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As a reminder, in lecture 2 we proved the following:

proposition 1. Suppose ℓ(z, h) is almost surely bounded in [a, b], H is finite, and ĥS is
any empirical risk minimizer over the set H based on a sample S = (z1, . . . , zm). Then for
any δ > 0, with probability at least 1 − δ over the choice of S ∼ Dm it holds that

LD(ĥS) −min
h∈H

LD(h) ≤ (b − a)

√
2
m

log
|H| + 1

δ
.

Proof. For any ERM and any H, it holds that

LD(ĥS) ≤ LS(ĥS) + sup
h∈H

[LD(h) − LS(h)]

≤ LS(h∗) + sup
h∈H

[LD(h) − LS(h)]

≤ LD(h∗) +
[
LS(h∗) − LD(h∗)

]
+ sup

h∈H
[LD(h) − LS(h)]. (1)

The result follows by applying Hoeffding’s inequality to LS(h∗) − LD(h∗) and LD(h) −
LS(h) for all h ∈ H.

Another way to state this result is that with m samples, we can achieve statistical
error at most ε with probability at least (|H| + 1) exp

(
− mε2

2(b−a)2

)
.

Or, alternately, we can say that we can achieve excess error at most ε with probability

at least 1 − δ if we have at least 2(b−a)2

ε2 log |H|+1
δ

samples. This last way establishes
the sample complexity of learning to a given accuracy ε with a given confidence 1 − δ.

1 pac learning

This last way corresponds to one of the standard notions of learnability:

definition 2. An algorithm A agnostically PAC learns H with a loss ℓ if there exists
a function m : (0, 1)2 → N such that, for every ε, δ ∈ (0, 1), for every distribution D
over Z, for any m ≥ m(ε, δ), we have that

Pr
S∼Dm

(
LD(A(S)) > inf

h∈H
LD(h) + ε

)
< δ.

That is, A can probably get an approximately correct answer, where “correct” means
the best possible error in H.

If A runs in time polynomial in 1/ε, 1/δ, n, and some notion of the size of h∗, then
we say that A efficiently agnostically PAC learns H.

For more, visit https://cs.ubc.ca/˜dsuth/532D/23w1/.
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definition 3. A hypothesis class H is agnostically PAC learnable if there exists an
algorithm A which agnostically PAC learns H.

So, ERM agnostically PAC-learns finite hypothesis classes, with the sample complex-

ity m(ε, δ) = 2(b−a)2

ε2 log |H|+1
δ

. Notice that in the definition of agnostic PAC learning,
there’s no limitation on the distribution – there needs to be an m(ε, δ) that works for
any D. Proposition 1 satisfies this, but in general, it’s an extremely worst-case kind
of notion.

Often it’s nicer to think about cases where we can make some assumptions on D.
For example, maybe the number of samples you need depends on “how hard” the
particular problem is. We’ll talk about this more a little later in the course. For now,
it’s worth mentioning one common special case:

definition 4.A1 Q3 was partly about
this setting.

Consider a nonnegative loss ℓ(h, z) ≥ 0. A distribution D is called
realizable by H if there exists an h∗ ∈ H such that LD(h∗) = 0.

definition 5.This version is the
“privileged” version that

doesn’t need a modifier
because it’s the one that was

introduced first [Val84].

An algorithm A PAC learns H with a loss ℓ if there exists a function
m : (0,1)2 → N such that, for every ε, δ ∈ (0,1), for every realizable distribution D
over Z, for any m ≥ m(ε, δ), we have that

Pr
S∼Dm

(LD(A(S)) > ε) < δ.

That is, A can probably get an approximately correct answer, where “correct” means
zero loss.

If A runs in time polynomial in 1/ε, 1/δ, n, and some notion of the size of h∗, then
we say that A efficiently (realizably) PAC learns H.

definition 6. A hypothesis class H is PAC learnable if there exists an algorithm A
which PAC learns H.

Sometimes people say “realizable PAC learnable” or similar, to emphasize the
difference versus agnostic PAC. The name “agnostic” is because the definition doesn’t
care whether there’s a perfect h∗ or not. (Notice that if A agnostically PAC learns H,
then it also PAC learns H.)

If you read [SSBD] or other work by computational learning theorists,The emphasis here on “how
many samples for a given

error” is also kind of a
TCS-style framing, whereas
statisticians more often ask

“how much error for a given
number of samples”; I tend
to prefer the latter, but it’s

all equivalent.

there tends to
be a lot of focus on just being learnable versus not being learnable. That problem
has been solved, though, as we’ll see not too much later in class; recent work focuses
much more on rates than on just learnability or not, and tends to be willing to make
some assumptions on D rather than either being totally general or assuming only
realizability.

