
CPSC 532D — 5. RADEMACHER COMPLEXITY

Danica J. Sutherland

University of British Columbia, Vancouver

Fall 2023

Last time was our first time showing a uniform convergence bound, i.e. bounding
suph∈H LD(h) − LS(h), for an infinite H. Today we’re going to see a technique that
takes a little more work to grasp intuitively but will show a slightly better result (no
logm), is somewhat more general, and once you understand it can be easier to use.

1 uniform convergence in expectation

It’s going to be easier, here, to start with a bound on the mean worst-case generaliza-
tion gap. That is, we’ll show that

E
S∼Dm

sup
h∈H

LD(h) − LS(h) ≤ ε(m).

This gives us, for instance, that if ĥS is an ERM then

E LD(ĥS) = E
[
LD(ĥS) − LS(ĥS)

]
︸ ︷︷ ︸

≤ε(m)

+E
[
LS(ĥS) − LS(h∗)︸ ︷︷ ︸

≤0

]
+ E

[
LS(h∗)

]
︸ ︷︷ ︸

=LD(h∗)

≤ LD(h∗) + ε(m).

We’ll return to high-probability bounds on suph∈H LD(h) − LS(h) later.

2 a g-g-g-g-ghost (sample)

Using that LD(h) = ES∼Dm LS(h):

S′ here is sometimes called
a “ghost sample.”

E
S∼Dm

sup
h∈H

LD(h) − LS(h) = E
S∼Dm

sup
h∈H

E
S′∼Dm

LS′ (h) − LS(h).

Now, we’ll exploit the following general fact:

lemma 1. Let fy be a class of functions indexed by y, This should be intuitive,
once you think about it a
bit: if the optimization can
see what particular sample
you got, it can “overfit”
better than if it has to
optimize on average.

and X some random variable. Then
when the expectations exist,

sup
y

E
X
fy(X) ≤ E

X
sup
y

fy(X).

Proof. For any y, we have fy(X) ≤ supy′ fy′ (X) by definition, no matter the value of
X. Taking the expectation of both sides, for any y EX fy(X) ≤ EX supy′ fy′ (X). So it’s
also true if we take the supremum over y.

Applying this, we see that

E
S∼Dm

sup
h∈H

LD(h) − LS(h) ≤ E
S∼Dm

S′∼Dm

sup
h∈H

LS′ (h) − LS(h).

For more, visit https://cs.ubc.ca/˜dsuth/532D/23w1/.

1

https://cs.ubc.ca/~dsuth/532D/23w1/

5. Rademacher complexity CPSC 532D

This last form is itself a natural thing to think about: how much does H overfit
relative to a test set?

Now, S = (z1, . . . , zm) and S′ = (z′1, . . . , z
′
m) are composed of independent samples

from the same distribution. So, if we decided to swap z3 and z′3, this would still be a
“valid,” equally likely sample for S and S′. Rademacher complexity is based on this
idea.

Watch out that σi has
nothing to do with a

standard deviation or
sub-Gaussian parameter σ;

we’ll refer to the vector
(σ1, . . . , σm) as σ, or σ⃗ in

handwriting. Unfortunate,
but no option is great here.

Notationally, let σi ∈ {−1,1} for i ∈ [m], and define (ui , u′i) =

(zi , z′i) if σi = 1

(z′i , zi) if σi = −1
.

Then, for any choice of σ = (σ1, . . . , σm), we have

ℓ(h, z′i) − ℓ(h, zi) = σi(ℓ(h, u′i) − ℓ(h, ui)).

So, for any value of S, S′, and σ, defining U = (u1, . . . , um) and U′ = (u′1, . . . , u
′
m)

accordingly, we have

sup
h∈H

LS′ (h) − LS(h) = sup
h∈H

1
m

∑
i

σi[ℓ(h, u′i) − ℓ(h, ui)].

