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Continuing our study of nonconvex optimization, we’re going to see one setting
today where we can prove global optimization for certain deep networks.

Initially, there were a series of papers that proved this in some special cases; later,
it was realized that they all shared a common structure, which amounts to the
following: if you initialize a very wide network appropriately and minimize the
square loss with a small learning rate, your model becomes equivalent to kernel
regression, with a particular kernel defined by the architecture.

1 neural tangent kernels

To motivate things, let’s begin with a very simple network:

Wecould of course absorb

the
√

N into the aj .
Writing it like this scales
the gradients w.r.t. aj
differently, and is called the
NTK parameterization; it
makes some things simpler.

h(x; W) =
1
√

N

N∑
j=1

ajσ(wj · x),

where the aj are fixed and the wj ∈ RN are the rows of a weight matrix W ∈ RN×d ,
viewed as column vectors. We’re writing W as a parameter to the function because
want to emphasize that we’re changing W, not x.

Now, let’s see what happens if we take a first-order Taylor expansion (a linearization)
of h with respect to W, around some point W̃. (We’re going to pick W̃ to be our
starting point for gradient descent.) This function will be linear in W but nonlinear
in x; it should be a reasonable approximation if W ≈ W̃.

hW̃(x; W) We can either think of this
as a matrix with the
Frobenius inner product
⟨A, B⟩ =

∑
ij

AijBij , or of

flattening the parameters
into a vector and using
regular gradients.

= h(x; W̃) + ⟨∇Wh(x; W̃), W − W̃⟩ (1)

=
1
√

N

N∑
j=1

aj
[
σ(w̃j · x) + ⟨σ′(w̃j · x)x, wj − w̃j⟩

]

=
1
√

N

N∑
j=1

aj

[
σ(w̃j · x) − σ′(w̃j · x)w̃j · x︸                           ︷︷                           ︸

constant in W

+ σ′(w̃j · x)x · wj︸            ︷︷            ︸
linear in W

]
.

Notice that we have ReLU(t) = ReLU′(t)t for all t (even zero), and so for ReLU
activations the term that is constant in W vanishes. In that case, we see that

hW̃(x; W) = ⟨∇Wh(x; W̃), W⟩.

But, if we write φW̃(x) = ∇Wh(x; W̃), the function hW̃ is of the form ⟨W,φW̃(x)⟩, and
in particular the set of achievable functions

{x 7→ hW̃(x; W) : W ∈ RN×d}

For more, visit https://cs.ubc.ca/˜dsuth/532D/23w1/.
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is exactly the RKHS of the kernel

kW̃(x, x′) = ⟨φW̃(x),φW̃(x′)⟩ = ⟨∇Wh(x; W̃),∇Wh(x′; W̃)⟩. (2)

Even if we don’t have ReLU activations, recalling (1) we can see that the residual
hW̃(x; W) − h(x; W̃) is an element of that same RKHS.

But, so what? This linearization is only going to be accurate when W ≈ W̃, it doesn’t
tell us anything about actually training a network. . . . unless?

1.1 Approximation quality

proposition 1. For the h and hW̃ defined above, assume σ is β-smooth. Then∣∣∣h(x; W) − hW̃(x; W)
∣∣∣ ≤ β

2
√

N
(max

j

∣∣∣aj ∣∣∣) ∥x∥2 ∥∥∥W − W̃
∥∥∥2

F
.

Proof. Recall (Proposition 3 of the nonconvex optimization notes) that β-smooth
functions deviate from their linearizations by at most a quadratic. Thus

∣∣∣h(x; W) − hW̃(x; W)
∣∣∣ ≤ 1
√

N

N∑
j=1

∣∣∣aj ∣∣∣ ∣∣∣σ(wj · x) − σ(w̃j · x) − σ′(w̃j · x)(wj · x − w̃j · x)
∣∣∣

≤ 1
√

N

N∑
j=1

∣∣∣aj ∣∣∣ 1
2
β(wj · x − w̃j · x)2

≤
β

2
√

N
(max

j

∣∣∣aj ∣∣∣) N∑
j=1

∥∥∥wj − w̃j

∥∥∥2 ∥x∥2 .

