrying about. Being a little fuzzy, pretend
we pick an r small enough that max{r, ∥w∥} = ∥w∥ for any “reasonable” w but not so

5

9. Margins and SVMs CPSC 532D

small that
√

log log2
1
r is relevant to anything. Also, the

√
log log2 ∥w∥ term is also

not going to be at all relevant compared to the ∥w∥ term. So, it seems reasonable to
try to pick

arg min
w

Lramp
S (hw) +

4C
√
m
∥w∥ .

Unfortunately, solving this problem is still NP-hard [MI15, Theorem 2.3].

To dodge this, we can again take a surrogate loss, ℓhinge ≥ ℓramp ≥ ℓ0−1 given by

ℓhinge(h, (x, y)) = lhinge(h(x)) =

1 − yh(x) if yh(x) ≤ 1

0 if yh(x) ≥ 1.

This is like the ramp loss, except once it starts going, it never stops: you get more
loss for a more-confident wrong answer. This loss is still 1-Lipschitz, but it’s not
bounded. More importantly, though, it’s convex, which makes it easy to optimize.
(We’ll talk more about convexity shortly.)

5.1 Hinge loss ERM with bounded weights

It then makes sense to try to have both small Lhinge
S and small ∥w∥. We can see from

(2) that, for example, if
ĥB = arg min

h∈HB

Lhinge
S (hw), (6)

since ℓhinge ≥ ℓramp, with probability at least 1 − δ

L0−1
D (sgn ◦ĥB) ≤ Lhinge

S (ĥB) +
2BC
√
m

+

√
1

2m
log

1
δ
.

While ℓhinge is unbounded, we know that suph,x |h(x)| ≤ 1 + suph,x ∥w∥ ∥x∥. Thus
if we strengthen our assumption on D to Pr(∥x∥ ≤ C) = 1, our usual route of
Lhinge

S (ĥB) ≤ Lhinge
S (h∗), applying Hoeffding to Lhinge

S (h∗), and choosing the best h∗

yields

L0−1
D (sgn ◦ĥB) ≤ inf

h∈HB

Lhinge
D (h) +

2BC
√
m

+ (2 + BC)

√
1

2m
log

2
δ
.

5.2 Bound minimization

Rather than picking a hard constraint B a priori, which might be difficult, we could
do something SRM-like with Proposition 1 and let ĥ = hŵ minimize

Lhinge
S (hw) +

1
√
m

4Cr if ∥w∥ ≤ r

4C ∥w∥ +
√

log log2
2∥w∥
r if ∥w∥ > r.

(7)

Then, like in SRM, we know that quantity is minimized for ŵ, and so can say
that, for any arbitrary h∗ = hw∗ , assigning 2

3δ failure probability for the bound of

Proposition 1 and 1
3δ probability for a Hoeffding bound on Lhinge

S (h∗), and again

6

assuming that ∥x∥ ≤ C a.s.,

L0−1
D (sgn ◦ĥ) ≤ Lhinge

S (ĥ) +
1
√
m

√1
2 log 3

δ
+

4Cr if ∥ŵ∥ ≤ r

4C ∥ŵ∥ +
√

log log2
2∥ŵ∥
r if ∥ŵ∥ ≥ r

≤ Lhinge

S (h∗) +
1
√
m

√1
2 log 3

δ
+

4Cr if ∥w∗∥ ≤ r

4C ∥w∗∥ +
√

log log2
2∥w∗∥

r if ∥w∗∥ ≥ r

≤ Lhinge

D (h∗) +
1
√
m

(2 + C ∥w∗∥)
√

1
2 log 3

δ
+

4Cr if ∥w∗∥ ≤ r

4C ∥w∗∥ +
√

log log2
2∥w∗∥

r if ∥w∗∥ ≥ r

 ,
where here h∗ is any arbitrary predictor in H. This is like a nonuniform learning
bound, but only for D satisfying ∥x∥ ≤ C.