Since this holds for any choice of σ, it also holds if we pick them at random and
then take a mean over that choice. We’ll choose them according to a Rademacher
distribution, also written Unif(±1), which is 1 half the time and −1 the other half.
Thus

E
S,S′∼Dm

sup
h∈H

LS′ (h) − LS(h) = E
σ

E
S,S′∼Dm

E
U,U′

sup
h∈H

1
m

∑
i

σi[ℓ(h, u′i) − ℓ(h, ui)]

∣∣∣∣∣∣∣ S, S′ , σ

 .
Here we’re writing U and U′ as random variables, even though they’re actually
deterministic conditional on S, S′, and σ. The marginal distributions of U and U′

are each exactly Dm, though, the same as S and S′. So, it makes sense for us to switch
the order of the expectations.This is allowed by Fubini’s

theorem; for a nonnegative
loss, it’s fine as long as

LD(h) exists. (For a
negative loss, it’s enough for

Ez |ℓ(h, z)| to exist.)

σ | U, U′ is still just random signs; given σ and U, U′,
S and S′ become deterministic. This gives us

E
S,S′∼Dm

sup
h∈H

LS′ (h) − LS(h) = E
U,U′∼Dm

E
σ

E
S,S′

sup
h∈H

1
m

∑
i

σi[ℓ(h, u′i) − ℓ(h, ui)]

∣∣∣∣∣∣∣ U, U′ , σ

 .
But. . . S and S′ no longer appear inside the expectation at all, so we can forget about
that expectation.This proof technique of

introducing a random sign
is called symmetrization.

Continuing,

E
S,S′∼Dm

sup
h∈H

LS′ (h) − LS(h) = E
U,U′∼Dm

E
σ

sup
h∈H

1
m

∑
i

σi[ℓ(h, u′i) − ℓ(h, ui)]

≤ E
U,U′∼Dm

E
σ

sup
h∈H

1
m

∑
i

σiℓ(h, u′i) + sup
h′∈H

1
m

∑
i

(−σi)ℓ(h, ui)

supx f (x) + g(x) ≤
supx f (x) + supx′ g(x′)

= E
U,U′∼Dm

E
σ

sup
h∈H

1
m

∑
i

σiℓ(h, u′i) + E
U,U′∼Dm

E
σ

sup
h′∈H

1
m

∑
i

σiℓ(h, ui)−σ and σ have the same
distribution

= 2 E
S,S′∼Dm

E
σ

sup
h∈H

1
m

∑
i

σiℓ(h, zi)Renaming U to S

=: 2 E
S,S′∼Dm

Rad ((ℓ ◦ H)|S) .

We’re defining some notation at the end: ℓ ◦ H = {z 7→ ℓ(h, z) : h ∈ H} is a set of

2

functions from Z to R, and F |S denotes {(f (z1), . . . , f (zm)) : f ∈ F } ⊆ Rm, so that

(ℓ ◦ H)|S = {(ℓ(h, z1), . . . , ℓ(h, zm)) : h ∈ H} ⊆ Rm.

definition 2. The Rademacher complexity of a set V ⊆ Rm is given by Many sources define Rad
with an absolute value
around the sum. This is the
more common modern
definition, since it makes
some things nicer.

Rad(V) = E
σ∼Unif(±1)m

sup
v∈V

1
m

m∑
i=1

σivi = E
σ∼Unif(±1)m

sup
v∈V

σ · v
m

.

One way to think of it is a measure of how much a set V extends in the direction of a
random binary vector. Rad(F |S) measures how well F can align with random signs
on the particular set S, or equivalently how well it can separate a random subset of
S from the rest.

For intuition, it might be nice to compare to the closely-related Gaussian complexity
[BM02], which uses σ ∼ N (0, Im) instead of a Rademacher vector. That’s maybe
more natural to see as a notion of the size of a set: “if I look in a random direction,
how far do I get?” (Remember that the norm of a random Gaussian concentrates
tightly in high dimensions.) For Rademacher, “looking in any direction” versus
“looking along ‘binary’ directions” isn’t so different.

