
CPSC 532D — 7. LOWER BOUNDS / NO FREE LUNCH

Danica J. Sutherland

University of British Columbia, Vancouver

Fall 2023

So far we’ve done upper bounds: in this setting, we know we can learn at least this
well. But if we only know upper bounds, we never really know how tight they are,
and so we can never really know if one algorithm is better than another.

One way to approach this is with asymptotic results, as described e.g. by [Bach23,
Section 4.6] who summarizes and translates results from the classic textbook of
van der Vaart [vdV98]. For instance, if H = {hw : w ∈ W} for some open W ⊆ RD,
the loss is sufficiently “nice” as a function of w, and there’s a minimizer h∗ = hw∗ ,
then with some extra “niceness” assumptions we have for the ERM that

E
S∼Dm

LD(ĥS)−LD(h∗) = Θ

(1
m

Tr
([
∇2
wLD(h∗)

]−1
E

z∼D

[
(∇wℓ(hw, z))(∇wℓ(hw, z)T|w=w∗

]))
.

This actually gives a fast 1/m rate, and along the way it actually also tells us that
w − w∗ is asymptotically Gaussian, and some other nice things. If we can evaluate
the stuff inside the trace, we could also then explicitly say “this H converges faster
than that one,” or compare to an asymptotic rate for some different algorithm. But:
the “niceness” assumptions don’t always hold, the expressions aren’t always easy to
analyze, and they’re purely asymptotic results, so we don’t know whether they’re a
good approximation after m = 20 or only after m = 100, 000, 000, 000.

Instead, let’s use a different route to lower bounds, specifically for binary classifiers.

1 no free lunch for high-vc classes

theorem 1. This theorem is similar to
Theorem 5.1 of [SSBD], but
incorporating the idea of
VC dimension (which they
haven’t introduced yet at
that point).

Let H be a hypothesis set of binary classifiers over X . Let m ≤ VCdim(H)/2.
Then

inf
A

sup
D realizable by H

Pr
S∼Dm

(
LD(A(S)) ≥ 1

8

)
≥ 1

7
,

where the infimum over A is over all learning algorithms which return hypotheses in H.

Before we prove this, let’s unpack the quantifiers a bit. For any m and any learning
algorithmA, there is some realizable distribution D such thatA has at least constant
probability of failing with m samples, i.e. getting at least 1/8 error. Note that this
distribution depends on m, and also on A. This immediately implies the following:

corollary 2. Any H with VCdim(H) = ∞ is not PAC learnable.

Proof of Theorem 1. We’re first going to pick a shatterable set of size 2m, X̃ =
{x̃1, . . . , x̃2m} ⊆ X ; at least one such set must exist, since 2m ≤ VCdim(H). Then we’ll
pick the marginal distribution of x, Dx, to be a discrete uniform distribution on X̃ .

Since we’re being totally generic with respect to A, it’s going to be hard to say which
y | x labeling rule in particular is going to be hard for A to learn. So, as a proof

For more, visit https://cs.ubc.ca/˜dsuth/532D/23w1/.

1

https://cs.ubc.ca/~dsuth/532D/23w1/

7. Lower bounds / no free lunch CPSC 532D

technique, we’re going to start with a random f , and then settle on a particular
one later. Specifically, for each vector of possible labels y ∈ {0,1}m, choose some
particular f ∈ H such that f (xj) = yj ; there must be at least one, since H shatters
X̃ . Let F be the set of these functions (of size exactly 2m), and choose f ∼ Unif(F).
For any f , let the distribution D(f) denote the distribution that you get by sampling
x ∼ Dx, y | x = f (x).

Now, for any sample of inputs Sx = (x1, . . . , xm), we can implicitly construct a sample
of pairs S = ((x1, f (x1)), . . . , (xm, f (xm))); call the result of the algorithm ĥS = A(S).
Its expected loss is

E
f ∼Unif(X̃→Y)

E
S∼Dm

(f)

LD(f)
(ĥS) = E

f ,SX

E
x∼Dx

1(ĥS(x) , f (x)).

Using the law of total expectation, let’s break this expectation up based on whether
the test x is in the training data S or not:

E
f ,Sx ,x

1(ĥS(x) , f (x)) = E
f ,Sx

[
Pr(x < Sx) E

x∼Dx

[1(ĥS(x) , f (x)) | x < Sx]

+ Pr(x ∈ Sx) E
x∼Dx

[1(ĥS(x) , f (x)) | x ∈ Sx]
]
.

