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We’ve seen some examples so far of settings where there’s more than one empirical
risk minimizer; this often happens with interpolation, when you can achieve LS(h) =
0 in more than one way, some of which are awful, but A often picks decent ones. In
particular, we saw some explicit examples with polynomial regression.

One way to choose between ERMs (or near-ERMs) is regularized loss minimization,
where we prefer solutions with e.g. a small norm. But often we don’t do that, and
we just run gradient descent to minimize LS(h). Doing this doesn’t just get us any
arbitrary ERM; it gets us a particular one, decided on by our choice of algorithm.
The idea that our optimization algorithm or other such “implementation details”
can actually choose for us which of the “equally valid solutions” we end up with It’s also sometimes called

the implicit bias of the
algorithm, in the sense that
the algorithm has a certain
inductive bias towards
certain kinds of solutions.
That can sometimes cause
confusion with the concept
of the same name from
social science, though, and
just generally kind of imply
that it’s “bad” when
actually often the presence
of this implicit
regularization is “good.”

is
called the implicit regularization of the algorithm: we don’t explicitly write down a
regularizer, but the choice of algorithm has a similar effect.

In our discussion of neural tangent kernels, we mentioned that we could solve the
ODE for gradient flow to say which ERM we end up at. We didn’t prove this, though,
and it only applied to “kernel gradient flow” which is not really the algorithm we
usually use. What happens for actual problems, with finite learning rates?

1 gradient descent for linear regression

We’re going to optimize the function

f (w) = Lsq
S (x 7→ w · x) =

1
m

∥∥∥Xw − y
∥∥∥2

,

where X ∈ Rm×d is the matrix stacking up Sx and y ∈ Rm is the vector form of Sy .

It’s possible to use this form to handle kernels, too. If there’s a finite-dimensional
embedding φ, we could just collect φ(xi) in rows of X and find w. This agrees with “kernel

gradient descent” as in our
NTK discussion for
finite-dimensional kernels.

If we instead
write fα(x) =

∑
i
αik(xi , x) and do gradient descent on α, notice the training set loss

becomes LS(fα) = 1
m

∥∥∥Kα − y
∥∥∥2

) and so the rest of the analysis will apply with X = K
– which will potentially give a different solution than the kernel gradient descent
version. Implicit regularization is highly algorithm-specific.

In any case, we have

∇f (w) =
2
m

XT(Xw − y),

which notice is 2
m

∥∥∥XTX
∥∥∥-smooth, so f is convex and β-smooth, thus small-learning-

rate gradient descent finds a global optimum. In the traditional m > d case when
X is full-rank, there’s a unique solution to this problem, typically with Xw , y but
always having XT(Xw − y) = 0. In high-dimensional settings d > m, though, it’s
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possible to achieve Xw = y (interpolation) in infinitely many ways. Which one does
gradient descent find?

1.1 Characterizing the solution

We’ll run constant-learning-rate gradient descent (not SGD, not projected) starting
from w1. To avoid writing 2/m everywhere, let’s absorb it into the learning rate:

wt+1 = wt − η0∇f (wt) = wt −
2η0

m
XT(Xwt − y) = wt − ηXT(Xwt − y),

where our “real” learning rate is η0 and η = 2η0/m. Then, unrolling this iteration,
the (t + 1)st iterate is

wt+1 = (I − ηXTX)wt + ηXTy

= (I − ηXTX)2wt−1 + (I − ηXTX)ηXTy + ηXTy

= (I − ηXTX)3wt−2 + (I − ηXTX)2ηXTy + (I − ηXTX)ηXTy + ηXTy

= (I − ηXTX)tw1 + η

t−1∑
k=0

(I − ηXTX)kXTy. (1)

To analyze this, we’ll use the singular value decomposition (SVD),The SVD is the single most
useful tool you probably
didn’t really internalize

from undergrad linear
algebra (at least, I didn’t).