Finally, notice that nothing here depended on the structure of the actual functions
z 7→ ℓ(h, z) ∈ ℓ ◦ H, and so we’ve proved the following.

theorem 3. For any class F of functions f : Z → R, and any distribution D over Z
with S = (z1, . . . , zm) ∼ Dm, we have

E
S∼Dm

sup
f ∈F

 E
z∼D

[f (z)] − 1
n

m∑
i=1

f (zi)

 ≤ 2 E
S∼Dm

Rad(F |S).

3 properties of rademacher complexity

First, note that

Rad({v}) =
1
m

E
σ
σ ◦ v = 0 :

no matter the vector, a singleton set has no complexity. (In terms of generalization:
any given hypothesis is equally likely to over- or under-estimate the risk.)

On the other extreme, for the vertices of the hypercube,

Rad({−1, 1}m) =
1
m

E
σ

sup
v

σ · v =
1
m

E
σ
σ · σ = 1.

This is also the complexity of the function class of all possible {−1, 1}-valued func-
tions, as long as S has no duplicates: if we tried to do ERM in the set of “all possible
classifiers,” we’d only get that the expected zero-one loss is less than 2.

Letting cV = {cv : v ∈ V} for any c ∈ R, we have that

Rad(cV) =
1
m

E
σ

sup
v∈V

σ · (cv) =
1
m

E
σ

sup
v∈V
|c| (sign(c)σ) · v = |c|Rad(V) (1)

since sign(c)σ has the same distribution as σ.

3

5. Rademacher complexity CPSC 532D

For V + W = {v + w : v ∈ V, w ∈ W} we get

Rad(V+ W) =
1
m

E
σ

sup
v∈V
w∈W

σ · (v+w) =
1
m

E
σ

sup
v∈V

σ ·v+
1
m

E
σ

sup
w∈W

σ ·w = Rad(V)+Rad(W).

Combined with the fact that Rad({v}) = 0, this means that translating a set by a
constant vector doesn’t change its complexity.

3.1 Talagrand’s contraction lemma

How do we compute Rad(ℓ ◦ H|S) for practical losses and hypothesis classes? The
first key step is usually to “peel off” the loss, then bound the complexity of H.This lemma is also very

helpful for bounding
Rad(H) for H that are

defined compositionally,
like deep networks.

We
can do that with the following lemma.

The major way to do that is with the following results, for Lipschitz losses. (We
showed that logistic loss, used in logistic regression, is 1-Lipschitz last lecture.) To
remind you of the definition:

definition 4.A 1-Lipschitz function is
called a contraction: it

doesn’t increase the
distance between any
points, but (usually)

contracts at least some.

A function f : X → Y is ρ-Lipschitz with respect to distX and distY
if for all x, x′ ∈ X , distY (f (x), f (x′)) ≤ ρdistX (x, x′). The smallest ρ for which this
inequality holds is the Lipschitz constant, denoted ∥f ∥Lip.

If X and/or Y are Euclidean spaces, dist is Euclidean distance unless otherwise
specified. We showed last time that for differentiable R → R functions,The same idea establishes

that for differentiable
Rd → R functions,

∥f ∥Lip = supx∈X ∥∇f (x)∥.

∥f ∥Lip =
supx∈X |f ′(x)|. The canonical example of a non-differentiable Lipschitz function is
the absolute value.

lemma 5 (Talagrand). Let φ : Rm → Rm be given by φ(t) = (ϕ1(t1), . . . ,ϕm(tm)), where
each φi is ρ-Lipschitz. Then

Rad(φ ◦ V) = Rad({φ(v) : v ∈ V}) ≤ ρRad(V).

