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We’ll now prove Hoeffding’s inequality, and learn a bunch of useful stuff along the
way.

1 markov

We’ll start with the surprisingly simple basis for everything:

proposition 1 (Markov’s inequality). If X is a nonnegative-valued random variable,
Pr(X ≥ t) ≤ 1

t E X for all t > 0.

Proof. We know X ≥ 0. We also know, if X ≥ t, then X ≥ t. So X ≥ t 1(X ≥ t). Take
the expectation of both sides, giving E X ≥ t E1(X ≥ t) = t Pr(X ≥ t). Rearrange.

This was actually proved by Markov’s PhD advisor Chebyshev. Luckily, though,
Chebyshev has another inequality named after him:

proposition 2 (Chebyshev’s inequality). For any X, Pr(|X − E X| ≥ ε) ≤ Var X
ε2 .

Proof. (X − E X)2 is a nonnegative random variable; applying Markov gives Pr((X −
E X)2 ≥ t) ≤ 1

t E(X − E X)2. Change variables to t = ε2.

Equivalently, with probability at least 1 − δ, |X − E X| ≤
√

Var[X] / δ.

Let’s consider iid X1, . . . , Xm, each with mean µ and variance σ2. Then the random

variable X = 1
m

m∑
i=1

Xi has mean µ and variance σ2/m, so Chebyshev gives that∣∣∣X − µ∣∣∣ ≤ σ√
mδ

. This is Op(1/
√
m), as expected, so sometimes this is good enough. But

the dependence on δ is really quite bad compared to what we’d like. For instance, if

the Xi are normal so that X̄ is too, then in (2) below we’ll obtain X − µ ≤ σ√
m

√
2 log 1

δ
.

To emphasize the difference:

δ 0.1 0.01 0.001 0.0001 0.00001
1/
√
δ 3.2 10.0 31.6 100.0 316.2√

2 log 1
δ

2.2 3.0 3.7 4.3 4.8

Chebyshev’s inequality is sharp, but for random variables of the form Pr(X = 0) =
1 − δ, Pr(X = 1/

√
δ) = Pr(X = −1/

√
δ) = 1

2δ. This X has mean 0 and variance 1, but it
still has a big probability of being really far from zero. “Typical” random variables,
like Gaussians, don’t look like this. So here’s another analysis that takes this into
account.

For more, visit https://cs.ubc.ca/˜dsuth/532D/23w1/.
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2 chernoff bounds

Perhaps the most useful category of results are called Chernoff bounds; they’re
based on

Pr(X ≥ E X + ε) = Pr
(
eλ(X−E X) ≥ eλε

)
≤ e−λεE eλ(X−E X), (1)

where we applied Markov to the nonnegative random variable exp(λ(X − E X)) for
any λ > 0. The quantity MX(λ) = E eλ(X−E X) is known as the centred moment-
generating function; recalling that et = 1 + t + t2

2! + t3

3! + · · · , we have

MX(λ) = E eλ(X−µ) = 1 + λE[X − µ] +
λ2

2!
E[(X − µ)2] +

λ3

3!
E[(X − µ)3] + · · · .

So, taking the kth derivative of the centred mgf and then evaluating at λ = 0 gives

M(k)
X (0) = E[(X − µ)k].

proposition 3. If X ∼ N (µ, σ2), then E eλ(X−µ) = e
1
2λ

2σ2
.

Proof. Let’s start with N (0, 1). We can write

E
X∼N (0,1)

eλX =
∫

1
√

2π
e−

1
2 x

2
eλx dx

=
∫

1
√

2π
e−

1
2 x

2+λx− 1
2λ

2+ 1
2λ

2
dx

= e
1
2λ

2
∫

1
√

2π
e−

1
2 (x−λ)2

dx

= e
1
2λ

2
,

since the last integral is just the total probability density of an N (λ,1) random
variable. To handle Y = N (0, σ2), note that this is equivalent to σX, and

eλY = eλ(σX) = e(σλ)X = e
1
2 σ

2λ2
.