It’s worth getting used to; it
comes up all the time.

specifically what
Wikipedia calls the “compact SVD.” We’re going to decompose X = UΣVT: if X is
m × d of rank r ≤ min(m, d), then Σ is an r × r diagonal matrix with positive entries

on the diagonal, U is m × r, and V is d × r. This can also be written X =
r∑

i=1
σiU:,iVT

:,i ,

where σi = Σii is the ith singular value (typically sorted in descending order);
there we’ve decomposed X into a sum of rank-one matrices U:,iVT

:,i . Importantly,
we have that UTU = Ir = VTV, i.e. the columns of U are r orthonormal vectors
in Rm, and the columns of V are r orthonormal vectors in Rd . Thus,These are valid (truncated)

eigendecompositions for
XXT and XTX, showing

that the nonzero singular
values are the square roots
of the nonzero eigenvalues
of XTX or XXT (which are

the same), and that the
corresponding left/right
singular vectors are the

corresponding eigenvectors
of XXT / XTX.

for instance,
XXT = UΣVTVΣUT = UΣ2UT, and similarly XTX = VΣ2VT. We also have that the
operator norm of X is ∥X∥ = σ1, the largest singular value.

In this compact SVD, VVT is a d × d matrix of rank r, and in fact it’s the matrix of
an orthogonal projection since (VVT)(VVT) = V(VTV)VT = VVT and (VVT)T = VVT.
It projects onto the row space of X. Similarly, UUT is the orthogonal projection onto
the column space of X. Also, I − VVT is the orthogonal projection onto the null
space, and I − UUT that onto the left null space: note that

VT(I − VVT) = VT − VTV︸︷︷︸
I

VT = 0,

so X(I − VVT) = UΣVT(I − VVT) = 0.

Since XTX = VΣ2VT, we have that

(I − ηXTX)k =
(
I − VVT + VVT − ηVΣ2VT

)k
=

((
I − VVT

)
+ V

(
I − ηΣ2

)
VT

)k
.

2

https://en.wikipedia.org/wiki/Singular_value_decomposition


Because (I − VVT)V = 0 = V(I − VVT), we have that

(
(I − VVT) + VAVT

)2

= (I − VVT)2︸       ︷︷       ︸
I−VVT

+ (I − VVT)V︸        ︷︷        ︸
0

AVT + VA VT(I − VVT)︸         ︷︷         ︸
0

+VA VTV︸︷︷︸
I

AVT

= (I − VVT) + VA2V,

and iterating the product k times does the same thing:

(I − ηXTX)k =
(
I − VVT

)
+ V

(
I − ηΣ2

)k
VT. (2)

Plugging (2) into the second term of (1),

η

t−1∑
k=0

(I − ηXTX)kXTy = η

t−1∑
k=0

(
(I − VVT) + V(I − ηΣ2)kVT

)
VΣUTy

= η

t−1∑
k=0

0 + V(I − ηΣ2)kΣUTy

= ηV

 t−1∑
k=0

(I − ηΣ2)k
ΣUTy. (3)

This sum of powers looks analogous to what you might remember as a geometric

series: for |q| < 1,
∞∑
k=0

qk = 1
1−q .

lemma 1 (Neumann series). Let A be a symmetric matrix with −I ≺ A ≺ I, i.e. its

eigenvalues are all in (−1, 1). Then
∞∑
k=0

Ak = (I − A)−1.

Proof. Note that I − A has eigenvalues in (0, 2) and is hence invertible. We have

(I − A)
N∑
k=0

Ak = (I − A)
N∑
k=0

Ak =
N∑
k=0

Ak −
N+1∑
k=1

Ak = I − AN+1.

Letting the eigenvalues of A be λi and corresponding eigenvectors vi , we can write
AN+1 =

∑
i
λN+1
i viv

T
i ; since |λi | < 1, λN+1

i → 0. Thus AN+1 → 0, and

(I − A)
∞∑
k=0

Ak = lim
N→∞

(I − A)
N∑
k=0

= I − lim
N→∞

AN+1 = I.

Left-multiply the equation above by (I − A)−1.

Returning to (3), we can apply Lemma 1 as long as the eigenvalues of (I − ηΣ2) are
in (−1, 1). We always have that

λmax(I − ηΣ2) = 1 − ηλmin(Σ2) < 1,
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since η > 0, and λmin(Σ2) > 0 since we’re using the compact SVD. We thus only need

λmin(I − ηΣ2) = 1 − ηλmax(Σ2) = 1 − ησmax(X)2 > −1,

which holds when
η <

2
σmax(X)2 or η0 <

m

σmax(X)2 .