Our proof will be based on the following special case:

lemma 6. If ϕ : R→ R is 1-Lipschitz, Rad({(ϕ(v1), v2, . . . , vm) : v ∈ V}) ≤ Rad(V).

Proof of Lemma 5, assuming Lemma 6. First notice that “rotating” the vectors in V
doesn’t change its complexity, since σ has iid entries:

Rad({(v2, . . . , vm, v1) : v ∈ V}) = Rad(V).

Now, define the function φ′(t) = (1
ρ
ϕ1(t1), . . . , 1

ρ
ϕm(tm)); notice that each of its

components is 1-Lipschitz. So, start by applying Lemma 6 to V with 1
ρ
ϕ1, then

rotating, to obtain

Rad
({(

v2, . . . , vm,
1
ρ
ϕ1(v1)

)
: v ∈ V

})
≤ Rad(V).

Repeat these steps with 1
ρ
ϕ2, then 1

ρ
ϕ3, and so on, until we obtain

Rad(φ′ ◦ V) ≤ Rad(V).

4

Finally, scale by ρ, which by (1) means

Rad(φ ◦ V) = ρRad(φ′ ◦ V) ≤ ρRad(V).

Proof of Lemma 6. Let φ(v) = (ϕ(v1), v2, . . . , vm) so that φ ◦ V = {(ϕ(v1), v2, . . . , vm) :
v ∈ V}. We have

mRad(φ ◦ V) = E
σ

sup
v∈V

σ1ϕ(v1) + σ2: · v2:

=
1
2
E
σ2:

sup
v∈V

[ϕ(v1) + σ2: · v2:] +
1
2
E
σ2:

sup
v′∈V

[
−ϕ(v′1) + σ2: · v′2:

]
=

1
2
E
σ2:

sup
v,v′∈V

ϕ(v1) − ϕ(v′1) + σ2: · (v2: + v′2:).

Now, for points arbitrarily close to the supremum, ϕ(v1) − ϕ(v′1) will always be
nonnegative: if it were negative, simply swapping v and v′ would make that term
positive, and wouldn’t affect the rest of the expression, making the objective bigger.
Thus we can write

mRad(φ ◦ V) =
1
2
E
σ2:

sup
v,v′∈V

∣∣∣ϕ(v1) − ϕ(v′1)
∣∣∣ + σ2: · (v2: + v′2:)

≤ 1
2
E
σ2:

sup
v,v′∈V

∣∣∣v1 − v′1
∣∣∣ + σ2: · (v2: + v′2:)

since ϕ is 1-Lipschitz. Now, notice that the objective of the maximization is identical
if we swap v and v′, so for any point close to the supremum with v1 ≤ v′1, there’s an
exactly equivalent one with v1 ≥ v′1. Thus

mRad(φ ◦ V) ≤ 1
2
E
σ2:

sup
v,v′∈V

v1 − v′1 + σ2: · (v2: + v′2:)

=
1
2
E
σ2:

(
sup
v∈V

[v1 + σ2: · v2:] + sup
v′∈V

[
−v′1 + σ2: · v′2:

])
= E

σ
sup
v∈V

v · σ = mRad(V).

How do we use this? Well, remember that for typical supervised learning losses,

(ℓ ◦ H)|S = {(ℓ(h, z1), . . . , ℓ(h, zm)) : h ∈ H}

= {(l(h(x1), y1), · · · , l(h(xm), ym)) : h ∈ H}

= {(ly1
(h(x1)), · · · , lym(h(xm))) : h ∈ H}

= (lSy
◦ H)|Sx

,

where lyi (ŷ) is the loss function of a prediction for the label yi , and lSy
is a vectorized

version of these (like φ above) for the vector of particular labels Sy = (y1, . . . , ym).
Then we have a function of x only, so we apply it to Sx = (x1, . . . , xm). Note that ρ here might

depend on the particular
Sy !