We just subtract off the mean anyway, so allowing µ , 0 is immediate.

Plugging Proposition 3 into (1) gives that for any λ > 0,

Pr(X ≥ µ + ε) ≤ e−λεe
1
2 σ

2λ2
.

This holds for any λ, but we’d like the tightest bound, so let’s optimize this in λ:
noting that exp is monotonic, we can just check that 1

2σ
2λ2−λε has derivative σ2λ− ε,

which is zero when λ = ε/σ2 > 0, giving the bound

Pr(X ≥ µ + ε) ≤ exp
(
− ε2

2σ2

)
(2)

or equivalently X ≤ µ + σ
√

2 log 1
δ

with probability at least 1 − δ.

3 sub-gaussian variables

In fact, the only place we used the Gaussian assumption in this argument was in
that E eλ(X−E X) ≤ e

1
2λ

2σ2
. So we can generalize the result to anything satisfying that

condition, which we call sub-Gaussian:
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definition 4. Watch out with other
sources; notation for
sub-Gaussians is not very
standardized, in particular
whether the parameter is σ
or σ2. Also “X ∈ SG(σ)” is
kind of weird, probably
“Law(X) ∈ SG(σ)” would be
better, but oh well.

A random variable X with mean µ = E[X] is called sub-Gaussian with
parameter σ, written X ∈ SG(σ), if its centred moment-generating function E[eλ(X−µ)]
exists and satisfies that for all λ ∈ R, E[eλ(X−µ)] ≤ e

1
2λ

2σ2
.

As we just saw, normal variables with variance σ2 are SG(σ). Notice also that if
σ1 < σ2, then anything that’s SG(σ1) is also SG(σ2).

proposition 5 (Hoeffding’s lemma). A real-valued random variable bounded in [a, b] is
SG

(
b−a

2

)
.

Proof. See Section 3.1; we’ll probably skip this in class.

Here are some useful properties about building sub-Gaussian variables:

proposition 6. If X1 ∈ SG(σ1) and X2 ∈ SG(σ2) are independent random variables,

then X1 + X2 ∈ SG(
√
σ2

1 + σ2
2).

Proof. E[eλ(X1+X2−E[X1+X2])] = E[eλ(X1−E X1)]E[eλ(X2−E X2)]. Bounding each with the

definition, this is at most e
1
2λ

2σ2
1 e

1
2λ

2σ2
2 = e

1
2λ

2
(√

σ2
1+σ2

2

)2

.

proposition 7. If X ∈ SG(σ), then aX ∈ SG(|a| σ) for any a ∈ R.

Proof. E[eλ(aX−E[aX])] = E[e(aλ)(X−E X)] ≤ e
1
2 (aλ)2σ2

= e
1
2λ

2(|a|σ)2
.

proposition 8 (Chernoff bound for sub-Gaussians). If X ∈ SG(σ), then Pr(X ≥
E X + ε) ≤ exp

(
− ε2

2σ2

)
for ε ≥ 0.

Proof. Exactly as the argument leading from (1) to (2).

Since −X is also SG(σ) by Proposition 7, the same bound holds for a lower devi-
ation Pr(X ≤ E X − t). A union bound then immediately gives Pr(

∣∣∣X − µ∣∣∣ ≥ t) ≤
2 exp

(
− t2

2σ2

)
.

proposition 9 (Hoeffding). If X1, . . . , Xm are independent and each SG(σi) with mean
µi , for all ε ≥ 0

Pr

 1
m

n∑
i=1

Xi ≥
1
m

n∑
i=1

µi + ε

 ≤ exp

−
m2ε2

2
m∑
i=1

σ2
i

 .

Proof. By Propositions 6 and 7, 1
m

m∑
i=1

Xi ∈ SG
(

1
m

√
n∑
i=1

σ2
i

)
. Then apply Proposition 8.