Thus for small η, we have from (3) that

η

∞∑
k=0

(I − ηXTX)kXTy = ηV
(
I − (I − ηΣ2)

)−1
ΣUTy

= ηV(ηΣ2)−1ΣUTy = VΣ−1UTy = X†y,

where X† = VΣ−1UT is the Moore-Penrose pseudoinverse of X.

There’s one other term in (1). Applying (2), we get

(I − ηXTX)tw1 = (I − VVT)w1 + V (I − ηΣ2)t︸     ︷︷     ︸
→0 for small η

VTw1.

We’ve thus at last proved the following:

theorem 2. Let X ∈ Rm×d have pseudoinverse X†, orthogonal projection onto its null
space (I − VVT), and largest singular value σmax(X). Let y ∈ Rm. If η < m/σmax(X)2, the
gradient descent process

wt+1 = wt −
2η
m

XT(Xw − y)

converges to
w∞ = (I − VVT)w1 + X†y.

1.2 Discussion

In the traditional setting where rank(X) = d, VVT = I and so we (unsurprisingly)
obtain the unique minimizer X†y. In this case, we can write this as

X†y = VΣ−1UTy = VΣ−2VTVΣUTy = (XTX)−1XTy,

since XTX = VΣ2VT is d × d of rank d and thus invertible.

Otherwise, though, VVT , I, and if we use a nonzero initialization the component in
the null space of X persists through optimization (as it must: each step of gradient
descent adds something in the row space of X).

In the usual high-dimensional setting with features in general position, rank(X) = m,
in which case X†y = XT(XXT)−1y is not the only solution. We can characterize the
solution that gradient descent finds like this:

proposition 3. Let X ∈ Rm×d have compact SVD X = UΣVT, and let y ∈ Rm. Then

arg min
w: Xw=y

∥w − w1∥ = {X†y + (I − VVT)w1}.

In particular, X†y is the minimum-norm interpolator.
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Proof. First, we characterize the set of possible interpolators:

y = Xw implies X†y = X†Xw = VVTw,

so {w ∈ Rd : Xw = y} = {X†y + q : VVTq = 0}.

We also have, since VVTX† = X† and VVTq = 0, that∥∥∥X†y + q − w1

∥∥∥2
=

∥∥∥VVT(X†y + q − w1)
∥∥∥2

+
∥∥∥(I − VVT)(X†y + q − w1)

∥∥∥2

=
∥∥∥X†y − VVTw1

∥∥∥2
+

∥∥∥q − (I − VVT)w1

∥∥∥2
.

Our choice of q does not affect the first term; the second is uniquely minimized by
picking q = (I − VVT)w1.

1.3 What about SGD?

Suppose that rather than stepping along ∇f (wt), we step along ĝt such that E[ĝt |
wt] = ∇f (wt) and the ĝt | wt are independent of one another:

wt+1 = wt − ηĝt .

But then, taking the expectation of both sides,

E[wt+1] = E[wt − ηĝt] = E
w1,ĝ1:t−1

[wt − ηÊ
gt

[ĝt | wt]] = E
w1,ĝ1:t−1

[wt − η∇f (wt)]]

= Ewt − ηE
[ 2
m

XT(Xwt − y)
]

= Ewt −
2η
m

XT(XEwt − y).

Thus This property depended on
∇f (w) being affine in w!
It’s not true for all f .

Ewt follows exactly the same update formula as wt did for gradient descent,
and so we immediately know that if η ≤ m/σmax(X)2,

Ewt → (I − VVT)Ew1 + X†y.

This expectation thing isn’t the whole story. If you imagine using ĝt = ∇f (wt) + ξt
for some zero-mean noise ξt, any component of ξt that lies in the null space of X
will necessarily “stick around” unless a later ξt cancels it out. (So, if we only add
noise on the third timestep and never again, it’ll definitely stick.) But, because we
assumed E[ĝt | wt] = ∇f (wt), ξt has to be zero mean, and so the mean of the final
iterate agrees with gradient descent.

Proving high-probability (or stronger) results on the distribution of w∞ would
require much stronger assumptions about the gradient samplers and/or the function
being optimized. The final iterate This kind of motivates the

average-iterate bound we
did before.

of constant learning rate SGD doesn’t even
necessarily converge: it can bounce around indefinitely.