If D is separable, we can take h∗ to be the minimum-norm predictor achieving zero
distribution hinge loss, in which case we know that (7) has zero-one error decaying
like 1/

√
m. Again assuming that r is small but not so small that the log log2 term is

meaningfully non-constant, LD(sgn ◦ĥ) ≈ Op

(
C∥w∗∥√

m

)
= Op

(
C

margin·
√
m

)
5.3 Soft SVM

Unfortunately, the optimization problem (7) is kind of a huge pain. It’s not even
convex, because of the

√
log log2 ∥w∥ term. Again, we can reason that we can prob-

ably ignore r and the
√

log log2 ∥w∥ term, and argue for instead minimizing the
nearly-equivalent

Lhinge
S (hw) +

4C
√
m
∥w∥ .

It’s not obvious that these bounds are especially tight, though, so maybe 4C√
m

isn’t the
right constant to trade off between the loss and ∥w∥. Also, it turns out to be more
convenient to minimize with ∥w∥2 rather than ∥w∥. Soft SVMs use the squared norm
of w and replace 4C/

√
m with a hyperparameter λ:

ĥλ = hŵλ
; ŵλ ∈ arg min

w
Lhinge

S (hw) + λ ∥w∥2 . (SoftSVM)

(In the version with an intercept b, we typically don’t add λb2 to the loss; this is one
difference from the homogeneous reduction.)

The constrained ERM (6) If you know convex
optimization: set up the
Lagrangian of either
problem; strong duality
holds via Slater’s condition.

and the regularized (SoftSVM) are in fact dual to each
other, in the sense that for any B there is some λ such that ĥB’s weight vector agrees
with ŵλ, and vice versa. (We can’t just write down a given B for a given λ or
vice-versa, though, unfortunately.)

Soft SVMs also have a nice motivation in terms of margin maximization. The classic framing is

C L
hinge
S (hw) + ∥w∥2; there

the penalty for moving
points around is C. You can
think of C = 1

λ
.

If hw
classifies a point x correctly with margin at least 1, then it doesn’t contribute to the
objective at all. If it’s “inside” the margin or even misclassified, though, we get loss
equal to the distance by which we’re on the wrong side of the margin. One way to
consider this is as a hard SVM on a modified problem, where we drag points around
to be on the margin, and penalize how much dragging around we need to do.

In the limit as λ → 0, on separable data, (SoftSVM) becomes (HardSVM). Soft

7

9. Margins and SVMs CPSC 532D

SVMs with a nonzero λ might give different results from hard SVMs, though, even
on separable data: they might allow a few points to violate a bigger “theoretical”
margin.

To analyze ŵλ directly, we can still use Proposition 1 and (if we like) bound the
ramp loss by the hinge loss: the result holds for all linear predictors. This gives
us an upper bound on L0−1

D (ĥλ) in terms of Lhinge
S (ĥλ) and ∥ŵλ∥. It’s more difficult

to relate this to the loss of a comparison hypothesis h∗, though we can maybe take
some solace in (SoftSVM) being similar to (7), which does have an actual bound.

Or, instead, we can use stability bounds (discussed soon).

6 svm duality

The following stuff is historically very important, serves as a nice segue into our next
topic, explains the name “support vector machine,” and introduces an area of math
that’s profoundly important to optimization / often useful in theory / beautiful in
its own right. It’s not, however, as practically important as it once was.

6.1 Hard SVM

Starting from (HardSVM), we can rewrite these hard constraints by introducing dual
variables αi for i ∈ [m]:

min
w

1
2
∥w∥2 s.t. ∀i. yiw · xi ≥ 1 = min

w
max
αi≥0

1
2
∥w∥2 +

m∑
i=1

αi(1 − yiw · xi).

If any of the yiw · xi < 1, then the inner maximizer can drive αi →∞ and make the
objective arbitrarily big; the outer minimizer, then, can’t allow that to happen. For
any yiw · xi > 1, the inner maximizer will prefer to pick αi = 0. If any are exactly
yiw · x = 1, then it doesn’t matter what αi it picks.