For the second term, we’re not going to worry about what the algorithm does on the
data it’s actually seen: we’ll just bound this as being at least zero.

For the first term, we know since Dx is uniform and |Sx| ≤ m that

Pr(x < Sx) =

∣∣∣X̃ \ Sx

∣∣∣∣∣∣X̃ ∣∣∣ ≥ m
2m

=
1
2
.

Also, since our labels f (x̃j) are uniformly random and totally independent of one
another, and S is statistically independent of those labels for points x̃ < S, whether
ĥS agrees with f is just a pure coin flip: Ex[1(ĥS(x) , f (x)) | x < Sx] = 1

2 .

Combining, we know that

E
f ∼Unif(X→Y)

E
S∼Dm

(f)

LD(f)
(ĥS) ≥ 1

4 .

But, if the average over functions f of the expected loss ESx∼Dn
x

LDx ,f (ĥS) is at least 1
4 ,

This proof technique is
known as the probabilistic

method, and often
attributed to Paul Erdős.

then there must be at least one particular function f such that the expected loss is
at least 1

4 ! Pick one and call it g; this will be the labeling function claimed by the
theorem.

We’ve shown the average loss is large, but we want to show that the loss has high
probability of being large. Now, LD(g)

(ĥS) is a random variable bounded in [0,1],
and we already know one way to bound those variables in terms of their means:
Markov’s inequality. But, unfortunately, Markov’s inequality bounds the probability
of things being big, and we want to bound the probability of this being small. So
we’ll need to switch it around, which is sometimes called “reverse Markov”:

Pr(LD(g)
(ĥS) ≤ 1

8) = Pr
(
1 − LD(g)

≥ 1 − 1
8

)
≤

1 − E LD(g)
(ĥS)

7
8

≤
(
1 − 1

4

) 8
7

=
6
7
.

2

Thus, for the realizable D(g) we picked above,

Pr
S∼Dm

(g)

(
LD(g)

(ĥS) > 1
8

)
≥ 1

7
.

1.1 Interpretation

Theorem 1 is sometimes called a “no free lunch” theorem, in that there is no algo-
rithm that always works (in the sense of PAC learning): every algorithm fails on at
least one distribution.

In fact, basically this same proof strategy implies [Wol96] that, if you only care
about the “off-sample” error (the average error on (x, y) | x < Sx), there are just
as many possible distributions where your predictor is right as where it’s wrong,
regardless of your learning algorithm. If you don’t assume anything about the world,
all algorithms perform the same on average.

This is in some ways a deep philosophical problem, called the problem of induction
and generally credited to David Hume. The fact that the sun rose every day so
far doesn’t, from “pure first principles,” imply anything about whether it will rise
tomorrow: we just decide to prefer “simple” explanations, i.e. we choose some H
that we like. But that doesn’t really answer which H would be good.

Actually, VC or Rademacher theory can’t answer that problem either: it’s preferable
to choose a H with small complexity, but since Rad((H + {f })|S) = Rad(H|S), and
VCdim(H) = VCdim({x 7→ h(x)f (x) : h ∈ H}) for ±1-valued h and f , we haven’t
actually seen any objective notion of a “simple hypothesis”: only ways to say that
sets of hypotheses are all similar enough to one another.

Sometimes people get a little mystical about no free lunch theorems, though –
e.g. https://no-free-lunch.org says that this result “calls the whole of science
into question.” But the world is not uniformly random; we know from experience
that some kinds of H tend to work better than others. So, although there is some
distribution that every algorithm fails on, it’s not the case in the world we live in that
all algorithms are the same as each other. (And, interestingly, there are (impractical)
learning algorithms that are always at least as good as any other algorithm, up to
(huge) constants: check out https://free-lunch.org [Nak21].)

2 lower bounds

We can also use Theorem 1 to prove a quantitative lower bound on learning with
any m and d:

theorem 3. This statement follows
[MRT, Theorem 3.20],
which merges this result
and Theorem 1 in a way I
find really hard to follow,
and can’t handle the
high-VC case. [SSBD,
Theorem 6.8] states a
similar result but leaves
this part as an exercise.

Let H be a set of binary classifiers over X . For any m ≥ 1,

inf
A

sup
D realizable by H

Pr
S∼Dm

(
LD(A(S)) >

VCdim(H) − 1
32m

)
≥ 1

100

where LD uses zero-one loss, and the infimum over A is over all learning algorithms
returning hypotheses in H.

