CPSC 532D - 4. PAC LEARNING; INFINITE \mathcal{H}
 Danica J. Sutherland
 University of British Columbia, Vancouver

Fall 2023

As a reminder, in lecture 2 we proved the following:
proposition 1. Suppose $\ell(z, h)$ is almost surely bounded in $[a, b], \mathcal{H}$ is finite, and \hat{h}_{S} is any empirical risk minimizer over the set \mathcal{H} based on a sample $\mathrm{S}=\left(z_{1}, \ldots, z_{m}\right)$. Then for any $\delta>0$, with probability at least $1-\delta$ over the choice of $S \sim \mathcal{D}^{m}$ it holds that

$$
\mathrm{L}_{\mathcal{D}}\left(\hat{h}_{\mathrm{S}}\right)-\min _{h \in \mathcal{H}} \mathrm{~L}_{\mathcal{D}}(h) \leq(b-a) \sqrt{\frac{2}{m} \log \frac{|\mathcal{H}|+1}{\delta}} .
$$

Proof. For any ERM and any \mathcal{H}, it holds that

$$
\begin{align*}
\mathrm{L}_{\mathcal{D}}\left(\hat{h}_{\mathrm{S}}\right) & \leq \mathrm{L}_{\mathrm{S}}\left(\hat{h}_{\mathrm{S}}\right)+\sup _{h \in \mathcal{H}}\left[\mathrm{~L}_{\mathcal{D}}(h)-\mathrm{L}_{\mathrm{S}}(h)\right] \\
& \leq \mathrm{L}_{\mathrm{S}}\left(h^{*}\right)+\sup _{h \in \mathcal{H}}\left[\mathrm{~L}_{\mathcal{D}}(h)-\mathrm{L}_{\mathrm{S}}(h)\right] \\
& \leq \mathrm{L}_{\mathcal{D}}\left(h^{*}\right)+\left[\mathrm{L}_{\mathrm{S}}\left(h^{*}\right)-\mathrm{L}_{\mathcal{D}}\left(h^{*}\right)\right]+\sup _{h \in \mathcal{H}}\left[\mathrm{~L}_{\mathcal{D}}(h)-\mathrm{L}_{\mathrm{S}}(h)\right] . \tag{1}
\end{align*}
$$

The result follows by applying Hoeffding's inequality to $\mathrm{L}_{\mathrm{S}}\left(h^{*}\right)-\mathrm{L}_{\mathcal{D}}\left(h^{*}\right)$ and $\mathrm{L}_{\mathcal{D}}(h)-$ $\mathrm{L}_{\mathrm{S}}(h)$ for all $h \in \mathcal{H}$.

Another way to state this result is that with m samples, we can achieve statistical error at most ε with probability at least $(|\mathcal{H}|+1) \exp \left(-\frac{m \varepsilon^{2}}{2(b-a)^{2}}\right)$.
Or, alternately, we can say that we can achieve excess error at most ε with probability at least $1-\delta$ if we have at least $\frac{2(b-a)^{2}}{\varepsilon^{2}} \log \frac{|\mathcal{H}|+1}{\delta}$ samples. This last way establishes the sample complexity of learning to a given accuracy ε with a given confidence $1-\delta$.

1 PAC LEARNING

This last way corresponds to one of the standard notions of learnability:
definition 2. An algorithm \mathcal{A} agnostically PAC learns \mathcal{H} with a loss ℓ if there exists a function $m:(0,1)^{2} \rightarrow \mathbb{N}$ such that, for every $\varepsilon, \delta \in(0,1)$, for every distribution \mathcal{D} over \mathcal{Z}, for any $m \geq m(\varepsilon, \delta)$, we have that

$$
\operatorname{Pr}_{S \sim \mathcal{D}^{m}}\left(\mathrm{~L}_{\mathcal{D}}(\mathcal{A}(\mathrm{S}))>\inf _{h \in \mathcal{H}} \mathrm{~L}_{\mathcal{D}}(h)+\varepsilon\right)<\delta .
$$

That is, \mathcal{A} can probably get an approximately correct answer, where "correct" means the best possible error in \mathcal{H}.

