
Grab bag: 
Failures of uniform convergence 

PAC-Bayes 
Online learning

CPSC 532D: Modern Statistical Learning Theory

7 Dec 2023


cs.ubc.ca/~dsuth/532D/23w1/

1

https://www.cs.ubc.ca/~dsuth/532D/22w1/


2



• [see the board pictures posted on Canvas for this stuff]

3



(pause)

4



A road to PAC-Bayes
• Bayesians say:

• Start with a prior distribution  on choice of hypothesis

• Observe data  with likelihood 

• End up with posterior distribution 

• Make predictions/decision based on posterior mean/median, MAP, single draw, …


• This is optimal if you believe in your prior + likelihood! 😊

• Frequentists say: “but how good is it actually???”

• What if your model class / prior / … are wrong?


• Tempered likelihood (Zhang 06) / SafeBayes (Grünwald 12):

• If your model is misspecified, can be provably better to use  for 

• No longer quite Bayesian inference, but turns a prior into a posterior


• PAC-Bayes: analyzes any prior-posterior pair (potentially even totally unrelated)

π(h)
S ℒ(S ∣ h)

ρ(h ∣ S) ∝ ℒ(S ∣ h) π(h)

ℒλ λ < 1

5

https://arxiv.org/abs/math/0702653
https://link.springer.com/chapter/10.1007/978-3-642-34106-9_16


PAC-Bayes: McAllester bound
• We start with some prior  (independent of the data ) on hypotheses

• Our learning algorithm sees  and gives us a posterior 

• We’ll analyze  based on 

• McAllester-style bound (SSBD theorem 31.1):

• If , with probability at least  over , 

                        

where   (the usual KL divergence)


• Proved in SSBD chapter 31 (not bad at all)

π S
S ρ

L𝒟(ρ) = 𝔼h∼ρ[L𝒟(h)] LS(ρ) = 𝔼h∼ρ[LS(h)]

ℓ(h, z) ∈ [0,1] 1 − δ S ∼ 𝒟n

L𝒟(ρ) − LS(ρ) ≤
KL(ρ∥π) + log n

δ

2(n − 1)

KL(ρ∥π) = 𝔼h∼ρ log
ρ(h)
π(h)

6



What learning algorithm?

• What’s the best learning algorithm, according to this bound?

• Turns out to be the Gibbs posterior:  

• Same as tempered likelihood / SafeBayes if 

• Typical choice (see 340): e.g. squared loss  Gaussian likelihood 

• But the bound applies to any prior-posterior pair (with  independent of )

• For instance: could learn a  with (S)GD and then add noise to it

• If  is in a flat minimum, then  will still be good

• But note that if  and  continuous, 

ρ(h) ∝ exp(−λ LS(h)) π(h)
ℒ(S ∣ h) = − log LS(h) + const

↔

π S
ĥ

ĥ ĥ + noise
ρ → point mass π KL(ρ∥π) → ∞

7

L𝒟(ρ) − LS(ρ) ≤
KL(ρ∥π) + log n

δ

2(n − 1)



What prior?

• What’s the best prior?

• Bound on generalization gap is better if  is “closer” to 

•  didn’t make us “change our mind” too much – similar to MDL


• But we also want a good , i.e. average training loss  should be small

• Notice  only shows up in the bound – nothing to do with the learning algorithm

• We could potentially pick a prior that actually depends on 

• …as long as we can still bound 

ρ π
S

ρ LS(ρ)
π

𝒟
KL(ρ∥π)

8

L𝒟(ρ) − LS(ρ) ≤
KL(ρ∥π) + log n

δ

2(n − 1)



Other forms of PAC-Bayes bounds

• Linear bound:  for any  

• Catoni bound: for , , 




• Can be much tighter (unfortunately) if  is big 

• Also variants based on general f-divergences, Wasserstein, …

L𝒟(ρ) ≤
1
β

LS(ρ) +
KL(ρ∥π) + log 1

δ

2β(1 − β)n
β ∈ (0,1)

α > 1 Φ−1
γ (x) = (1 − exp(−γx))/(1 − exp(−γ))

L𝒟(ρ) ≤ inf
λ>1

Φ−1
λ/n (LS(ρ) +

α
λ [KL(ρ∥π) − log ε + 2 log

log(α2λ)
log α ])