Proof. Let d = VCdim(H); note that if d = 1, the result holds trivially, so assume
d ≥ 2. Also, if m ≤ d/2, then d−1

32m ≥
1

16
d−1
d ≥

1
32 ; Theorem 1 says that there’s at least

1
7 probability of the error being at least 1

8 , which necessarily implies there’s at least

3

https://en.wikipedia.org/wiki/Problem_of_induction
https://no-free-lunch.org
https://free-lunch.org

7. Lower bounds / no free lunch CPSC 532D

1
7 probability of the error being over 1

32 , and so there’s at least 1
100 probability of the

error being over 1
32 . Thus, assume that m > d/2.

Choose a set X̃ = {x̃1, . . . , x̃d} of size d = VCdim(H) which can be shattered by H.
We’re going to choose a distribution that puts most of its probability mass on x̃1,
in such a way that we’re likely to see less than half of the other points from the
distribution. Specifically, for an ε > 0 to choose later,

Pr
x∼Dx

(x = x̃1) = 1 − ε, for all i > 1, Pr
x∼Dx

(x = x̃i) =
ε

d − 1
.

Now, let D̃ be the distribution over {x̃2, . . . , x̃d} selected by Theorem 1 with m =
(d − 1)/2, and let f ∈ H be the labeling function chosen in D̃. Our distribution will
be found by sampling x ∼ Dx and then letting y | x = f (x).

Now, we’re going to prove that it’s fairly likely that samples from Dx contain at most
(d − 1)/2 of the non-x̃1 points. How many points we don’t see is a little annoying to
characterize exactly, but we can get a bound based on

Q =
m∑
i=1

1(xi , x̃1);

if we repeat any of the non-x̃1 points, Q will double-count them, but it’s a valid
upper bound on the number of non-x̃1 points we see. Notice that Pr(xi , x̃1) = ε,
and each of the indicators is iid Bernoulli(ε), so Q ∼ Binomial(m, ε).

A standard tail bound for binomial variables, Proposition 4 with γ = 1, shows that

Pr(Q ≥ 2mε) ≤ exp
(
−1

3
mε

)
.

To use this result, we want 2mε = 1
2 (d − 1); so, pick ε = (d − 1)/(4m). This is valid,

since m > d/2 implies that ε < 1
2
d−1
d < 1

2 . Then we see less than half of the non-x̃1
points with probability at least

1 − exp
(
−m

3
· d − 1

4m

)
= 1 − exp

(
−d − 1

12

)
≥ 1 − exp

(
− 1

12

)
> 0.07,

since 1 − exp(−1/12) ≈ 0.07995.

So, with at least 7% probability, a sample of size m from D will contain at most
(d − 1)/2 of the non-x̃1 points. Then, Theorem 1 tells us that with probability at least
1/7, LD̃(A(S)) ≥ 1

8 . If this happens, this implies that LD(A(S)) ≥ 1
8 ε = d−1

32m , since the
total probability of the non-x̃1 points is exactly ε. So, we have at least a 1

7 · 7% = 1%
chance of seeing d−1

32m error on D, as desired.

proposition 4. If X ∼ Binomial(m, p), then for any γ > 0 it holds that

Pr(X ≥ (1 + γ)mp) ≤ exp
(
−1

3
mpγ2

)
.

This is an immediate consequence of the multiplicative Chernoff bound, which is
e.g. Theorem D.4 of [MRT]. It’s proved based on the same idea as Hoeffding/etc,
just takes a little more work along those same lines.

4

Agnostic case You can get a bigger error if you don’t require D to be realizable:
Theorem 3.23 of [MRT] gives that for any m and H,

inf
A

sup
D

Pr

LD(A(S)) − inf
h∈H

LD(h) ≥
√

d
320m

 ≥ 1
64

. (1)

Section 28.2 of [SSBD] is similar.

More generally These styles of theorems are sometimes called “minimax bounds,”
and algorithms are called “minimax-optimal” or simply “minimax” if they achieve
the lower bound (usually only up to constants, though that’s also sometimes called
“rate-optimal”). In the VC notes we showed that ERM gets error Õp(

√
d/m), which

combined with the agnostic result above shows that ERM is (up to log factors)
rate-optimal for finite-VC classes. Although we haven’t shown this (see Section 28.3
of [SSBD] or 6.5 of [Zhang23]), ERM for binary classifiers achieves Õp(d/m) error
in the realizable setting, so by Theorem 3 ERM is also (up to log factors) minimax
rate-optimal for realizable distributions too.