If \mathcal{A} runs in time polynomial in $1 / \varepsilon, 1 / \delta, n$, and some notion of the size of h^{*}, then we say that A efficiently agnostically PAC learns \mathcal{H}.

[^0]A1 Q3 was partly about this setting.

This version is the "privileged" version that doesn't need a modifier because it's the one that was introduced first [Val84].

The emphasis here on "how many samples for a given error" is also kind of a TCS-style framing, whereas statisticians more often ask "how much error for a given number of samples"; I tend to prefer the latter, but it's
definition 3. A hypothesis class \mathcal{H} is agnostically PAC learnable if there exists an algorithm \mathcal{A} which agnostically PAC learns \mathcal{H}.

So, ERM agnostically PAC-learns finite hypothesis classes, with the sample complexity $m(\varepsilon, \delta)=\frac{2(b-a)^{2}}{\varepsilon^{2}} \log \frac{|\mathcal{H}|+1}{\delta}$. Notice that in the definition of agnostic PAC learning, there's no limitation on the distribution - there needs to be an $m(\varepsilon, \delta)$ that works for any \mathcal{D}. Proposition 1 satisfies this, but in general, it's an extremely worst-case kind of notion.

Often it's nicer to think about cases where we can make some assumptions on \mathcal{D}. For example, maybe the number of samples you need depends on "how hard" the particular problem is. We'll talk about this more a little later in the course. For now, it's worth mentioning one common special case:
definition 4. Consider a nonnegative loss $\ell(h, z) \geq 0$. A distribution \mathcal{D} is called realizable by \mathcal{H} if there exists an $h^{*} \in \mathcal{H}$ such that $\mathrm{L}_{\mathcal{D}}\left(h^{*}\right)=0$.
definition 5. An algorithm \mathcal{A} PAC learns \mathcal{H} with a loss ℓ if there exists a function $m:(0,1)^{2} \rightarrow \mathbb{N}$ such that, for every $\varepsilon, \delta \in(0,1)$, for every realizable distribution \mathcal{D} over \mathcal{Z}, for any $m \geq m(\varepsilon, \delta)$, we have that

$$
\operatorname{Pr}_{\mathrm{S} \sim \mathcal{D}^{m}}\left(\mathrm{~L}_{\mathcal{D}}(\mathcal{A}(\mathrm{S}))>\varepsilon\right)<\delta
$$

That is, \mathcal{A} can probably get an approximately correct answer, where "correct" means zero loss.

If \mathcal{A} runs in time polynomial in $1 / \varepsilon, 1 / \delta, n$, and some notion of the size of h^{*}, then we say that A efficiently (realizably) PAC learns \mathcal{H}.
definition 6. A hypothesis class \mathcal{H} is PAC learnable if there exists an algorithm \mathcal{A} which PAC learns \mathcal{H}.

Sometimes people say "realizable PAC learnable" or similar, to emphasize the difference versus agnostic PAC. The name "agnostic" is because the definition doesn't care whether there's a perfect h^{*} or not. (Notice that if \mathcal{A} agnostically PAC learns \mathcal{H}, then it also PAC learns \mathcal{H}.)

If you read [SSBD] or other work by computational learning theorists, there tends to be a lot of focus on just being learnable versus not being learnable. That problem has been solved, though, as we'll see not too much later in class; recent work focuses much more on rates than on just learnability or not, and tends to be willing to make some assumptions on \mathcal{D} rather than either being totally general or assuming only realizability.

2 LOGISTIC REGRESSION

We've shown that anything finite is agnostically PAC learnable. That's only an upper bound, though; it doesn't mean that infinite things aren't learnable. Which is good, because that's what we usually want to learn!

Lemma 6.1 of [SSBD] gives a really simple example of realizably PAC learning an infinite class, if you're curious to see that style of proof. I tried to do an agnostic
version of that, but it was more complicated than I hoped, so let's do something more interesting instead.