We’ve already used in class that minx maxy f (x, y) ≥ maxy minx f (x, y).Reminder: start from
maxy f (x, y) ≥ f (x, y′).

In this
setting, this is called weak (Lagrangian) duality. In this case, though, we actually
have strong duality via something called Slater’s condition: swapping the min and
the max doesn’t change the value.Slater’s condition holds

when the objective is
convex, any equality

constraints are affine, and
inequality constraints are

convex and “strictly
feasible.” Here, if any w is
feasible, 2w will be strictly

feasible; if nothing is
feasible, the convention is

that min{} = ∞ and the
RHS will also always be∞.

min
w

1
2
∥w∥2 s.t. ∀i. yiwTxi ≥ 1 = max

αi≥0
min
w

1
2
∥w∥2 +

m∑
i=1

αi(1 − yiw · xi).

The inner minimization in w is differentiable and unconstrained, so we can find its
value by setting the gradient to zero:

w +
m∑
i=1

(−αiyixi) = 0 ⇒ w =
m∑
i=1

αiyixi ⇒
m∑
i=1

αiyixi · w = ∥w∥2 ,

which also implies that

∥w∥2 =
m∑
i=1

m∑
j=1

αiyix
T
i xjyjαj = αT diag(y)XXT diag(y)α.

Here α ∈ Rm is the vector of αis, diag(y) ∈ Rm×m is a matrix with yi as its (i, i)th
entry and zero off-diagonal, and X ∈ Rm×d has ith row xi . Thus we’ve shown that

8

(HardSVM) is equivalent to

max
αi≥0

1Tα − 1
2α

T diag(y)XXT diag(y)α. (HardSVM’)

Once we find α, we can recover w as XT diag(y)α, meaning that

hw(x) = αT diag(y)Xx =
m∑
i=1

αiyixi · x.

This is called the dual form of (HardSVM). We’ve transformed the primal form,
a constrained optimization over w ∈ Rb, to an unconstrained optimization over
α ∈ Rm

≥0. We can solve this with any of several algorithms: it’s also a convex
quadratic program, and there are many specialized algorithms for (HardSVM’) in
particular, but since the constraints are simple we can also think about easy things
like projected gradient descent.

Support vectors (HardSVM’) also motivates the name support vector machine. As
we mentioned when we first introduced the dual variables, This is called

complementary slackness
in the KKT conditions.

if yiwTxi > 1 for some i,
then we necessarily have αi = 0 at optimum. We can only have αi , 0 if yiwTxi = 0,
i.e. the point (xi , yi) is exactly on the margin of the hard SVM. These points are called
support vectors, because they “support” the position of the margin. This sparsity in
the solution has some other nice consequences as well, e.g. computationally.

6.2 Soft SVM duality

Start Not covered in class, but
you might want to look at.

by introducing auxiliary variables ξi accounting for the hinge loss in (SoftSVM),
then go through the same kind of argument, where now we’ll additionally have dual
variables β for the nonnegativity constraints on ξ. We’re also going to use our dual
variables for the margin constraints as 2λαi instead of just αi , because it just makes
stuff work out nicer in the end.

min
w

Lhinge
S + λ ∥w∥2 = min

w,ξ
λ ∥w∥2 +

1
m

m∑
i=1

ξi s.t. ∀i, yiw · xi ≥ 1 − ξi and ξi ≥ 0

= min
ξ≥0,w

max
α≥0,β≥0

λ ∥w∥2 +
1
m

m∑
i=1

ξi +
m∑
i=1

2λαi(1 − yiw · xi − ξi) −
m∑
i=1

βiξi

= max
α≥0,β≥0

min
ξ≥0,w

λ ∥w∥2 +
1
m
1Tξ + 2λαT [1 − diag(y)Xw − ξ] − βTξ.

Setting the w gradient to zero, 2λw − 2λXT diag(y)α = 0 and again w = XT diag(y)α.
Plugging this in, and rearranging, we get

min
w

Lhinge
S + λ ∥w∥2 = max

α≥0,β≥0
min
ξ≥0

2λ1Tα − λαT diag(y)XXT diag(y)α +
(

1
m1 − 2λα − β

)T
ξ.