There are now some asides poking further at this result; main content resumes on
page 7.
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1.4 Aside: convergence speed

Assume w1 = 0 for simplicity. Then we can use the formula for partial sums derived
in the proof of Lemma 1 inside (3) to see that

wt = ηV

 t−2∑
k=0

(I − ηΣ2)k
ΣUTy

= ηV(ηΣ2)−1
[
I − (I − ηΣ2)t−1

]
ΣUTy

= X†y − VΣ−2(I − ηΣ2)t−1ΣUTy,

and so

X†y − wt = V(I − ηΣ2)t−1Σ−1UTyDiagonal matrices
commute.

= V(I − ηΣ2)t−1VTVΣ−1UTy = V(I − ηΣ2)t−1VTX†y.

Thus ∥∥∥X†y − w1

∥∥∥ ≤ ∥∥∥V(I − ηΣ2)t−1V
∥∥∥ ∥∥∥X†y

∥∥∥ .
Letting diag(Σ) = (σ1, . . . , σr ) with σ1 ≥ σ2 ≥ · · · ≥ σr > 0, we have

∥∥∥V(I − ηΣ2)t−1V
∥∥∥ = max

(∣∣∣1 − ησ2
1

∣∣∣ , ∣∣∣1 − ησ2
r

∣∣∣)t−1
=

(
1
µ

)t−1

,

defining µ = 1
max(1−ησ2

1,1−ησ
2
r )

, which has µ > 1 when η < 2/σ2
1. Thus

∥∥∥X†y − w1

∥∥∥ ≤ 1
µ

t−1 ∥∥∥X†y
∥∥∥ ,

and we can achieve
∥∥∥X†y − wt

∥∥∥ ≤ ε if the number of gradient steps we take is

t − 1 ≥ 1
log µ

log ∥X
†y∥
ε

. Similarly,

y − Xwt = (I − UUT)y + UUTy − Xwt

= (I − UUT)y + X(X†y − wt),

and since UUTX = X we have∥∥∥y − Xwt

∥∥∥2
=

∥∥∥(I − UUT)y
∥∥∥2

+
∥∥∥X(X†y − wt)

∥∥∥2 ≤
∥∥∥(I − UUT)y

∥∥∥2
+

(
1

µt−1 σ1

∥∥∥X†y
∥∥∥)2

,

or, multiplying by 2/m,

f (wt) ≤ f (X†y) +
2σ2

1

∥∥∥X†y
∥∥∥2

m
µ−2(t−1).

So, we can guarantee f (wt) ≤ f (X†y) + ε in 1
2 log µ

log
2σ2

1∥X†y∥2
mε

gradient steps, a

so-called “linear rate”. Using
∥∥∥X†y

∥∥∥ ≤ ∥∥∥X†
∥∥∥ ∥∥∥y∥∥∥ = 1

σr

∥∥∥y∥∥∥ lets us see that this rate
depends on the condition number σ1

σr
.

In the low-dimensional regime rank(X) = d, we already knew this linear rate would
be achieved: the Hessian of our objective is ∇2f (w) = 2

mXTX = 2
mVΣ2VT, so our

objective is always 2σ2
1

m -smooth, and if rank(X) = d then f is also 2σ2
d

m -strongly convex.
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We briefly mentioned, but didn’t fully prove, before that gradient descent gets a
linear rate on smooth, strongly convex objectives. Bach [Bach23, near (11.2)]

shows that the PL
inequality is satisfied here,
implying a linear rate
[KNS16], in the
interpolating case.

But in the high-dimensional
regime where rank(X) < d, though, XTX is singular, so f is not strongly convex; even
so, we get the fast linear rate.

Notice that the case rank(X) = d implies that f (X†y) = 0, i.e. the interpolating
setting. In fact, it’s often the case that optimization algorithms do better in this
interpolating case than you might otherwise expect [e.g. VBS19].

1.5 Aside: learning rate bound

One last question: how stringent is the requirement that η < m/σmax(X)2? That is,
how does σmax(X) behave? That’s going to depend on the data distribution and how
d changes with m. (If we think about a fixed d, eventually we have m ≥ d and the
result becomes uninteresting.)