If the Xi have the same mean µi = µ and parameter σi = σ, this becomes

Pr

 1
m

m∑
i=1

Xi ≥ µ + ε

 ≤ exp
(
− nε

2

2σ2

)
, (Hoeffding)
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which can also be stated as that, with probability at least 1 − δ,

1
m

m∑
i=1

Xi ≤ µ + σ

√
2
m

log
1
δ
. (Hoeffding’)

The form of Hoeffding’s inequality stated in the last lecture follows immediately
from Proposition 5 and (Hoeffding’):

proposition 10. If X1, . . . , Xm are independent with mean µ and each a.s. bounded in
(a, b), then with probability at least 1 − δ,

1
m

m∑
i=1

Xi ≤ µ + (b − a)

√
1

2m
log

1
δ
.

3.1 Proof of Hoeffding’s Lemma

I don’t know a fully satisfying proof for this lemma that I feel is totally worth
teaching.

The convexity-based proof in Section 3.2 is straightforward to follow, but I don’t
find it very insightful.

The exponential tilting argument of Section 3.3 has a couple of steps that take some
verification; it’s slightly more insightful.

It’s also possible to show SG(b − a) with a nice symmetrization-type argument, as
in Examples 2.3 and 2.4 of Wainwright [Wai19], but this is still a little longer than
I’d like and not tight. It also requires understanding symmetrization, which is
important and we’ll cover it in class soon, but not obvious the first time you see it.

Romanı́ [Rom21] gives an “in-between” argument showing SG
(
b−a√

2

)
. This uses

aspects of all three proofs, but quickly, and it might be the best single one to read,
but I still don’t really love it (plus it’s not tight).

3.2 Convexity

This proof follows Lemma B.7 of Shalev-Shwartz and Ben-David [SSBD], which
is essentially the same as Lemma D.1 of Mohri, Rostamizadeh, and Talkwalkar
[MRT]. This proof is straightforward but relies on either a clever but totally opaque
change of variables (as below) or computing some pretty-unpleasant derivatives (as
in [MRT]). (Lemma 2.15 of [Zhang23] might be better?) It’s also not clear to me that
it provides any actual insight.

proposition 5 (Hoeffding’s lemma). A real-valued random variable bounded in [a, b] is
SG

(
b−a

2

)
.

Proof. Assume WLOG that E X = 0.

First note that fλ(x) = eλx is a convex function for any λ, e.g. f ′′
λ

(x) = λ2eλx > 0 for
all x. This implies that it lies below its chords, i.e. for α ∈ [0, 1]

fλ(αa + (1 − α)b) ≤ αfλ(a) + (1 − α)fλ(b).
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We can rewrite this with x = αa + (1 − α)b, α = b−x
b−a so that

eλx ≤ b − x
b − a

eλa +
x − a
b − a

eλb.

Taking an expectation over x, we get

E eλX ≤ b − E X
b − a

eλa +
E X − a
b − a

eλb =
b

b − a
eλa − a

b − a
eλb,

using that E X = 0.

Now, do a very opaque change of variables to h = λ(b − a), p = − a
b−a , L(h) =

−hp + log(1 − p + peh). If we write

eL(h) = e−hp(1 − p + peh) = eλa
(
1 +

a
b − a

− a
b − a

eλ(b−a)
)

=
b

b − a
eλa − a

b − a
eλb,

we’ve recovered the right-hand side above. So to prove the lemma, it remains to
show that L(h) ≤ 1

8h
2.

Notice that L(0) = 0 + log(1 − p + p) = 0.

Also, L′(h) = −p + peh

1−p+peh , so L′(0) = −p + p
1−p+p = 0.

Finally, L′′(h) = peh

1−p+peh −
(

peh

1−p+peh

)2
= t(1 − t), letting t = peh

1−p+peh . Because E X = 0,

we must have a ≤ 0 ≤ b, and so p ∈ [0,1]. Thus 1 − p ∈ [0,1], peh ≥ 0, and so

t = peh

1−p+peh ∈ [0, 1]. Thus 0 ≤ t(1 − t) ≤ 1
4 , so 0 ≤ L′′(h) ≤ 1

4 for all h.