KL(ρ∥π)/n

9

https://link.springer.com/article/10.1007/s10994-017-5690-0
https://arxiv.org/abs/1905.13435


• Pre-pick a coding scheme to represent networks (e.g. compress the weights)

• Train a network with SGD, sparsify it/etc to , then add a little noise to weightsĥ

10



Derandomizing PAC-Bayes
• In practice, we don’t actually use randomized predictors (usually)

• Possible to “derandomize” to a high-probability bound on :


• Show convergence of  to ,  to , under 


• Or, use a margin-type loss to show 0-1 error doesn’t change under 

• But…these then become “two-sided” bounds

• Subject to the Nagarajan/Kolter failure mode (their Appendix J)

L𝒟(h) − LS(h)
L𝒟(h) 𝔼h∼ρL𝒟(h) LS(h) 𝔼h∼ρLS(h) ρ

ρ

11

https://arxiv.org/abs/1902.04742


(pause)

12



Online learning
• Class so far has been in the (passive) batch setting:

• Observe training set , pick , test on new examples from  

• Today: the online setting

• See an , make a prediction , see true label , repeat

• We learn how to predict as we go

• Focusing on binary classification to start

• Usual analysis does not assume a fixed distribution 

• Labels can even be chosen adversarially

S ∼ 𝒟n h 𝒟

xt ̂yt yt

𝒟

13



Realizable online setting
• Realizable setting: labels  have to be consistent with some yt h* ∈ ℋ

14



Mistake bounds
• Take a sequence 


•  is the number of mistakes the algorithm  makes on 

•  is the worst-case number of mistakes for any  with labels in 

•  is online learnable if there’s an  with  

• If  is finite, consider the algorithm Consistent (basically ERM):

• Start with the version space 

• Given , predict  for any arbitrary 

• Seeing , update 


• Have mistake bound 

S = ((x1, h*(x1)), …, (xT, h*(xT)))
MA(S) A S
MA(ℋ) S ℋ
ℋ A MA(ℋ) < ∞

ℋ
V1 = ℋ

xt ̂yt = h(xt) h ∈ Vt
yt Vt+1 = {h ∈ Vt : h(xt) = yt}

M𝙲𝚘𝚗𝚜𝚒𝚜𝚝𝚎𝚗𝚝(ℋ) ≤ |ℋ| − 1

15



A smarter algorithm for finite, realizable ℋ

• If Consistent made a mistake, we might only remove one  from 

• Better algorithm can always either (a) be right or (b) make lots of progress

• Halving:

• Start with the version space 


• Given , predict 


• Seeing , update 

• If we were wrong, we removed at least half of 


•  – way better bound

h Vt

V1 = ℋ
xt ̂yt ∈ argmaxr∈{0,1} {h ∈ Vt : h(xt) = r}
yt Vt+1 = {h ∈ Vt : h(xt) = yt}

Vt
M𝙷𝚊𝚕𝚟𝚒𝚗𝚐(ℋ) ≤ log2|ℋ|

16



Online learnability
• Think about the game tree for the learner and the adversary

• Put points  into a full binary tree

• Start at the root, move left if learner predicts 0, right if it predicts 1


•  shatters a tree if everywhere in the tree is reached by some 

• The Littlestone dimension  is the max depth of any tree  shatters

• Any algorithm  must have 

• If  can shatter a set, it can shatter any tree from that set

•

xt ∈ 𝒳

ℋ h ∈ ℋ
Ldim(ℋ) ℋ

A MA(ℋ) ≥ Ldim(ℋ)
ℋ
VCdim(ℋ) ≤ Ldim(ℋ)

17



Littlestone dimension examples
• If  is finite, can’t shatter a full tree deeper than 

• If , , have 

• If  and , have  (!)

ℋ log2|ℋ|
𝒳 = [d] ℋ = {x ↦ 𝕀(x = i) : i ∈ [d]} Ldim(ℋ) = 1
𝒳 = [0,1] ℋ = {x ↦ 𝕀(x ≤ a) : a ∈ [0,1]} Ldim(ℋ) = ∞

18



Standard Optimal Algorithm
• Like Halving, but tries to reduce Littlestone dimension instead of cardinality:

• Start with the version space 


• Given , predict 


• Seeing , update 


• Whenever we make a mistake, :


• If not, 


• Then combine shattered trees into one shattered tree of depth 

• But then …contradiction


• Thus , the best possible mistake bound

• But SOA is not necessarily easy to compute!