In logistic regression, our data is in a subset of \mathbb{R}^{d}, our labels are in $\mathcal{Y}=\{-1,1\}$ and we try to predict with a confidence score in $\widehat{\mathcal{Y}}=\mathbb{R}$. Our predictors are linear functions of the form $h_{w}(x)=w \cdot x$, and the logistic loss is given by

$$
\begin{equation*}
\ell_{\log }(h,(x, y))=l_{\log }(h(x), y)=\log (1+\exp (-h(x) y)) . \tag{2}
\end{equation*}
$$

We'll use the hypothesis class $\mathcal{H}=\left\{h_{w}=x \mapsto w \cdot x: w \in \mathbb{R}^{d},\|w\| \leq \mathrm{B}\right\}$ for some constant B; this avoids overfitting by using really-really complex w, and is basically equivalent to doing L_{2}-regularized logistic regression (we'll talk about this more later). This \mathcal{H} is still infinite, but it has finite volume.

Now, our analysis is going to be based on the idea that if w and v are similar predictors, i.e. $h_{w}(x) \approx h_{v}(x)$ for all x, then they'll behave similarly: $\mathrm{L}_{\mathcal{D}}\left(h_{w}\right) \approx \mathrm{L}_{\mathcal{D}}\left(h_{v}\right)$ and $\mathrm{L}_{\mathrm{S}}\left(h_{w}\right) \approx \mathrm{L}_{\mathrm{S}}\left(h_{v}\right)$. Thus we don't have to do a totally separate concentration bound on their empirical risks; we can exploit that they're similar.

To formalize that, we'll want to bound

$$
\begin{equation*}
\left|\mathrm{L}_{\mathcal{D}}\left(h_{w}\right)-\mathrm{L}_{\mathcal{D}}\left(h_{v}\right)\right| \leq \underset{(x, y) \sim \mathcal{D}}{\mathbb{E}}\left|l\left(h_{w}(x), y\right)-l\left(h_{v}(x), y\right)\right| . \tag{3}
\end{equation*}
$$

We can use the following result about the Lipschitz constant of $l_{\text {log }}$:
Lemma 7. For any $y \in\{-1,1\}$ and $\left.\hat{y}_{1}, \hat{y}_{2} \in \mathbb{R}, \mid l_{\log }\left(\hat{y}_{1}, y\right)-l_{\log \left(\hat{y}_{2}\right.}, y\right)\left|\leq\left|\hat{y}_{1}-\hat{y}_{2}\right|\right.$.

Proof. Let $l_{y}(\hat{y})=l_{\log }(\hat{y}, y) . l_{y}$ is differentiable, and

$$
\begin{aligned}
\left|l_{y}^{\prime}(\hat{y})\right|=\left|\frac{\mathrm{d}}{\mathrm{~d} \hat{y}} \log (1+\exp (-y \hat{y}))\right| & =\left|\frac{1}{1+\exp (-y \hat{y})} \exp (-y \hat{y})(-y)\right| \\
& =\left|\frac{\exp (-y \hat{y})}{1+\exp (-y \hat{y})} \times \frac{\exp (y \hat{y})}{\exp (y \hat{y})}\right||-y|=\left|\frac{1}{1+\exp (y \hat{y})}\right| \leq 1
\end{aligned}
$$

Thus l_{y} is 1-Lipschitz:

$$
\left|l_{y}\left(\hat{y}_{2}\right)-l_{y}\left(\hat{y}_{1}\right)\right|=\left|\int_{\hat{y}_{1}}^{\hat{y}_{2}} l_{y}^{\prime}(t) \mathrm{d} t\right| \leq \int_{\hat{y}_{1}}^{\hat{y}_{2}}\left|l_{y}^{\prime}(t)\right| \mathrm{d} t \leq \int_{\hat{y}_{1}}^{\hat{y}_{2}} \mathrm{~d} t=\left|\hat{y}_{1}-\hat{y}_{2}\right| .
$$

Plugging this into (3), we get

$$
\left|\mathrm{L}_{\mathcal{D}}\left(h_{w}\right)-\mathrm{L}_{\mathcal{D}}\left(h_{v}\right)\right| \leq \underset{(x, y) \sim \mathcal{D}}{\mathbb{E}}\left|h_{w}(x)-h_{v}(x)\right|
$$