If the functions
lyi are all ρ-Lipschitz, then Talagrand’s lemma gives us that

Rad((ℓ ◦ H)S) ≤ ρRad(H|Sx
). (2)

5

5. Rademacher complexity CPSC 532D

3.2 Complexity of bounded linear functions

When studying covering numbers, we considered logistic regression using the
hypothesis class of bounded-norm linear functions,

HB = {x 7→ ⟨w, x⟩ : ∥w∥ ≤ B}.

To analyze that with Rademacher complexity, the key term is

Rad((ℓlog ◦ HB)|S) ≤ Rad(HB|Sx
),

using (2) with our previous result that logistic loss is 1-Lipschitz. Now let’s bound
that latter term:

mRad(H|Sx
) = E

σ
sup
∥w∥≤B

∑
i

σi⟨w, xi⟩

= E
σ

sup
∥w∥≤B

⟨w,
∑
i

σixi⟩

≤ E
σ

sup
∥w∥≤B

∥w∥

∥∥∥∥∥∥∥∑i

σixi

∥∥∥∥∥∥∥using Cauchy-Shwartz

= BE
σ

∥∥∥∥∥∥∥∑i

σixi

∥∥∥∥∥∥∥
≤ B

√√√√
E
σ

∥∥∥∥∥∥∥∑i

σixi

∥∥∥∥∥∥∥
2

using (E T)2 ≤ E T2

= B
√

E
σ

∑
ij

σiσj⟨xi , xj⟩

= B
√∑

i

E[σ2
i]︸︷︷︸

1

∥xi∥2 +
∑
i,j

E
σ

[σiσj]︸ ︷︷ ︸
0

⟨xi , xj⟩.

Dividing both sides by m, we can rewrite this final inequality as

Rad(HB|Sx
) ≤ B
√
m

√
1
m

∑
i

∥xi∥2,

so this bound on the complexity depends on the particular Sx that you see, similar
to the issue we had with covering numbers.

One solution (as we did before) is to assume thata.s. is “almost surely” =
“with probability one”

D is such that ∥x∥ ≤ C (a.s.),
something often true in practice. This would imply that Rad(HB|Sx

) ≤ BC/
√
m (a.s.).

Note that this gives us an expected-case bound on the excess error of ERM for
logistic regression of

E
S∼Dm

LD(ĥS) − LD(h∗) ≤ 2BC
√
m

;

we’ll see soon that, in this case and if BC ≥ 1, we can convert this into a high-

6

probability bound of the form

Pr
S∼Dm

LD(ĥS) − LD(h∗) ≤ 2BC
√
m

1 +

√
2 log

2
δ

 ≥ 1 − δ. (3)

Compare this to the covering numbers-based bound we showed before:

Pr
S∼Dm

LD(ĥS) − LD(h∗) ≤ 2BC
√
m

1 + 2

√
log

2
δ

+

√
d
2

log(9m)

 ≥ 1 − δ.

The other way to handle the dependence on the particular Sx is to write This only works for the
average Rademacher
complexity, which is the
only thing we’ve seen to
care about yet, but in some
settings you do want a
high-probability bound on
Rad(H|Sx) rather than an
average-case one.

E
S

Rad(HB|Sx
) ≤ B
√
m

E
S

√
1
m

∑
i

∥xi∥2 ≤
B
√
m

√
E
x
∥x∥2. (4)

This allows for broader data distributions, as long as you can bound E ∥x∥2: e.g. you
can easily handle Gaussians.

In either case, this means we’ve shown an average-case excess error bound for
logistic regression (and mean-absolute-error linear regression, and. . .) with a rate of
O(1/

√
m).

4 concentration

Now let’s prove that high-probability bound. We’ll need a new tool: McDiarmid’s
inequality. This is a very important concentration inequality, which holds when we
have bounded differences.

theorem 7 ([McD89]). Let X1, . . . , Xm be independent, and let f (X1, . . . , Xm) be a
real-valued function satisfying

∀i ∈ [m]. sup
x1,...,xn,x

′
i

∣∣∣f (x1, . . . , xm) − f (x1, . . . , xi−1, x
′
i , xi+1, . . . , xm)

∣∣∣ ≤ ci .