If we assume xi ∼ N (µ,Σ), we can use X = Z + 1mµT for Z ∼ N (0,Σ), and so

∥X∥ ≤ ∥Z∥ + ∥1m∥
∥∥∥µ∥∥∥ = ∥Z∥ +

√
m

∥∥∥µ∥∥∥ .
Thus

m

σmax(X)2 =
m

∥X∥2
≥ 1(
∥Z∥/
√
m +

∥∥∥µ∥∥∥)2 .

Thus, we know that the threshold for the learning rate in Theorem 2 is at least
constant if

∥∥∥µ∥∥∥ = O(1) and 1
m ∥Z∥

2 = Op(1). For ∥Z∥, it turns out [KL17] that

1
m
∥Z∥2 =

∥∥∥∥∥ 1
m

ZZT
∥∥∥∥∥ ≤ ∥Σ∥ +

∥∥∥∥∥ 1
m

ZZT − Σ
∥∥∥∥∥ = ∥Σ∥ + Op


√

Tr(Σ) ∥Σ∥
m

+
Tr(Σ)
m

 ,
and so we can use at least a constant learning rate if∥∥∥µ∥∥∥ = O(1), ∥Σ∥ = O(1), and Tr(Σ) = O(m).

Notice that if we use d = Θ(m) (called proportional asymptotics), then Σ = Id satisfies
the Σ conditions, but the amount of variance in any single direction can’t grow with
m. We also can’t pick something like µ = 1.

2 separable logistic regression

Now let’s consider logistic regression: for yi ∈ {−1, 1},

f (w) =
1
m

m∑
i=1

log(1 + exp(−yixTi w)).

We’re also going to assume that the data is linearly separable: there is some w∗ such
that yixTi w

∗ > 0 for all i. Then, it’s possible to drive f (w) arbitrarily close to zero, but
never to actually reach it: we only get log(1 + exp(−t))→ 0 for t →∞, so we need
∥w∥ → ∞. A solution of the form cw∗ for c → ∞ would work, but potentially so
would many other solutions, since there are probably many possible perfect linear
separators on this dataset. Which one does gradient descent find?

We’re going to approach this informally, for time and simplicity. Soudry et al.
[Sou+18] and Gunasekar et al. [GLSS18] handle it in full, and Ji and Telgarsky
[JT19] approach the non-separable case; Bach [Bach23, Section 11.1.2] gives an
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overview including a few things we aren’t covering here.

Notice that

∇f (w) = − 1
m

m∑
i=1

exp(−yixTi w)

1 + exp(−yixTi w)
yixi .

We know that we’ll get ∥wt∥ → ∞ from the argument above; it’s reasonable to
expect, then, that we’ll have wt

∥wt∥
→ v for some ∥v∥ = 1, and yix

T
i v > 0 for all i since

otherwise we wouldn’t approach a minimizer. This gives us, roughly speaking,

∇f (∥wt∥ v) ∼ − 1
m

m∑
i=1

exp(−yi ∥wt∥ xTi v)

1 + exp(−yi ∥wt∥ xTi v)
yixi ∼ −

1
m

m∑
i=1

exp(−yi ∥wt∥ xTi v)yixi ,

since t
1+t = t + O(t2) and we’ll eventually have exp(−yi ∥wt∥ xTi v)≪ 1.

The asymptotic ratio between the size of the gradient contributions from xi and xj is

exp(−yi ∥wt∥ xTi v) ∥xi∥
exp(−yj ∥wt∥ xTj v)

∥∥∥xj∥∥∥ =
∥xi∥∥∥∥xj∥∥∥ exp

(
− ∥wt∥ (yix

T
i v − yjx

T
j v)

)
.

As ∥wt∥ → ∞, this ratio goes to 0 if yixTi v > yjx
T
j v, or∞ if the order is reversed; it is

∥xi∥ /
∥∥∥xj∥∥∥ ∈ (0,∞) if and only if yixTi v = yjx

T
j v. So, for whatever v we have, let Iv

be the set of indices such that yixTi v is minimized. Only these terms really matter:

∇f (∥wt∥ v) ∼ − 1
m

∑
i∈Iv

exp(−yi ∥wt∥ xTi v)yixi .