We can further say that if w and v are close, then their predictions are similar:

$$
\left|h_{w}(x)-h_{v}(x)\right|=|w \cdot x-v \cdot x|=|(w-v) \cdot x| \leq\|w-v\|\|x\|
$$

by Cauchy-Schwarz. Thus

$$
\left|\mathrm{L}_{\mathcal{D}}\left(h_{w}\right)-\mathrm{L}_{\mathcal{D}}\left(h_{v}\right)\right| \leq(\underset{(x, y) \sim \mathcal{D}}{\mathbb{E}}\|x\|)\|w-v\| .
$$

For simplicity, let's assume that $\operatorname{Pr}_{(x, y) \sim \mathcal{D}}(\|x\|>C)=0$, obtaining

$$
\begin{equation*}
\left|\mathrm{L}_{\mathcal{D}}\left(h_{w}\right)-\mathrm{L}_{\mathcal{D}}\left(h_{v}\right)\right| \leq \mathrm{C}\|w-v\| . \tag{4}
\end{equation*}
$$

The same kind of thing is true for L_{S}; we could repeat the argument with averages instead of \mathbb{E}, or we could use the empirical distribution $\hat{\mathcal{D}}$ corresponding to S, the discrete distribution that puts $1 / m$ probability at each member of S, and note that expectations over $\hat{\mathcal{D}}$ are exactly averages over S. Either way,

$$
\begin{equation*}
\left|\mathrm{L}_{\mathrm{S}}\left(h_{w}\right)-\mathrm{L}_{\mathrm{S}}\left(h_{v}\right)\right| \leq\left(\frac{1}{m} \sum_{i=1}^{m}\left\|x_{i}\right\|\right)\|w-v\| \leq \mathrm{C}\|w-v\| . \tag{5}
\end{equation*}
$$

Now, how do we exploit that similar hypotheses have similar losses? We'll use the following concept:
definition 8. A ρ-cover of a set U is a set $\mathrm{T} \subseteq \mathrm{U}$ such that, for all $u \in \mathrm{U}$, there is a $t \in \mathrm{~T}$ with $\operatorname{dist}(t, u) \leq \rho$.

We're going to use a set cover for $\{w:\|w\| \leq \mathrm{B}\}$ based on the Euclidean distance, and then use (4) and (5) to turn that into a set cover for \mathcal{H}.

Let $\mathrm{N}(\mathrm{B}, \rho)$ be the size of the smallest cover for \mathcal{H}. We have the following result (proved in Section 2.1):

For $\rho \geq \mathrm{B}$, you immediately $\operatorname{get} \mathrm{N}(\mathrm{B}, \rho)=1$.
lemma 9. Let $\mathrm{B} \geq \rho>0$. The covering number $\mathrm{N}(\mathrm{B}, \rho)$ of the radius- B Euclidean ball in $\mathbb{R}^{d},\left\{x \in \mathbb{R}^{d}:\|x\| \leq \mathrm{B}\right\}$, satisfies $\mathrm{N}(\mathrm{B}, \rho) \leq(3 \mathrm{~B} / \rho)^{d}$.

We now have all the tools we need for the following result.
proposition 10. Let $h_{w}(x)=w \cdot x$ and $\mathcal{H}=\left\{h_{w}:\|w\| \leq \mathrm{B}\right\}$ for some $\mathrm{B}>0$. Consider the logistic loss given by (2), and assume that $\|x\| \leq \mathrm{C}$ almost surely under \mathcal{D}. Assume for simplicity $\mathrm{BC} \geq 1$. Then, with probability at least $1-\delta$,

$$
\sup _{h \in \mathcal{H}} \mathrm{~L}_{\mathcal{D}}(h)-\mathrm{L}_{\mathrm{S}}(h) \leq \frac{2 \mathrm{BC}}{\sqrt{m}}\left[1+\sqrt{\log \frac{1}{\delta}+\frac{d}{2} \log (9 m)}\right]
$$