Minimax rates are also available for various other problems, including things like
linear regression, density estimation, and optimization. We won’t talk a lot about
lower bounds in this class, but they can be really nice to know whether your learning
algorithm is “good” or not. (The problem, though, is they tend to be extremely
“worst-case,” and might not be too informative about problems you’re likely to
actually see – similar to no free lunch arguments.)

3 the “fundamental theorem of statistical learning”

We’ve now shown all the necessary parts for a pretty complete qualitative under-
standing of PAC learning for binary classifiers.

theorem 5 (Fundamental Theorem of Statistical Learning). This name is only, as far as
I know, used by [SSBD].

For H a class of functions
h : X → {0, 1} and with the 0-1 loss, the following are equivalent:

1. Uniform convergence: for all ε, δ ∈ (0, 1), we have that suph∈H LD(h) − LS(h) < ε

with probability at least 1 − δ as long as m ≥ mUC(ε, δ) < ∞. [SSBD] use two-sided
uniform convergence: in the
setting of the theorem here,
one-sided bounds imply
two-sided ones, but (a)
one-sided is what we really
use, and (b) in more general
settings the distinction can
matter.

2. Any ERM rule agnostically PAC-learns H.
3. H is agnostically PAC learnable.
4. Any ERM rule PAC-learns H.
5. H is PAC learnable.
6. VCdim(H) < ∞.

Proof. 1 implying 2 is our usual argument:

LD(ĥS) ≤ LS(ĥS) + sup
h∈H

LD(h) − LS(h) ≤ LS(h∗) + ε ≤ LD(h∗) + [LS(h∗) − LD(h∗)] + ε,

plus Hoeffding on LS(h∗) − LD(h∗).

2 implying 3, and 4 implying 5, are immediate.

2 implying 4, and 3 implying 5, is also straightforward from the definitions.

Corollary 2 shows that 5 implies 6.

6 implying 1 is implied by Theorem 10 of the VC notes, plus Theorem 8 from the
Rademacher notes.

5

https://cs.ubc.ca/~dsuth/532D/23w1/notes/6-vc.pdf
https://cs.ubc.ca/~dsuth/532D/23w1/notes/6-vc.pdf
https://cs.ubc.ca/~dsuth/532D/23w1/notes/5-rademacher.pdf
https://cs.ubc.ca/~dsuth/532D/23w1/notes/5-rademacher.pdf

7. Lower bounds / no free lunch CPSC 532D

Theorem 6.8 of [SSBD] gives a quantitative version, bounding the sample complexi-
ties in terms of the VC dimension, by collecting lower bounds like Theorem 3 and
(1) and upper bounds like Theorem 10 of the VC notes and the realizable equivalent
that we didn’t prove.

references

[Bach23] Francis Bach. Learning Theory from First Principles. April 2023 draft.
[MRT] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talkwalkar. Founda-

tions of Machine Learning. 2nd edition. MIT Press, 2018.
[Nak21] Preetum Nakkiran. Turing-Universal Learners with Optimal Scaling Laws.

2021. arXiv: 2111.05321.
[SSBD] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learn-

ing: From Theory to Algorithms. Cambridge University Press, 2014.
[vdV98] Aad W. van der Vaart. Asymptotic Statistics. Cambridge University Press,

1998.
[Wol96] David H. Wolpert. “The Lack of A Priori Distinctions Between Learning

Algorithms.” Neural Computation 8.7 (Oct. 1996), pages 1341–1390.
[Zhang23] Tong Zhang. Mathematical Analysis of Machine Learning Algorithms.

2023 pre-publication version.

6

https://www.di.ens.fr/~fbach/ltfp_book.pdf
https://cs.nyu.edu/~mohri/mlbook/
https://cs.nyu.edu/~mohri/mlbook/
https://arxiv.org/abs/2111.05321
https://arxiv.org/abs/2111.05321
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/copy.html
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/copy.html
https://www.cambridge.org/core/books/asymptotic-statistics/A3C7DAD3F7E66A1FA60E9C8FE132EE1D
https://doi.org/10.1162/neco.1996.8.7.1341
https://doi.org/10.1162/neco.1996.8.7.1341
https://tongzhang-ml.org/lt-book/lt-book.pdf

	No free lunch for high-VC classes
	Interpretation

	Lower bounds
	The ``Fundamental Theorem of Statistical Learning''