So, if gradient descent diverges in a direction v, the dominant direction in which
wt moves is a (positive) linear combination of the points {xi : i ∈ Iv}. Let’s scale
that direction to have unit margin, v̂ = v/(mini∈[m] yix

T
i v); this will still be a linear

combination of those same points. Thus, we know that

v̂ =
m∑
i=1

αiyixi with ∀i, (αi ≥ 0 and yix
T
i v̂ = 1) or (αi = 0 and yix

T
i v̂ > 1). (4)

It turns out that these are exactly the optimality conditions for the hard SVM /
margin maximization problem, as we’ll show below. (If you want to refresh your
memory, our notes on SVMs were here.) Thus, v̂ is exactly the hard SVM, i.e. gradient
descent with logistic regression on separable data eventually maximizes the margin.

If you recall, the hard SVM is also a minimum-norm hinge loss interpolator. That’s
kind of neat, that we get a minimum-norm interpolator in both cases, although here
it’s the minimum-norm interpolator for a different loss than the one we’re explicitly
minimizing.

Soudry et al. [Sou+18] give a real proof, and also show that the convergence of

gradient descent to that solution is quite slow: typically
∥∥∥∥ wt
∥wt∥
− v̂
∥v̂∥

∥∥∥∥ = O
(

1
log t

)
.

We’ll now derive the KKT conditions, which is slightly outside the scope of this
class; main content resumes on page 11.
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2.1 Aside: KKT conditions

Consider a general optimization problem

f ∗ = min
x∈Rd

f (x) s.t. ∀i, hi(x) ≤ 0 and ∀j, ℓj(x) = 0.

The Karush-Kuhn-Tucker conditions are a set of conditions on both the primal
variable x and dual variables α, β corresponding to each constraint. There are a few
variants; one is

• Stationarity: x ∈ arg minx′ f (x′) +
∑
i
αihi(x′) +

∑
j
βjℓj(x′). For instance, this

holds if 0 ∈ ∂f (x) +
∑
i
αi∂hi(x) +

∑
i
βj∂ℓj(x).

• Primal feasibility: all of the hi(x) ≤ 0 and ℓj(x) = 0.

• Dual feasibility: all of the αi ≥ 0.

• Complementary slackness: for all i, αihi(x) = 0.
The Wikipedia article is
messy on this point; they
state it with subgradients,
but then their discussion
about sufficiency only
applies to a (more common)
version where you use
gradients in the
stationarity condition. In
that version, if strong
duality holds, you still get
necessity, but not
sufficiency without more
assumptions.

For stationarity: recall (from our (S)GD notes) that if a function is convex and differ-
entiable at x, ∂f (x) = {∇f (x)}. This is not necessarily true for nonconvex functions,
where subgradients might not exist even where the gradient does: for example,
at a suboptimal local minimum, ∇f (x) = 0 but there is no tangent globally lower
bounding f , and hence no subgradients. If everything is convex, then (sub)gradients
are a great way to check stationarity.

For this version of the conditions, any x, α, β satisfying the conditions are optimal,
and if strong duality holds then any optimal solution must satisfy the conditions.

Applying them to the max-margin problem

min
w

1
2
∥w∥2 s.t. ∀i, yixTi w ≥ 1,

stationarity gives w +
∑
i
αi(−yixi) = 0, primal feasibility is 1 − yix

T
i w ≤ 0, dual

feasibility is αi ≥ 0, and complementary slackness is αi(1 − yixTi w) = 0. These four
conditions, after rearranging a bit, exactly agree with (4).

Proofs

To see why the KKT conditions work, recall that the Lagrangian is given by

L(x, α, β) = f (x) +
∑
i

αihi(x) +
∑
j

βjℓj(x),

and the Lagrange dual is

g(α, β) = min
x
L(x, α, β), g∗ = max

α,v
g(α, β) s.t. ∀i, αi ≥ 0.

Notice that stationarity is exactly saying that x ∈ arg minx′ L(x′ , α, β).

It always holds that f ∗ ≥ g∗. One interesting consequence is that we have for any
x, α, β that

f (x) − f ∗ ≤ f (x) − g∗ ≤ f (x) − g(α, β).

So the duality gap f (x) − g(α, β) upper-bounds the suboptimality of f (x). The same
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is true for g(α, β), since

g∗ − g(α, β) ≤ f ∗ − g(α, β) ≤ f (x) − g(α, β).

If we ever have f (x) = g(α, β), we know both x and α, β are optimal.

