
CPSC 532D — 15. NONCONVEX OPTIMIZATION

Danica J. Sutherland

University of British Columbia, Vancouver

Fall 2023

In our analysis of gradient descent last time, essentially the first thing we did was
assume the target function f was convex. This then allows us to decompose the
overall excess error, how much worse we are than the irreducible Bayes error L∗, as

LD(A(S))−L∗ ≤ LD(A(S)) − LD(ERMH(S))︸ ︷︷ ︸
optimization error

+ LD(ERMH(S)) − inf
h∗∈H

LD(h∗)︸ ︷︷ ︸
estimation error

+ inf
h∗∈H

LD(h∗) − L∗︸ ︷︷ ︸
approximation error

.

If the loss is convex (as a function of the parameters we’re optimizing), then we
know how to bound each of those three terms. But lots of interesting functions we’d
like to optimize aren’t convex.

For an explicit example, consider the following deep linear model:

hW,v(x) = v · (Wx),

which is a two-layer deep network with identity activations σ(t) = t. This is just
a linear model (WTv) · x, but it’s not parameterized as one; these have been used
mostly as a stepping stone towards a theory of actual deep learning, because they
exhibit some of the properties of deep networks, like nonconvexity. We can see that
because h−W,−v(x) = (−v) · (−Wx) = hW,v(x), and so for any typical loss function we
have ℓ(hW,v , z) = ℓ(h−W,−v , z). You can do a similar thing

with e.g. ReLU nets:
permute the order of entries
in the first layer’s matrix,
then take an average of all
of those to get a W with all
entries constant.

For this to be a convex function of (W, v), we would
therefore need 1

2 (W, v) + 1
2 (−W,−v) = (0, 0) to have smaller loss: clearly this is not

true in nontrivial settings, since this would imply the constant zero predictor is
always globally optimal.

1 gradient descent with β-smooth functions

1.1 β-smooth functions

definition 1. Note that this is not what
analysts mean when they
say a “smooth function”
(i.e. infinitely differentiable.

We say a function f is β-smooth if it is differentiable everywhere, and
its gradient ∇f is β-Lipschitz.

proposition 2. If f is twice-differentiable, it is β-smooth iff for all x, ∇2f (x) ⪯ βI.

This is essentially the same as the characterization that differentiable functions are
ρ-Lipschitz iff their gradient norm is at most ρ everywhere.

proposition 3. Suppose f is β-smooth. Then for any x and y in its domain,∣∣∣f (y) − f (x) − ⟨∇f (x), y − x⟩
∣∣∣ ≤ 1

2
β
∥∥∥x − y∥∥∥2

:

its deviation from its tangent planes is upper-bounded by a quadratic.

For more, visit https://cs.ubc.ca/˜dsuth/532D/23w1/.

1

https://cs.ubc.ca/~dsuth/532D/23w1/notes/14-sgd.pdf
https://cs.ubc.ca/~dsuth/532D/23w1/

15. Nonconvex optimization CPSC 532D

Proof. For any x0, x1, let xα = (1 − α)x0 + αx1 for all α ∈ (0, 1), and define g : [0, 1]→
R by g(α) = f (xα). Notice that g ′(α) = ⟨∇f (xα), x1 − x0⟩, and so by the fundamental
theorem of calculus we have

f (x1) − f (x0) = g(1) − g(0) =

1∫
0

g ′(α)dα

=

1∫
0

⟨∇f (xα) − ∇f (x0) + ∇f (x0)︸ ︷︷ ︸
0

, x1 − x0⟩dα

= ⟨∇f (x0), x1 − x0⟩ +

1∫
0

⟨∇f (xα) − ∇f (x0), x1 − x0⟩dα.

Thus

|f (x1) − f (x0) − ⟨∇f (x0), x1 − x0⟩| =

∣∣∣∣∣∣∣∣
1∫

0

⟨∇f (xα) − ∇f (x0), x1 − x0⟩dα

∣∣∣∣∣∣∣∣
≤

1∫
0

|⟨∇f (xα) − ∇f (x0), x1 − x0⟩|dα

≤
1∫

0

∥∇f (xα) − ∇f (x0)∥ ∥x1 − x0∥dα

≤
1∫

0

β ∥xα − x0∥ ∥x1 − x0∥dα;

since xα − x0 = α(x1 − x0), this is

|f (x1) − f (x0) − ⟨∇f (x0), x1 − x0⟩| ≤ β ∥x1 − x0∥2
1∫

0

αdα =
1
2
β ∥x1 − x0∥2 .

1.2 Descent lemma

This allows us to characterize what one step of gradient descent does on β-smooth
functions. Note that there’s no need for subgradients, since β-smooth functions are
by definition differentiable, and we won’t handle a projection step or stochastic
gradients here (though you can do versions of both with some extra work).