Proof. Our proof will be of the form sometimes called an " ε-net argument." We will choose a ρ-cover $\mathrm{T}=\left\{w_{1}, \ldots, w_{\mathrm{N}(\mathrm{B}, \rho)}\right\} \subset\left\{w \in \mathbb{R}^{d}:\|w\| \leq \mathrm{B}\right\}$, where ρ is a parameter to be set later. Then, for any $h_{w} \in \mathcal{H}$, let j be the index of the w_{j} closest to w, which can't be further than ρ away. Thus,

$$
\begin{aligned}
\sup _{h \in \mathcal{H}} \mathrm{~L}_{\mathcal{D}}(h)-\mathrm{L}_{\mathrm{S}}(h) & =\sup _{h \in \mathcal{H}} \mathrm{~L}_{\mathcal{D}}(h)-\mathrm{L}_{\mathcal{D}}\left(h_{j}\right)+\mathrm{L}_{\mathcal{D}}\left(h_{j}\right)-\mathrm{L}_{\mathrm{S}}\left(h_{j}\right)+\mathrm{L}_{\mathrm{S}}\left(h_{j}\right)-\mathrm{L}_{\mathrm{S}}(h) \\
& \leq \underbrace{\sup _{h \in \mathcal{H}} \mathrm{~L}_{\mathcal{D}}(h)-\mathrm{L}_{\mathcal{D}}\left(h_{j}\right)}_{\text {bound with (4) }}+\underbrace{\sup _{h_{j} \in \mathrm{~T}} \mathrm{~L}_{\mathcal{D}}\left(h_{j}\right)-\mathrm{L}_{\mathrm{S}}\left(h_{j}\right)}_{\text {as in Proposition 1 }}+\underbrace{\sup _{h \in \mathcal{H}} \mathrm{~L}_{\mathrm{S}}\left(h_{j}\right)-\mathrm{L}_{\mathrm{S}}(h)}_{\text {bound with (5) }} .
\end{aligned}
$$

The first and last terms are each $\mathrm{C} \rho$.
The middle term is uniform convergence over a finite \mathcal{H}, as in Proposition 1. There's one catch, though: the logistic loss isn't "naturally" bounded. But given that $\|x\| \leq \mathrm{C}$
and $\|w\| \leq \mathrm{B}$, we know that $|h(x)|=|w \cdot x| \leq \mathrm{BC}$. Thus

$$
\begin{equation*}
|\ell(h,(x, y))|=\mid \log (1+\exp (-y h(x)) \mid \leq \log (1+\exp (\mathrm{BC})) \leq \mathrm{BC}+1 . \tag{6}
\end{equation*}
$$

Then we can apply Hoeffding to each element of T, giving it a failure probability of $\delta / \mathrm{N}(\mathrm{B}, \rho)$, and obtaining that with probability at least $1-\delta$,

$$
\begin{aligned}
\sup _{h \in \mathcal{H}}\left[\mathrm{~L}_{\mathcal{D}}(h)-\mathrm{L}_{\mathrm{S}}(h)\right] & \leq 2 \mathrm{C} \rho+(\mathrm{BC}+1) \sqrt{\frac{1}{2 m} \log \frac{\mathrm{~N}(\mathrm{~B}, \rho)}{\delta}} \\
& \leq 2 \mathrm{C} \rho+(\mathrm{BC}+1) \sqrt{\frac{1}{2 m}\left[\log \frac{1}{\delta}+d \log \frac{3 \mathrm{~B}}{\rho}\right]} .
\end{aligned}
$$

Now, we could try to exactly optimize the value of ρ by setting the derivative to zero, but I think we won't be able to solve that equation. Instead, let's notice that if ρ is $o(1 / \sqrt{m})$, the first term being smaller doesn't really help in rate since the other two are $1 / \sqrt{m}$ anyway - but choosing a smaller ρ makes the $\log \frac{1}{\rho}$ worse. Also, the dependence on ρ there is only in a log term, so it's probably okay-ish to choose $\rho=\alpha / \sqrt{m}$, giving

$$
\sup _{h \in \mathcal{H}}\left[\mathrm{~L}_{\mathcal{D}}(h)-\mathrm{L}_{\mathrm{S}}(h)\right] \leq \frac{1}{\sqrt{m}}\left[2 \mathrm{C} \alpha+\frac{\mathrm{BC}+1}{\sqrt{2}} \sqrt{\log \frac{1}{\delta}+d \log \frac{3 \mathrm{~B} \sqrt{m}}{\alpha}}\right] .
$$