So, if N is large enough, the linearization is good even for a large radius of parameters
around W̃, no matter what the data looks like (as long as it’s bounded) and no matter
what W̃ looks like.

One thing to keep in mind, though, is that
∥∥∥W − W̃

∥∥∥
F

is also changing meaning with

N: in fact, E
∥∥∥W̃

∥∥∥2
F

= E
N∑
j=1

d∑
k=1

W̃2
jk = Nd, so with standard Gaussian initializations

the linearization potentially even gets worse at W = 0. It’s thus not really obvious
yet that this approximation is a “good idea.” It’ll turn out, though, that in the
high-width regime, the optimization process doesn’t have to move very much, and
everything works out.

The result being so general in W̃ is special for this very simple network; even for the
same architecture but with ReLU activations, the analysis is a lot nastier.

proposition 2 (Lemma 4.1 of [Tel]). For any radius B ≥ 0, for any fixed x ∈ Rd with
∥x∥ ≤ 1, suppose we pick W̃ with entries i.i.d. standard normal. Then, with probability at
least 1 − δ over the draw of W̃, it holds that for all W ∈ RN×d with

∥∥∥W − W̃
∥∥∥

F
≤ B that

∣∣∣h(x; W) − hW̃(x; W)
∣∣∣ ≤ 2B4/3 + B log(1/δ)1/4

N1/6 .

For deeper networks, the result is even more complicated and degrades with depth,
but it’s still going to be true that with appropriate Gaussian initializations the
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linearization works for an increasing radius.

1.2 The neural tangent kernel

What does the kernel (2) look like? For this shallow network, it’s

kW̃(x, x′) = ⟨φW̃(x),φW̃(x′)⟩ = ⟨∇Wh(x; W̃),∇Wh(x′; W̃)⟩

=
〈

a1x
Tσ′(w̃1 · x)/

√
N

...
aNxTσ′(w̃N · x)/

√
N

 ,

a1(x′)Tσ′(w̃1 · x′)/

√
N

...
aN(x′)Tσ′(w̃N · x′)/

√
N


〉

=
1
N

N∑
j=1

a2
j ⟨xσ

′(w̃j · x), x′σ′(w̃j · x′)⟩

= x · x′
 1

N

N∑
j=1

a2
j σ
′(w̃j · x)σ′(w̃j · x′)

 .
The 1/

√
N scaling hopefully makes sense now: if we also use the common setup

aj ∈ {±1} so that a2
j = 1, as N →∞, this converges almost surely to the kernel

k∞(x, x′) = x · x′ E
w̃∼N (0,I)

[
σ′(w̃ · x)σ′(w̃ · x′)

]
.

We’ll call kW̃ the empirical neural tangent kernel at W̃ and k∞ the infinite neural
tangent kernel. Terminology here isn’t quite standardized, though.

For the ReLU, σ′(t) = 1(t > 0), and so k∞ is x · x′ times

E
w̃∼N (0,I)

[
σ′(w̃ · x)σ′(w̃ · x′)

]
= Pr

w̃∼N (0,I)
(w̃ · x > 0 and w̃ · x′ > 0)

= Pr
v∼Unif(unit sphere)

(
v · x

∥x∥
> 0 and v · x′

∥x′∥
> 0

)
Draw a picture for this. . .

=
π − arccos

(
x·x′
∥x∥∥x′∥

)
2π

.

In fact, a slight tweak to this kernel is even universal [Tel, Theorem 4.1].