Using Taylor’s theorem, this means at last that for any h, there is some h′ such
that L(h) = L(0) + L′(0)h + 1

2 L′′(h′)h2 = L′′(h′) ≤ 1
2

1
4h

2. Thus L(h) ≤ 1
8h

2, and

E eλX ≤ eL(λ(b−a)) ≤ e
1
2λ

2( b−a
2 )2

.

3.3 Exponential tilting

This proof uses an “exponential tilting” argument, as in Lemma 2.2 of Boucheron,
Lugosi, and Massart [BLM13] or Lemma 1 of Raginsky [Rag14]. It’s tight, but it
requires a few details to be fully rigorous (which neither of these sources do out),
some of which aren’t totally obvious. It’s also not super-intuitive; the variable trans-
formation here is related to the mgf, but it seems to rely on basically a coincidence
where I’m not sure if there’s a deeper meaning.

We’ll need the following lemma, which might be of independent interest.

lemma 11. Suppose X is a.s. bounded in [a, b]. Then Var X ≤ (b−a)2

4 .

Proof. Note that

E(X − c)2 = E
(
(X − µ) + (µ − c)

)2

= E(X − µ)2 + (µ − c)2 + 2(µ − c)E(X − µ)︸    ︷︷    ︸
0

= Var X + (µ − c)2.
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Thus Var X = E(X− c)2− (µ− c)2 ≤ E(X− c)2 for any c. In particular, take c = (a+b)/2.
Since X ∈ [a, b], we know that |X − c| ≤ (b − a)/2, and so

Var X ≤ E(X − c)2 ≤ (b − a)2

4
.

This bound is tight for a random variable which takes value a half the time and
value b the other half; you can check this with direct evaluation, or note that for this
random variable both inequalities in the proof are exactly equalities.

proposition 5 (Hoeffding’s lemma). A real-valued random variable bounded in [a, b] is
SG

(
b−a

2

)
.

Proof. Assume WLOG that E X = 0.

Define an auxiliary random variable Yλ with the same support as X such that for
any A, Pr(Yλ ∈ A) = E[1(x ∈ A)eλX]/ E[eλX]. If X has a density, then Yλ’s density is
just proportional to multiplying X’s density by eλx. This is known as exponential
tilting.

It follows that for any function f , E[f (Yλ)] = E[f (X)eλX]/ E[eλX]. (Write f as a [limit
of] linear combinations of indicators of events, known as simple functions.) We then
have that

E[Yλ] =
E[XeλX]
E[eλX]

E[Y2
λ ] =

E[X2eλX]
E[eλX]

.

Define ψ(λ) = logE[eλ(X−E X)] to be the log-mgf of X. Now take derivatives:Here I’m skipping some
details about proving that
you can interchange the

derivative and expectation;
you can, but it’s actually
slightly trickier to prove
than usual, requiring e.g.

Theorem 3 here.

ψ′(λ) =
E[XeλX]
E[eλX]

= E[Yλ]

ψ′′(λ) =
E[X2eλX]
E[eλX]

− E[XeλX]E[XeλX]
E[eλX]2 = E[Y2

λ ] − E[Yλ]2 = Var[Yλ].

Since Yλ ∈ [a, b] almost surely, this means that ψ′′(λ) ≤ (b−a)2

4 for any λ.

Notice that ψ(0) = logE e0 = 0 and ψ′(0) = E[Xe0]
E e0 = E X, which we assumed was 0.

Thus, we have that

ψ(λ) = ψ(0) +

λ∫
0

ψ′(s) ds = ψ(0) +

λ∫
0

ψ′′(0) +

s∫
0

ψ′′(t)dt

ds

=

λ∫
0

s∫
0

ψ′′(t) dt ds

≤ (b − a)2

4

λ∫
0

s∫
0

1 dt ds =
(b − a)2

4

λ∫
0

s ds =
(b − a)2

4
× 1

2
λ2.

Taking the exponential of both sides, we’ve shown as desired that

E[eλ(X−E X)] ≤ e
1
2λ

2( b−a
2 )2

.
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