Picking $\alpha=\mathrm{B}$ gives

$$
\sup _{h \in \mathcal{H}}\left[\mathrm{~L}_{\mathcal{D}}(h)-\mathrm{L}_{\mathrm{S}}(h)\right] \leq \frac{\mathrm{BC}}{\sqrt{m}}\left[2+\frac{1+1 /(\mathrm{BC})}{\sqrt{2}} \sqrt{\log \frac{1}{\delta}+\frac{d}{2} \log (9 m)}\right],
$$

and the desired result follows from $1 /(\mathrm{BC}) \leq 1$ and $2 / \sqrt{2}<2$.

Treating everything but m as a constant, the rate is $\mathcal{O}_{p}\left(\sqrt{\frac{\log m}{m}}\right)$. That $\sqrt{\log m}$ factor is actually unnecessary, but getting rid of it with covering number-type arguments requires some more advanced machinery (called "chaining"; we might cover it later in class). Instead, next time we'll see a simpler way to show a $\mathcal{O}_{p}(1 / \sqrt{m})$ rate that will also be very generally applicable.

We only wrote this proof here for $\sup _{h \in \mathcal{H}} \mathrm{~L}_{\mathcal{D}}(h)-\mathrm{L}_{\mathrm{S}}(h)$, but since the loss is a.s. bounded, this implies exactly as in (1) an upper bound on the generalization error of any ERM \hat{h}_{S} :

$$
\mathrm{L}_{\mathcal{D}}\left(\hat{h}_{\mathrm{S}}\right)-\mathrm{L}_{\mathcal{D}}\left(h^{*}\right) \leq(\mathrm{BC}+1) \sqrt{\frac{1}{2 m} \log \frac{2}{\delta}}+\frac{2 \mathrm{BC}}{\sqrt{m}}\left[1+\sqrt{\log \frac{2}{\delta}+\frac{d}{2} \log (9 m)}\right],
$$

which using the assumption $\mathrm{BC} \geq 1, \sqrt{a+b} \leq \sqrt{a}+\sqrt{b}$, and $1 / \sqrt{2}<1$ we can simplify further as

$$
\mathrm{L}_{\mathcal{D}}\left(\hat{h}_{\mathrm{S}}\right)-\mathrm{L}_{\mathcal{D}}\left(h^{*}\right) \leq \frac{2 \mathrm{BC}}{\sqrt{m}}\left[1+2 \sqrt{\log \frac{2}{\delta}}+\sqrt{\frac{d}{2} \log (9 m)}\right] .
$$

General case We needed the following properties about the problem to get this result:

- A bounded loss, for Hoeffding, here implied by (6).
- A Lipschitz loss, to get (4) and (5).
- A parameterization for \mathcal{H} with a covering number bound.

The first point is general, and could e.g. be immediately weakened to sub-Gaussianity if you have that another way than boundedness. If you have some other way to show concentration for a finite number of points, or for expectation bounds, you don't necessarily need this.

The second point, of a Lipschitz loss, is definitely necessary in some form. You could potentially use a locally Lipschitz loss (where the constant varies through space), but then you have to be more careful.

The third point, of a covering number bound on \mathcal{H}, is also important. We framed this as covering the parameter set, but you could also think of it as defining a distance metric on $\mathcal{H}\left(\right.$ by $\left.\operatorname{dist}\left(h_{w}, h_{v}\right)=\|w-v\|\right)$ and then covering \mathcal{H}. This generality is often useful, e.g. for nonparametric \mathcal{H}.

2.1 Bounds on covering numbers

We'll now prove our upper bound on covering numbers. Recall their definition:
definition 8. A ρ-cover of a set U is a set $\mathrm{T} \subseteq \mathrm{U}$ such that, for all $u \in \mathrm{U}$, there is a $t \in \mathrm{~T}$ with $\operatorname{dist}(t, u) \leq \rho$.