V1 = ℋ
xt ̂yt ∈ argmaxr∈{0,1} Ldim ({h ∈ Vt : h(xt) = r})
yt Vt+1 = {h ∈ Vt : h(xt) = yt}

Ldim(Vt+1) ≤ Ldim(Vt) − 1
Ldim ({h ∈ Vt : h(xt) = 0}) = Ldim(Vt) = Ldim ({h ∈ Vt : h(xt) = 1})

Ldim(Vt) + 1
Ldim(Vt) = Ldim(Vt) + 1

M𝚂𝙾𝙰(ℋ) = Ldim(ℋ)

19



(pause)

20



Unrealizable online learning
• In the batch setting:

• Realizable PAC assumes labels come from 

• Agnostic PAC just has us compete with best 


• In the online setting:

• Realizable assumes labels come from 

• Unrealizable has us compete with best 








• Ideally, we want sublinear regret: 

h* ∈ ℋ
h* ∈ ℋ

h* ∈ ℋ
h* ∈ ℋ

RegretA(h, T) = sup
(x1,y1),…,(xT,yT) [

T

∑
t=1

| ̂yt − yt| −
T

∑
t=1

|h(xt) − yt|]
RegretA(ℋ, T) = sup

h∈ℋ
RegretA(h, T)

1
T RegretA(ℋ, T) T→∞ 0

21



Regret: impossible to avoid
• Regret: “how much better it would have been to just play  every time”

• Consider 

• Adversary could always just say “no, you’re wrong” and get  mistakes


• For any sequence of true , either  or  has  mistakes


• So regret would be at least 

• To avoid this:

• Learner has random prediction, 

• Adversary commits to  without knowing the roll

• Measure expected loss 

h(xt)
ℋ = {x ↦ 0, x ↦ 1}

T
yt x ↦ 0 x ↦ 1 ≤ T

2
T− T

2 = T
2

Pr( ̂yt = 1) = pt
yt

Pr( ̂yt ≠ yt) = |pt − yt|

22



Low regret for online classification

• For every , there’s an algorithm with 

 

• Also a lower bound of  

• Based on Weighted-Majority algorithm for learning with expert advice

ℋ
RegretA(ℋ, T) ≤ 2 min (log|ℋ|, (1 + log T) Ldim(ℋ)) T

Ω ( Ldim(ℋ) T)

23



Learning from expert advice
• There are  available experts who make predictions

• At time , learner chooses to follow expert  with probability 

• Sees potential costs ; pays expectation 

• Weighted-Majority algorithm:

• Start with ;  


• For 

• Follow with probabilities 

• Update based on costs  as      (exp is elementwise)


• Theorem (SSBD 21.11):    if 


• Can avoid knowing  by doubling trick: run for , , , … sequentially

• Only blows up regret by x (SSBD exercise 21.4)

d
t i (wt)i

vt ∈ ℝd ⟨wt, vt⟩

w̃1 = (1,…,1) η = 2 log(d) / T
t = 1,2,…

wt = w̃t / ∥wt∥1
vt w̃t+1 = w̃t exp(−ηvt)

∑T
t=1 ⟨wt, vt⟩ − mini∈[d] ∑T

t=1 (vt)i ≤ 2 log(d) T T > 2 log d

T T = 1 T = 2 T = 4
< 3.5

24



Low regret for online classification

• For finite , we can just run Weighted-Majority with each 

• Plugging in previous theorem, 


• For infinite , we need a not-too-big set of experts where one is still good

• Expert( ) runs SOA on , 

but takes choice with smaller Ldim on indices 

• Can show (21.13-14) that one expert is as good as the best , 

and there aren’t too many of them, 
giving 

ℋ h ∈ ℋ
Regret𝚆𝙼(ℋ, T) ≤ 2 log|ℋ| T

ℋ
i1, i2, …, iL x1, …, xT

i1, i2, …, iL
h ∈ ℋ

RegretA(ℋ, T) ≤ 2(1 + log T) Ldim(ℋ) T

25



Online convex optimization
• Online convex optimization is

• Convex hypothesis class 

• At each step: learner picks , environment picks convex loss 


• ,    


• Online gradient descent (exactly like SGD) has:


•   where  are step directions


•    if  are -Lipschitz, 


•    if  are -Lipschitz,  is -bounded, 

ℋ
wt ∈ ℋ ℓt(wt)

Regret(w*, T) =
T

∑
t=1

ℓt(wt) −
T

∑
t=1

ℓt(w*) Regret(ℋ, T) = sup
w*∈ℋ

Regret(w*, T)

Regret(w*, T) ≤
∥w*∥2

2η
+

η
2

T

∑
t=1

∥vt∥2 vt ∈ ∂ℓt(wt)

Regret(w*, T) ≤ 1
2 (∥w*∥2 + ρ2) T ℓt ρ η = 1/ T

Regret(w*, T) ≤ Bρ T ℓt ρ ℋ B η = B/(ρ T)
26



Online Perceptron

• Perceptron algorithm: constant-learning-rate online 
gradient descent on hinge loss of linear classifier


• Get  margin-based mistake bound

• Ldim =  without the margin condition

(R/γ)2

∞

27



28



Online-to-batch conversion
• If we have a good online algorithm, we have a good batch algorithm: 

just run it on the batch

• MRT Lemma 8.14: If  gives  for , 

              


• MRT Theorem 8.15: if  is also convex, 
              

S ∼ 𝒟T h1, …, hT 0 ≤ ℓ(h, (x, y)) ≤ M
1
T

T

∑
t=1

L𝒟(ht) ≤
1
T

T

∑
t=1

ℓ(ht(xt), yt) + M
2
T

log 1
δ

ℓ( ⋅ , z)

L𝒟 ( 1
T

T

∑
t=1

ht) ≤ inf
h∈ℋ

L𝒟(h) +
1
T

RegretA(ℋ, T) + 2M
2
T

log 2
δ

29



(pause)

30



Differential privacy
• Randomized learning algorithm  is called ( , ) differentially private if

• for all  that differ on a single element (i.e. one person’s data),

• for all subsets ,  


• Called pure DP if  

• Used in practice (US Census, Apple, …), tons of work on algorithms

• Mijung Park and Mathias Lecuyer both work on this, 

teach courses (532P next fall, 538L now [but not next year]) 

• Can be thought of as a particular form of stability

A(S) ε δ
S1, S2

H ⊆ ℋ Pr(A(S1) ∈ H) ≤ exp(ε) Pr(A(S2) ∈ H) + δ
δ = 0

31



DP and online learning
• Feldman and Xiao 2014: 

Pure private PAC learning takes 
 samples


• Related to communication complexity

• Alon, Livni, Malliaris, Moran 2019: 

Approximate private PAC learning takes 
 samples


• Bun, Livni, Moran 2020: 
Approximate private PAC learning in 

 samples

• analysis via “global stability”

Ω(Ldim(ℋ))

Ω(log*(Ldim(ℋ)))

2𝒪(Ldim(ℋ))

32 https://differentialprivacy.org/private-pac/

 = iterated logarithm 
(number of atoms in the universe) 

log*
log* ≈ 4

https://differentialprivacy.org/private-pac/


DP and online learning

• Can learn differentially privately iff can learn online

• Close connections via stability

• But huge gap in sample and time complexity

• Indications (Bun 2020) that converting one to the other isn’t possible 

with polynomial time + sample complexity

• Still a lot to understand here

33

https://arxiv.org/abs/2007.05665


Some of the stuff we didn’t cover
• Multiclass learning: can use same techniques, need right loss

• Ranking: which search results are most relevant? 
• Boosting: combine “weak learners” to a strong one

• Transfer learning / out-of-domain generalization / …: train on , test on 

• Do ImageNet Classifiers Generalize to ImageNet? / The Ladder mechanism

• Robustness: what if we have some adversarially-corrupted training data?

• Unsupervised learning: “How well can we ‘understand’ a data distribution?”

• Semi-supervised learning

• Active learning: if s are available but labeling them is expensive, 

                            can we choose which to label?

• Multi-armed bandits: which action should I take?

• Reinforcement learning: interacting with an environment with hidden state

• …

𝒟 𝒟′￼

x

34

https://arxiv.org/abs/1902.10811
https://arxiv.org/abs/1502.04585