2 logistic regression

We’ve shown that anything finite is agnostically PAC learnable. That’s only an upper
bound, though; it doesn’t mean that infinite things aren’t learnable. Which is good,
because that’s what we usually want to learn!

Lemma 6.1 of [SSBD] gives a really simple example of realizably PAC learning an
infinite class, if you’re curious to see that style of proof. I tried to do an agnostic
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version of that, but it was more complicated than I hoped, so let’s do something
more interesting instead.

In logistic regression, our data is in a subset of Rd , This is more convenient
than Y = {0, 1} here. . .

our labels are in Y = {−1, 1} and we
try to predict with a confidence score in Ŷ = R. Our predictors are linear functions
of the form hw(x) = w · x, You usually want an

intercept term, w · x + w0,
but you can achieve that by
padding x with an
always-one dimension.

and the logistic loss is given by

ℓlog(h, (x, y)) = llog(h(x), y) = log(1 + exp(−h(x)y)). (2)

We’ll use the hypothesis class H = {hw = x 7→ w · x : w ∈ Rd , ∥w∥ ≤ B} for some
constant B; this avoids overfitting by using really-really complex w, and is basically
equivalent to doing L2-regularized logistic regression (we’ll talk about this more
later). This H is still infinite, but it has finite volume.

Now, our analysis is going to be based on the idea that if w and v are similar
predictors, i.e. hw(x) ≈ hv(x) for all x, then they’ll behave similarly: LD(hw) ≈ LD(hv)
and LS(hw) ≈ LS(hv). Thus we don’t have to do a totally separate concentration
bound on their empirical risks; we can exploit that they’re similar.

To formalize that, we’ll want to bound

|LD(hw) − LD(hv)| ≤ E
(x,y)∼D

∣∣∣l(hw(x), y) − l(hv(x), y)
∣∣∣ . (3)

We can use the following result about the Lipschitz constant of llog:

lemma 7. For any y ∈ {−1, 1} and ŷ1, ŷ2 ∈ R,
∣∣∣llog(ŷ1, y) − llog(ŷ2, y)

∣∣∣ ≤ ∣∣∣ŷ1 − ŷ2

∣∣∣.
Proof. Let ly(ŷ) = llog(ŷ, y). ly is differentiable, and

∣∣∣l′y(ŷ)
∣∣∣ =

∣∣∣∣∣ d
dŷ

log(1 + exp(−yŷ))
∣∣∣∣∣ =

∣∣∣∣∣ 1
1 + exp(−yŷ)

exp(−yŷ)(−y)
∣∣∣∣∣

=
∣∣∣∣∣ exp(−yŷ)
1 + exp(−yŷ)

×
exp(yŷ)
exp(yŷ)

∣∣∣∣∣ ∣∣∣−y∣∣∣ =
∣∣∣∣∣ 1
1 + exp(yŷ)

∣∣∣∣∣ ≤ 1.

Thus ly is 1-Lipschitz:

∣∣∣ly(ŷ2) − ly(ŷ1)
∣∣∣ =

∣∣∣∣∣∣∣∣∣
ŷ2∫
ŷ1

l′y(t)dt

∣∣∣∣∣∣∣∣∣ ≤
ŷ2∫
ŷ1

∣∣∣l′y(t)
∣∣∣dt ≤

ŷ2∫
ŷ1

dt =
∣∣∣ŷ1 − ŷ2

∣∣∣ .
Plugging this into (3), we get

|LD(hw) − LD(hv)| ≤ E
(x,y)∼D

|hw(x) − hv(x)| If the predictions are
similar, the losses are too.

.

We can further say that if w and v are close, then their predictions are similar:

|hw(x) − hv(x)| = |w · x − v · x| = |(w − v) · x| ≤ ∥w − v∥ ∥x∥

by Cauchy-Schwarz. Thus

|LD(hw) − LD(hv)| ≤
(

E
(x,y)∼D

∥x∥
)
∥w − v∥ .
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For simplicity, let’s assume that Pr(x,y)∼D(∥x∥ > C) = 0, obtaining

|LD(hw) − LD(hv)| ≤ C ∥w − v∥ . (4)

The same kind of thing is true for LS; we could repeat the argument with averages
instead of E, or we could use the empirical distribution D̂ corresponding to S, the
discrete distribution that puts 1/m probability at each member of S, and note that
expectations over D̂ are exactly averages over S. Either way,

|LS(hw) − LS(hv)| ≤

 1
m

m∑
i=1

∥xi∥

 ∥w − v∥ ≤ C ∥w − v∥ . (5)

Now, how do we exploit that similar hypotheses have similar losses? We’ll use the
following concept:

definition 8. A ρ-cover of a set U is a set T ⊆ U such that, for all u ∈ U, there is a
t ∈ T with dist(t, u) ≤ ρ.