We used $\mathrm{N}(\mathrm{B}, \rho)$ to be the size of the smallest ρ-cover for the B-ball $\left\{w \in \mathbb{R}^{d}:\|w\| \leq\right.$ B\}.

We'll also need the idea of packing numbers: how many balls can we squeeze into a set T?
definition 11. A ρ-packing of a set U is a set $\mathrm{T} \subseteq \mathrm{U}$ such that, for all $t, t^{\prime} \in \mathrm{T}$ with $t \neq t^{\prime}$, we have $\operatorname{dist}\left(t, t^{\prime}\right) \geq \rho$.

Let $\mathrm{M}(\mathrm{B}, \rho)$ be the size of the largest possible ρ-packing of the B -ball.
proposition 12. A maximal ρ-packing of a set U is also a ρ-cover of T .
Proof. Suppose there were some point $u \in \mathrm{U}$ such that $\operatorname{dist}(u, t)>\rho$ for all $t \in \mathrm{~T}$. Then we could add u to the ρ-packing, producing a packing of size one larger; this contradicts that T was maximal.

We're now ready to prove the result:

For $\rho \geq \mathrm{B}$, you immediately $\operatorname{get} \mathrm{N}(\mathrm{B}, \rho)=1$.
lemma 9 . Let $\mathrm{B} \geq \rho>0$. The covering number $\mathrm{N}(\mathrm{B}, \rho)$ of the radius- B Euclidean ball in $\mathbb{R}^{d},\left\{x \in \mathbb{R}^{d}:\|x\| \leq \mathrm{B}\right\}$, satisfies $\mathrm{N}(\mathrm{B}, \rho) \leq(3 \mathrm{~B} / \rho)^{d}$.

Proof. By Proposition 12, we have that $\mathrm{N}(\mathrm{B}, \rho) \leq \mathrm{M}(\mathrm{B}, \rho)$; we'll actually prove the result about M.

Let T be a maximal ρ-packing of the B-ball $\left\{w \in \mathbb{R}^{d}:\|w\| \leq \mathrm{B}\right\}$. Thus the open $\rho / 2$ balls centered at each $t \in \mathrm{~T},\left\{w \in \mathbb{R}^{d}:\|w-t\|<\rho / 2\right\}$, are disjoint: if they weren't, you could get from one t to another in distance less than ρ. These balls are also all
contained within the ball of radius $(B+\rho / 2)$, since each t has norm at most B. Thus we have that

$$
\sum_{t \in \mathrm{~T}} \operatorname{vol}\left(\left\{w \in \mathbb{R}^{d}:\|w-t\|<\rho / 2\right\}\right) \leq \operatorname{vol}\left(\left\{w \in \mathbb{R}^{d}:\|w\|<\mathrm{B}+\rho / 2\right\}\right)
$$

But we know that the volume of a ball of radius R in d dimensions is $\mathrm{R}^{d} \mathrm{~V}_{1}$, where $\mathrm{V}_{1}=\operatorname{vol}\left(\left\{w \in \mathbb{R}^{d}:\|w\|<1\right\}\right)$. Thus

$$
\sum_{t \in \mathrm{~T}}\left(\frac{\rho}{2}\right)^{d} \mathrm{~V}_{1}=\mathrm{M}(\mathrm{~B}, \rho)\left(\frac{\rho}{2}\right)^{d} \mathrm{~V}_{1} \leq\left(\mathrm{B}+\frac{\rho}{2}\right)^{d} \mathrm{~V}_{1}
$$

and so

$$
\mathrm{M}(\mathrm{~B}, \rho) \leq\left(\frac{2 \mathrm{~B}}{\rho}+1\right)^{d}=\left(\frac{2 \mathrm{~B}+\rho}{\rho}\right)^{d} \leq\left(\frac{3 \mathrm{~B}}{\rho}\right)^{d}
$$

using at the end that $\rho \leq B$ to get a simpler form.

REFERENCES

[SSBD] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory to Algorithms. Cambridge University Press, 2014.
[Val84] Leslie G. Valiant. "A Theory of the Learnable." Communications of the ACM 27.11 (1984), pages 1134-1142.

[^0]: For more, visit https://cs.ubc.ca/~dsuth/532D/23w1/.