1.3 More general networks

For more general architectures, we still use the linearization

hw̃(x;w) = h(x; w̃) + ⟨∇wh(x; w̃), w − w̃⟩,

where now w represents all the parameters in the network collected into a vector.
This gives us the same kind of empirical neural tangent kernel

kw̃(x, x′) = ⟨∇wh(x; w̃),∇wh(x′; w̃)⟩. (3)

Even for complex deep architectures (including convolutions, pooling, even atten-
tion), if we scale things according to fan-out “NTK parameterizations,” kw̃ still
converges to some k∞ almost surely as it becomes infinitely wide [Yan19]. It’s also
often possible (though computationally expensive) to exactly compute this kernel;
the standard software is the neural-tangents library [Nov+20].
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2 optimization

So, we know that the set of “nearby” updates to the initialization w̃ is described
by the set of functions in an RKHS. But maybe we break out of the “nearby” set
immediately, and this is all pointless.

In some regimes, it’s true that we break the NTK approximation immediately, in
practice; e.g. we can check numerically whether kw0

and kw100
are very different. But,

if we set things up in the right way, this doesn’t happen, and the whole gradient
descent process stays near enough to w0 that the RKHS is a good approximation.

To see this, we’ll consider square loss and take the limit of gradient descent as the
step size η goes to zero, which is known as gradient flow. A lot of the time, the
continuous limit is much easier to handle, and then you check that the discretization
into actual gradient descent doesn’t take you too far away from the continuous
version.

In this case, we have

dwt

dt
= −η∇wLS(h(·;wt)) = −

2η
m

m∑
i=1

(h(xi ;wt) − yi)∇wh(xi ;wt), (4)

and so if we track the training set predictions in particular we get

d
dt

h(xj ;wt) =
〈
∇h(xj ;wt),

dwt

dt

〉

= −
2η
m

m∑
i=1

(f (xi ;wt) − yi)⟨∇wh(xi ;wt),∇wh(xj ;wt)⟩

= −
2η
m

m∑
i=1

(f (xi ;wt) − yi)kwt
(xi , xj ).

Summarizing all of these in vector form, the vector of predictions on the training
set h|Sx

(t) = (h(x1;wt), . . . , h(xm;wt)) evolves as

d
dt

h|Sx
(t) = −

2η
m

kwt
|Sx

(h|Sx
(t) − Sy), (5)

where kwt
|Sx

is the m ×m kernel matrix [k(xi , xj )]ij , and Sy = (y1, . . . , ym) ∈ Rm.

Suppose that kwt
is constant in t. Then this would be exactly the same dynamics as

“kernel gradient descent” for kernel regression, which we’ll define now.

To use kernel gradient descent, it’ll be convenient to define the outer product for
Hilbert spaces, also called a tensor product. For a ∈ F1, b ∈ F2, we can define
a ⊗ b : F2 → F1 as a linear operator by [a ⊗ b]b′ = ⟨b, b′⟩a. For Rd , this is just
(abT)b′ = a(bTb′).
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Kernel gradient descent for square loss then gives that Note that this is not the
same as using the
representer theorem and
doing gradient descent on
the coefficients α! That’s a
different parameterization,
giving different gradients.

LS(h) =
1
m

m∑
i=1

(h(xi) − yi)2

=
1
m

m∑
i=1

(
⟨h,ϕ(xi)⟩⟨ϕ(xi), h⟩ − 2yi⟨ϕ(xi), h⟩ + y2

i

)

=
〈
h,

 1
m

m∑
i=1

ϕ(xi) ⊗ ϕ(xi)

 h〉 − 2yi

〈
1
m

m∑
i=1

ϕ(xi), h
〉

+
1
m

m∑
i=1

y2
i

dh
dt

= −η∇hLS(h) = −

2η
m

m∑
i=1

ϕ(xi) ⊗ ϕ(xi)

 h +
2η
m

m∑
i=1

yiϕ(xi)

= −
2η
m

m∑
i=1

h(xi)ϕ(xi) +
2η
m

m∑
i=1

yiϕ(xi)