We’re going to use a set cover for {w : ∥w∥ ≤ B} based on the Euclidean distance, and
then use (4) and (5) to turn that into a set cover for H.

Let N(B, ρ) be the size of the smallest cover for H. We have the following result
(proved in Section 2.1):

lemma 9.For ρ ≥ B, you immediately
get N(B, ρ) = 1.

Let B ≥ ρ > 0. The covering number N(B, ρ) of the radius-B Euclidean ball in
Rd , {x ∈ Rd : ∥x∥ ≤ B}, satisfies N(B, ρ) ≤ (3B/ρ)d .

We now have all the tools we need for the following result.

proposition 10. Let hw(x) = w · x and H = {hw : ∥w∥ ≤ B} for some B > 0. Consider
the logistic loss given by (2), and assume that ∥x∥ ≤ C almost surely under D. Assume
for simplicity BC ≥ 1. Then, with probability at least 1 − δ,

sup
h∈H

LD(h) − LS(h) ≤ 2BC
√
m

1 +

√
log

1
δ

+
d
2

log(9m)

 .
Proof. Our proof will be of the form sometimes called an “ε-net argument.” We will
choose a ρ-cover T = {w1, . . . , wN(B,ρ)} ⊂ {w ∈ Rd : ∥w∥ ≤ B}, where ρ is a parameter
to be set later. Then, for any hw ∈ H, let j be the index of the wj closest to w, which
can’t be further than ρ away. Thus,

sup
h∈H

LD(h) − LS(h) = sup
h∈H

LD(h) − LD(hj ) + LD(hj ) − LS(hj ) + LS(hj ) − LS(h)

≤ sup
h∈H

LD(h) − LD(hj )︸                  ︷︷                  ︸
bound with (4)

+ sup
hj∈T

LD(hj ) − LS(hj )︸                   ︷︷                   ︸
as in Proposition 1

+ sup
h∈H

LS(hj ) − LS(h)︸                 ︷︷                 ︸
bound with (5)

.

The first and last terms are each Cρ.

The middle term is uniform convergence over a finite H, as in Proposition 1. There’s
one catch, though: the logistic loss isn’t “naturally” bounded. But given that ∥x∥ ≤ C
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and ∥w∥ ≤ B, we know that |h(x)| = |w · x| ≤ BC. Thus∣∣∣ℓ(h, (x, y))
∣∣∣ =

∣∣∣log(1 + exp(−yh(x))
∣∣∣ ≤ log(1 + exp(BC)) ≤ BC + 1. (6)

Then we can apply Hoeffding to each element of T, giving it a failure probability of
δ/N(B, ρ), and obtaining that with probability at least 1 − δ,

sup
h∈H

[LD(h) − LS(h)] ≤ 2Cρ + (BC + 1)

√
1

2m
log

N(B, ρ)
δ

≤ 2Cρ + (BC + 1)

√
1

2m

[
log

1
δ

+ d log
3B
ρ

]
.

Now, we could try to exactly optimize the value of ρ by setting the derivative to zero,
but I think we won’t be able to solve that equation. Instead, let’s notice that if ρ
is o(1/

√
m), the first term being smaller doesn’t really help in rate since the other

two are 1/
√
m anyway – but choosing a smaller ρ makes the log 1

ρ
worse. Also, the

dependence on ρ there is only in a log term, so it’s probably okay-ish to choose
ρ = α/

√
m, giving

sup
h∈H

[LD(h) − LS(h)] ≤ 1
√
m

2Cα +
BC + 1
√

2

√
log

1
δ

+ d log
3B
√
m

α

 .
Picking α = B gives

sup
h∈H

[LD(h) − LS(h)] ≤ BC
√
m

2 +
1 + 1/(BC)
√

2

√
log

1
δ

+
d
2

log(9m)

 ,
and the desired result follows from 1/(BC) ≤ 1 and 2/

√
2 < 2.