Now, if βi = 1
m − 2λαi , then the corresponding part of that final term is zero regard-

less of the value of ξi . If any βi are smaller than that, then the inner minimizer
will pick ξi = 0, and that component will still be zero. If any βi are bigger than
that, though, choosing ξi → ∞ will give the value −∞ for the inner minimizer,
so the outer maximizer can’t allow that. Since the only thing βi needs to do is be

9

9. Margins and SVMs CPSC 532D

nonnegative and satisfy that constraint, the diverging situation can be avoided if
2λαi ≤ 1/m, and then the value of β doesn’t actually matter anymore. Thus, the
problem finally simplifies to

min
w

Lhinge
S + λ ∥w∥2 = 2λ max

0≤αi≤ 1
2λm

1Tα − 1
2λα

T diag(y)XXT diag(y)α. (SoftSVM’)

Remarkably, this is exactly (HardSVM’) with an extra upper bound on α.

Using the same kind of argument as we made for support vectors earlier, we can see
that indeed ξi = 0 unless yiw · xi < 1: we only “move the input points” if we need to.
For these points, βi = 0, meaning that αi = 1

2λm , and we can immediately tell which
points are misclassified or classified correctly with too small a margin. Any points
with 0 < αi <

1
2λm have ξi = 0 but yiw · xi = 1, and so lie exactly on the margin as

before.

6.3 Including an intercept

So far, we’ve been assuming that intercept terms,Not covered in class, but
you might want to look at.

sgn(w · x + b) rather than sgn(w · x),
are handled via w̃ = [b, w], x̃ = [1, x]. But then note that ∥w̃∥2 = b2 + ∥w∥2: we’re
regularizing the intercept as well, which isn’t motivated in terms of the geometric
margin and is also counter to usual statistical practice. So, it’s maybe worth figuring
out what happens if we explicitly include b and don’t regularize it.

Compared to the derivation of (SoftSVM’), the constraint is yi(w · xi + b) ≥ 1 − ξi ,
which only adds a term 2λαiyib. This doesn’t affect the optimization for w or ξ; if
α · y = 0, it doesn’t affect the optimization, but otherwise the inner minimizer could
drive things to −∞. Thus the dual becomes slightly modified, to

max
0≤αi≤ 1

2λm and α·y=0
1Tα − 1

2
αT diag(y)XXT diag(y)α.

Our final predictor is w · x + b = αT diag(y)Xx + b, so we still need to figure out the
value of b. But note that, for points with 0 < αi <

1
2λm , we know that yi(w · xi + b) = 1:

so, once we’ve found α, we can just pick any such i and set b = yi − w · xi =
yi − αT diag(y)Xxi .

7 aside : margin analysis

The following is a slightly different way to frame ramp loss analysisNot covered in class, but
you might want to look at.

that can some-
times be easier to think about. It’s also more natural to look at for general hypothesis
classes. It’s based on the ρ-margin loss, which gives us full credit if our confidence
is at least ρ:

ℓρ−margin(h, (x, y)) = l
ρ−margin
y (h(x)) =

1 if yh(x) ≤ 0

1 − yh(x)
ρ

if 0 ≤ yh(x) ≤ ρ

0 if yh(x) ≥ ρ.

This upper-bound to 0-1 loss ramps at ρ instead of 1, and is 1
ρ
-Lipschitz. So, the

analogue of (1) is that for any fixed ρ, with probability at least 1 − δ, we have for any
H of real-valued hypotheses that

∀h ∈ H, L0−1
D (sgn ◦h) ≤ L

ρ−margin
S (h) +

2
ρ

E
S′∼Dm

Rad(H|S′x) +

√
1

2m
log

1
δ
. (8)

10

We can avoid committing to a particular margin, similarly to in Proposition 1.
Another difference is that now we don’t have to assume HB, but allow general
real-valued, but fixed, H.

proposition 2. Let H contain functions mapping to R, and fix some r > 0. Then for any
δ ∈ (0, 1), we have with probability at least 1 − δ over the choice of S ∼ Dm that it holds
for all h ∈ H and ρ ∈ (0, r] that

L0−1
D (sgn ◦h) ≤ L

ρ−margin
S (h) +

4
ρ

E
S′∼Dm

Rad(H|S′x) +

√
1
m

log log2
2r
ρ

+

√
1

2m
log

2
δ
.