Then, with probability at least 1 − δ,

f (X1, . . . , Xm) ≤ E f (X1, . . . , Xm) +

√√
1
2

 m∑
i=1

c2
i

 log
1
δ
.

Proof. This proof has deep
connections to martingale
methods, but we won’t talk
any more about that. If you
take Nick Harvey’s
randomized algorithms
course, you can learn some
more! Or read Section 2.2
of [Wai19] for a very brief
intro, or read [McD89].

Use Xi:j to denote (Xi , . . . , Xj).

Fix some k ∈ [m], and freeze some arbitrary values for x1:k−1 = (x1, . . . , xk−1). We’re
going to consider EXk+1:m

f (x1:k−1, Xk , Xk+1:m) as a random variable, which is random
depending only on the value of Xk: the earlier arguments are frozen, and the later
ones are being averaged over.

First, we know this variable is bounded: it can vary only in an interval of length at
most ck . To see this, note that for any particular values for xk+1:m,

sup
xk

f (x1:m) − inf
xk

f (x1:m) ≤ ck

by assumption. This is true for any values for xk+1:m, so it’s also true if we average

7

5. Rademacher complexity CPSC 532D

over them (and change − inf x to + sup−x):

E
Xk+1:m

sup
xk

f (x1:k−1, xk , Xk+1:m) + sup
xk

(−f (x1:k−1, xk , Xk+1:m)) ≤ ck .

Now, using Lemma 1, this implies that

sup
xk

E
Xk+1:m

f (x1:k−1, xk , Xk+1:m) + sup
xk

E
Xk+1:m

(−f (x1:k−1, xk , Xk+1:m)) ≤ ck ;

changing the sup back to an inf shows the boundedness we wanted.

Thus, by Hoeffding’s lemma, this variable is SG(ck/2). That is, multiplying our
definition of sub-Gaussianity by eλµ for convenience,

E
Xk

exp
(
λ E

Xk+1:m

f (x1:k−1, Xk , Xk+1:m)
)
≤ exp

(
λ E

Xk

E
Xk+1:m

f (x1:k−1, Xk , Xk+1:m) +
1
8
λ2c2

k

)
.

This inequality holds for any x1:k−1, so let’s take the expectation of both sides:

E
X1:k

exp
(
λ E

Xk+1:m

f (X1:m)
)
≤ E

X1:k−1

exp
(
λ E

Xk:m

f (X1:m) +
1
8
λ2c2

k

)
.

That inequality holds for each choice of k. Let’s take the log of each one, and add
them all up:

m∑
k=1

log E
X1:k

exp
(
λ E

Xk+1:m

f (X1:m)
)
≤

m∑
k=1

[
log E

X1:k−1

exp
(
λ E

Xk:m

f (X1:m)
)

+
1
8
λ2c2

k

]
.

Most of these terms cancel: if we combined the two sums, the result would be
telescoping. So, this simplifies to

log E
X1:m

exp (λf (X1:m)) ≤ log exp
(
λ E

X1:m

f (X1:m)
)

+
m∑
k=1

1
8
λ2c2

k ,

or, taking the exponential of both sides and rearranging,

E
X1:m

exp
(
λ

(
f (X1:m) − E

X1:m

f (X1:m)
))
≤ exp(

1
2
λ2 · 1

4

m∑
k=1

c2
k).

This is exactly the definition of f (X1:m) ∈ SG
(

1
2

√
m∑
i=1

c2
i

)
. The Chernoff bound for

sub-Gaussians then tells us that with probability at least 1 − δ,

f (X1:m) ≤ E f (X1:m) +
1
2

√√
m∑
i=1

c2
i ·

√
2 log

1
δ
.