Treating everything but m as a constant, the rate is Op

(√
logm
m

)
. That

√
logm factor

is actually unnecessary, but getting rid of it with covering number-type arguments
requires some more advanced machinery (called “chaining”; we might cover it later
in class). Instead, next time we’ll see a simpler way to show a Op(1/

√
m) rate that

will also be very generally applicable.

We only wrote this proof here for suph∈H LD(h) − LS(h), but since the loss is a.s.
bounded, this implies exactly as in (1) an upper bound on the generalization error
of any ERM ĥS:

LD(ĥS) − LD(h∗) ≤ (BC + 1)

√
1

2m
log

2
δ

+
2BC
√
m

1 +

√
log

2
δ

+
d
2

log(9m)

 ,
which using the assumption BC ≥ 1,

√
a + b ≤

√
a+
√
b, and 1/

√
2 < 1 we can simplify

further as

LD(ĥS) − LD(h∗) ≤ 2BC
√
m

1 + 2

√
log

2
δ

+

√
d
2

log(9m)

 .
General case We needed the following properties about the problem to get this
result:

• A bounded loss, for Hoeffding, here implied by (6).
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• A Lipschitz loss, to get (4) and (5).

• A parameterization for H with a covering number bound.

The first point is general, and could e.g. be immediately weakened to sub-Gaussianity
if you have that another way than boundedness. If you have some other way to show
concentration for a finite number of points, or for expectation bounds, you don’t
necessarily need this.

The second point, of a Lipschitz loss, is definitely necessary in some form. You could
potentially use a locally Lipschitz loss (where the constant varies through space),
but then you have to be more careful.

The third point, of a covering number bound onH, is also important. We framed this
as covering the parameter set, but you could also think of it as defining a distance
metric on H (by dist(hw, hv) = ∥w − v∥) and then covering H. This generality is often
useful, e.g. for nonparametric H.

2.1 Bounds on covering numbers

We’ll now prove our upper bound on covering numbers. Recall their definition:

definition 8. A ρ-cover of a set U is a set T ⊆ U such that, for all u ∈ U, there is a
t ∈ T with dist(t, u) ≤ ρ.

We used N(B, ρ) to be the size of the smallest ρ-cover for the B-ball {w ∈ Rd : ∥w∥ ≤
B}.

We’ll also need the idea of packing numbers: how many balls can we squeeze into a
set T?

definition 11. A ρ-packing of a set U is a set T ⊆ U such that, for all t, t′ ∈ T with
t , t′, we have dist(t, t′) ≥ ρ.

Let M(B, ρ) be the size of the largest possible ρ-packing of the B-ball.

proposition 12. A maximal ρ-packing of a set U is also a ρ-cover of T.

Proof. Suppose there were some point u ∈ U such that dist(u, t) > ρ for all t ∈ T.
Then we could add u to the ρ-packing, producing a packing of size one larger; this
contradicts that T was maximal.

We’re now ready to prove the result:

lemma 9.For ρ ≥ B, you immediately
get N(B, ρ) = 1.

Let B ≥ ρ > 0. The covering number N(B, ρ) of the radius-B Euclidean ball in
Rd , {x ∈ Rd : ∥x∥ ≤ B}, satisfies N(B, ρ) ≤ (3B/ρ)d .

Proof. By Proposition 12, we have that N(B, ρ) ≤ M(B, ρ); we’ll actually prove the
result about M.

Let T be a maximal ρ-packing of the B-ball {w ∈ Rd : ∥w∥ ≤ B}. Thus the open ρ/2-
balls centered at each t ∈ T, {w ∈ Rd : ∥w − t∥ < ρ/2}, are disjoint: if they weren’t,
you could get from one t to another in distance less than ρ. These balls are also all
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contained within the ball of radius (B + ρ/2), since each t has norm at most B. Thus
we have that∑

t∈T

vol
(
{w ∈ Rd : ∥w − t∥ < ρ/2}

)
≤ vol

(
{w ∈ Rd : ∥w∥ < B + ρ/2}

)
.

But we know that the volume of a ball of radius R in d dimensions is RdV1, where
V1 = vol({w ∈ Rd : ∥w∥ < 1}). Thus∑

t∈T

(
ρ

2

)d
V1 = M(B, ρ)

(
ρ

2

)d
V1 ≤

(
B +

ρ

2

)d
V1,

and so

M(B, ρ) ≤
(

2B
ρ

+ 1
)d

=
(

2B + ρ

ρ

)d
≤

(
3B
ρ

)d
,

using at the end that ρ ≤ B to get a simpler form.
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