Proof. Let ρk = r2−k for all k ≥ 0, and δk = 6δ
π2k2 for k ≥ 1; note that

∞∑
k=1

δk = δ. By

(8), it holds with probability at least 1 − δk for each ρk that

∀h ∈ H, L0−1
D (sgn ◦h) ≤ L

ρk−margin
S (h) +

2
ρk

E
S′∼Dm

Rad(H|S′x) +

√
1

2m
log

1
δk

.

For any ρ ∈ (0, r], the smallest k such that ρk ≤ ρ is given by k =
⌈
log2

r
ρ

⌉
.

We have ℓρ′−margin ≤ ℓρ−margin for any ρ′ ≤ ρ, so L
ρk−margin
S (h) ≤ L

ρ−margin
S (h).

We also know that ρ ≤ ρk−1 = 2ρk , so 1
ρk
≤ 2

ρ
.

Finally, from log 1
δk

= log π2

6δ + 2 log log2

⌈
log2

r
ρ

⌉
we use that π2/6 < 2 and ⌈log2 a⌉ <

log2(a) + 1 = log2(2a).

We do have to commit to some predefined upper bound on the margin r, but the
resulting bound only depends on it through

√
log log2 r so we can pick something

big. (This r corresponds to 1
r from Proposition 1.)

In this bound, unlike Proposition 1, we always consider a fixed H (hence why it
can be generic) – but the trade-off in our analysis is between that L

ρ-margin
S , which

decreases as ρ shrinks (we only try to get a smaller margin), versus the 1
ρ

terms,
which increase as ρ shrinks.

Because H is fixed, we can’t easily use this to analyze the minimum-norm interpola-
tor (HardSVM). But the bound holds for any H, not just linear predictors.

references

[BS00] Shai Ben-David and Hans Ulrich Simon. “Efficient learning of linear per-
ceptrons.” Advances in Neural Information Processing Systems. 2000.

[MI15] Søren Frejstrup Maibing and Christian Igel. “Computational Complexity
of Linear Large Margin Classification With Ramp Loss.” AISTATS. 2015.

[MRT] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talkwalkar. Foundations
of Machine Learning. 2nd edition. MIT Press, 2018.

[SSBD] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning:
From Theory to Algorithms. Cambridge University Press, 2014.

[YT89] Yinyu Ye and Edison Tse. “An extension of Karmarkar’s projective algo-
rithm for convex quadratic programming.” Mathematical Programming 44
(1989), pages 157–159.

11

https://proceedings.neurips.cc/paper/2000/hash/39027dfad5138c9ca0c474d71db915c3-Abstract.html
https://proceedings.neurips.cc/paper/2000/hash/39027dfad5138c9ca0c474d71db915c3-Abstract.html
http://proceedings.mlr.press/v38/frejstrupmaibing15.pdf
http://proceedings.mlr.press/v38/frejstrupmaibing15.pdf
https://cs.nyu.edu/~mohri/mlbook/
https://cs.nyu.edu/~mohri/mlbook/
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/copy.html
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/copy.html
http://dx.doi.org/10.1007/BF01587086
http://dx.doi.org/10.1007/BF01587086

	Motivation
	Surrogate losses
	Analysis with ramp loss
	Ramp interpolation = Hard SVM = max margin
	Hinge loss and Soft SVM
	Hinge loss ERM with bounded weights
	Bound minimization
	Soft SVM

	SVM duality
	Hard SVM
	Soft SVM duality
	Including an intercept

	Aside: margin analysis