To show sufficiency of the KKT conditions: suppose that (x∗, α∗, β∗) satisfy the KKT
conditions. Then

g(α∗, β∗) = min
x
L(x, α∗, β∗) = L(x∗, α∗, β∗),

where the second equality is by stationarity. Because complementary slackness
implies that each α∗ihi(x

∗) = 0, and primal feasibility requires each ℓj(x∗) = 0, we
have that

L(x∗, α∗, β∗) = f (x∗) +
∑
i

α∗ihi(x
∗) +

∑
j

βjℓj(x
∗) = f (x∗).

But now we’ve shown g(α∗, β∗) = f (x∗), and everything is feasible, so x∗ is a primal
solution, and (α∗, β∗) a dual solution.

To show necessity of the KKT condtions, we’ll need strong duality, where f ∗ = g∗.
Two important cases where strong duality holds are

• Linearity constraint qualification: if all the constraints are affine.

• Slater’s condition: if f and the hi are convex, the ℓj are affine, and there
exists at least one x with all ℓj(x) = 0, any affine hi having hi(x) ≤ 0, and any
non-affine hi having hi(x) < 0.

If we have strong duality, x∗ is primal optimal, and (α∗, β∗) is dual optimal, then

f (x∗) = f ∗ = g∗ = g(α∗, β∗) = min
x

f (x) +
∑
i

α∗ihi(x) +
∑
j

β∗jℓj(x).

We can upper-bound this minimum by plugging in any specific value of x, say x∗;
this gives

f (x∗) ≤ f (x∗) +
∑
i

α∗ihi(x
∗) +

∑
j

β∗jℓj(x
∗).

If x∗ is optimal it must be primal-feasible, so ℓj(x∗) = 0 and hi(x∗) ≤ 0; likewise α∗i is
dual-feasible, so α∗i ≥ 0. But that means the first sum is nonpositive, and the second
sum is zero, giving

f (x∗) ≤ f (x∗) +
∑
i

α∗ihi(x
∗) +

∑
j

β∗jℓj(x
∗) ≤ f (x∗).

Since obviously f (x∗) = f (x∗), we must therefore have
∑
i
α∗ihi(x

∗) = 0. But we just

said each αihi(x∗) ≤ 0, so if they sum to zero they must each be zero: that’s exactly
complementary slackness. We also showed that

min
x

f (x) +
∑
i

α∗ihi(x) +
∑
j

β∗jℓj(x) = f (x∗) +
∑
i

α∗ihi(x
∗) +

∑
j

β∗jℓj(x
∗),

i.e. that x∗ ∈ arg minx L(x, α∗, β∗); this is stationarity. Since everything must be
feasible, we’ve shown all the KKT conditions hold.
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3 other models/algorithms

Most importantly, Lyu and Li [LL20] and Ji and Telgarsky [JT20] study small-
learning-rate gradient descent on L-homogeneous networks, those satisfying h(x; αw) =
αLh(x;w) for α > 0; this is true e.g. for (leaky)-ReLU networks. (We’ll describe the
[LL20] results.) Their analysis is in terms of the normalized margin

γ̄(w) =
mini∈[m] yih(xi ;w)

∥w∥L2
.

This normalization is exactly the one that makes γ̄(αw) = γ̄(w). They show, using an
approach like that of Section 2, that gradient flow or small-learning-rate gradient
descent (under some additional regularity conditions) monotonically increase the
log-sum-exp version of normalized margin, which means they approximately mono-
tonically increase the normalized margin, They talk about

convergence to a “KKT
point”; this is using the
version of the KKT
conditions where
stationarity is defined by
gradients, not subgradients,
and hence isn’t sufficient for
optimality in nonconvex
problems.

which roughly means that it finds a local
maximum (ish) of the normalized margin.

This is a kind of margin maximization, but in general it’s not margin maximization
in an RKHS. Compare this to training a very wide network with square loss, in
which case the implicit regularization prefers solutions with minimal NTK norm
distance from the initialization. Knowing these results, you can ask questions like
what this margin maximization actually does on particular models [e.g. Fre+23].

There’s been a bunch of recent work trying to figure out the implicit regularization
of Adam, rather than SGD, on homogeneous networks; some recent papers are
[WMCL21; Wan+22; CKS23].

There’s also a ton more work in this area; Vardi [Var22] gives a survey.
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