Considering −f gives an identical form for the lower bound, and a union bound
gives an absolute value version by replacing 1

δ
with 2

δ
.

Notice that if ci = c for all k, then
√

m∑
i=1

c2
i = c

√
m.

(It’s also worth checking for yourself that when f (X1:m) = 1
m

m∑
i=1

Xi , you exactly

recover the bounded version of Hoeffding’s inequality.)

Now that we know McDiarmid’s inequality, we can directly apply it to get a high-

8

probability bound:

theorem 8. Suppose that ℓ(h, z) ∈ [a, b] for all h, z. Then, with probability at least 1 − δ,

sup
h∈H

LD(h) − LS(h) ≤ E sup
h∈H

[LD(h) − LS(h)] + (b − a)

√
1

2m
log

1
δ
.

Thus, if ĥS is an ERM, we have with probability at least 1 − δ that

LD(ĥS) − inf
h∈H

LD(h) ≤ E sup
h∈H

[LD(h) − LS(h)] + (b − a)

√
2
m

log
2
δ
.

Proof. Let S(i) = (z1, . . . , zi−1, z
′ , zi+1, . . . , zm). Now, we have

LD(h) − LS(h) = LD(h) − LS(i)(h) + LS(i)(h) − LS(h);

take suph of both sides, use supx f (x) + g(x) ≤ supx f (x) + supx g(x), rearrange, then
use |sup f (x)| ≤ sup |f (x)| to see that

∣∣∣∣∣∣sup
h∈H

[LD(h) − LS(h)] − sup
h∈H

[LD(h) − LS(i)(h)]

∣∣∣∣∣∣
≤ sup

h∈H
|LS(i)(h) − LS(h)| = sup

h∈H

1
m

∣∣∣ℓ(h, z′) − ℓ(h, zi)
∣∣∣ ≤ b − a

m
,

because the loss is bounded. The first equation follows by applying McDiarmid to
the function f (S) = suph∈H LD(h) − LS(h).

The second follows as usual for our ERM bounds: we know that

LD(ĥS) ≤ LS(ĥS) + E sup
h∈H

[LD(h) − LS(h)] + (b − a)

√
1

2m
log

2
δ

≤ LS(h∗) + E sup
h∈H

[LD(h) − LS(h)] + (b − a)

√
1

2m
log

2
δ

≤ LD(h∗) + (b − a)

√
1

2m
log

2
δ

+ E sup
h∈H

[LD(h) − LS(h)] + (b − a)

√
1

2m
log

2
δ
,

where the first and last inequalities each add a δ/2 probability of error.

For bounded-norm bounded-data logistic regression with BC ≥ 1, this gives (3).

references

[BM02] Peter L. Bartlett and Shahar Mendelson. “Rademacher and Gaussian
Complexities: Risk Bounds and Structural Results.” Journal of Machine
Learning Research 3 (2002), pages 463–482.

[McD89] Colin McDiarmid. “On the method of bounded differences.” Surveys in
Combinatorics, 1989: Invited Papers at the Twelfth British Combinatorial
Conference. London Mathematical Society Lecture Note Series. Cam-
bridge University Press, 1989, pages 148–188.

[Wai19] Martin Wainwright. High-dimensional statistics: a non-asymptotic view-
point. Cambridge University Press, 2019.

9

https://www.jmlr.org/papers/volume3/bartlett02a/bartlett02a.pdf
https://www.jmlr.org/papers/volume3/bartlett02a/bartlett02a.pdf
http://dx.doi.org/10.1017/CBO9781107359949.008
https://go.exlibris.link/9ZMcv9J6
https://go.exlibris.link/9ZMcv9J6

	Uniform convergence in expectation
	A g-g-g-g-ghost (sample)
	Properties of Rademacher complexity
	Talagrand's contraction lemma
	Complexity of bounded linear functions

	Concentration