= −
2η
m

m∑
i=1

(h(xi) − yi)ϕ(xi) (6)

d
dt

h(xj ) =
〈

dh
dt

,ϕ(xj )
〉

= −
2η
m

m∑
i=1

(h(xi) − yi)k(xi , xj ),

and summarizing in matrix form this becomes

d
dt

h|Sx
(t) = −

2η
m

k|Sx
(h|Sx

− Sy). (7)

Indeed, (5) and (7) agree if kwt
|Sx

is constant throughout training; so do (4) and (6),
recalling the definition of the kernel (3). In fact, though, we can solve this ordinary
differential equation (7) analytically [JGH18]; we get for an arbitrary prediction
point that

ht(x) = h0(x) + [k(x, xi)]
m
i=1(k|Sx

)−1
(
I − e−ηt k|Sx

)
(Sy − h0|Sx

),

where the matrix exponential eA = I + A + 1
2 A2 + . . . can be found by exponentiating

the singular values of A. This becomes equivalent to
limλ→0 arg minh∈F LS(h)+
λ ∥h − h0∥2F , sometimes
called kernel “ridgeless”
regression; it’s also like GP
regression with a prior
mean of h0.

In the limit as t → ∞, e−ηtk|Sx → 0 as long as k|Sx
is

nonsingular (which it is for universal kernels). We can also see then that ht |Sx
→ Sy .

In the limit as the network becomes infinitely wide, for appropriate initializations,
kwt
|Sx

does in fact stay constant through training [Lee+19; Aro+19; COB19; YL21].
For example, Theorem 3.2 of Arora et al. [Aro+19] shows a closeness guarantee with
finite width. The proof basically amounts to showing that parameters don’t change
much, so the empirical NTK doesn’t change much, and so gradients throughout the
network training are close to gradients from the kernel process.

This behaviour is very much a function of having the right scaling, though. For
“fan-in” parameterizations that people usually actually use in practice, the kernel
blows up, but it does so in a way where regression still makes sense [Lee+19; MBS23].
If you choose other scalings, it doesn’t happen at all; Chizat, Oyallon, and Bach
[COB19] cover this point of view, arguing that the parameter scaling amounts to
“zooming in” on the Taylor expansion so the linearization works well. Yang and Hu
[YH22] also study scaling regimes other than just the kernel one.
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Dealing with the random initialization h0(x) can be a problem, sometimes; it takes a
while for gradient descent to counteract the noise there. Sometimes people scale
the network output by a small ε > 0 (which also scales the gradient, but that’s good
too), or use special symmetric initializations to their network parameters which
guarantee h0(x) = 0.

3 does this mean deep learning is solved?

So, in these regimes, you can avoid training a network at all and just use a special
kernel. That kernel is indeed often a good kernel for particular problems [Aro+20].

But, there are problems that deep learning can solve provably faster than any kernel
method. Essentially, the NTK regime doesn’t allow for feature learning, since the
kernel is fixed.

One concrete example is learning a single ReLU: Yehudai and Shamir [YS19] show
that kernel methods cannot learn a single ReLU unit ReLU(w · x + b) in square
loss without RKHS norm exponential in the dimension, which implies (roughly)
exponential sample complexity – but gradient descent can get it with polynomially
many samples.

Malach et al. [MKAS21] give a nice characterization on when these gaps are and
aren’t possible.

Overall, it’s definitely not the case that the practical success of deep learning can
be explained by infinite NTK behaviour. Even so, the infinite NTK is still useful to
know about:

• As far as I know, they’re the only proofs that gradient descent works in nonlin-
ear deep nets.

• It’s actually a reasonable approximation in certain regimes.

• Infinite NTKs are sometimes practically useful [Aro+20; JNWB21].

Also, I think the empirical NTK is even more useful: I’ve given a talk called “A
Defense of (Empirical) Neural Tangent Kernels”. Basically, the empirical NTK can
be a really useful tool for understanding what’s happening “locally” during training,
even when it doesn’t stay constant over the whole course of training. This can
be theoretical [RGS22; RGBS23], for “empirical science” understanding [For+20;
MBS23], or even purely practical [WHS22; MBS22].
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