Let xt+1 = xt − η∇f (xt) for a β-smooth function f . Then by Proposition 3, we have

f (xt+1) ≤ f (xt) + ⟨∇f (xt), xt+1 − xt⟩ +
1
2
β ∥xt+1 − xt∥2

= f (xt) − η⟨∇f (xt),∇f (xt)⟩ +
1
2
β
∥∥∥−η∇f (xt)

∥∥∥2

= f (xt) − η
(
1 − 1

2
ηβ

)
∥∇f (xt)∥2 .

2

Thus, if

1 − 1
2
ηβ > 0 iff η <

2
β
,

we know that either ∇f (xt) = 0 (so we’re at a local min) or else f (xt+1) < f (xt). So,
this means that gradient descent is a “descent method”: each step decreases the
objective, and so must eventually reach a point where ∇f (xt) = 0.

For convex functions, such a point will be a global min. But for nonconvex functions,
we can only say that it’s a stationary point: it might be a local but non-global
minimizer, or a saddle point. (A local max could only happen if we happened to
initialize exactly on it.)

Aside: SGD convergence

This type of analysis can be generalized to show that even SGD eventually reaches a
stationary point:

proposition 4 (Corollary 1 of [KR23]). Let infx f (x) ≥ f inf ∈ R be β-smooth. Let ĝt be
independent such that E[ĝt | xt] = ∇f (xt) and

E[∥ĝt∥2 | xt] ≤ 2A(f (xt) − f inf) + B ∥∇f (xt)∥2 + C

for some A, B, C ≥ 0. Fix ε > 0, and pick η = min
{

1√
βAT

, 1
βB ,

ε
2βC

}
. Initialize stochastic

gradient descent at x1, with δ1 = f (x1) − f inf, and xt+1 = xt − ηĝt. As long as T ≥
12δ1β

ε2 max
{
B, 12δ1A

ε2 , 2C
ε2

}
, it holds that min1≤t≤T E[∥∇f (xt)∥] ≤ ε.

That is, the best iterate achieves ε suboptimality (in expectation) with O(1/ε4) steps.
The assumption on ĝt is satisfied for example if the ĝt have a bounded variance, or
if we use subsampling for a Lipschitz loss, or various other settings.

1.3 Are deep networks β-smooth?

Is f (w) = LS(hw) for hw a class of deep networks β-smooth?

Consider the very simple network

hW,v(x) = v · σ(Wx),

where σ is itself β-smooth. Then the square loss for a single data point is

f (W, v) = (vTσ(Wx) − y)2 = vTσ(Wx)σ(Wx)Tv − 2yσ(Wx)Tv + y2,

and we have

∇vf (W, v) = 2(σ(Wx)Tv − y)σ(Wx) If this is unfamiliar, try
looking at individual
partial derivatives to see
that they line up.

∇2
vf (W, v) = 2σ(Wx)σ(Wx)T.

The Jacobian with W is more annoying, since we’d have to flatten W and reshape
and stuff. Autodiff is nice. . . .But the overall Hessian of f with respect to its input parameters will have
∇2
vf as a block in it, and so its largest eigenvalue will depend on W: if σ is the ReLU

or something similar, then large values of W will result in much larger Hessians.
Thus the loss is only going to be fully β-smooth if you bound the set of possible Ws,
but for any particular parameters it’s going to be “locally” smooth.

3

15. Nonconvex optimization CPSC 532D

Notice that the descent lemma doesn’t actually need a global upper bound on the
smoothness, just along the path from xt to xt+1. So, intuitively, we should roughly
expect (stochastic) gradient descent to reach a stationary point of the loss as long
as ∇2f doesn’t blow up, i.e. in typical situations as long as none of the parameters
blows up.

Aside: edge of stability

So, if we’re optimizing a deep network with a fixed learning rate η, whether the
descent lemma applies or not – whether gradient descent is “stable” or not – depends
on whether η < 2

β
, or more relevantly β < 2

η
, for the “local” value of β.Note that the “local β”

might be larger than
max(∇2f (xt),∇2f (xt+1):

you might go through a
sharper point on the way.

For instance, consider
f (x) = |x| on the reals:

f ′′(x) = 0 for all x , 0, but
the descent lemma might

not apply when you switch
signs, since you go through

0 which has “infinite
second derivative.”

We can roughly

get this local value of β by just checking the largest eigenvalue of ∇2f (xt), and see
whether it stays in a “stable” regime or not.

Cohen et al. [Coh+21] demonstrated that in fact, optimization typically exhibits
“progressive sharpening” where β increases up to 2/η, then hovers around there on
the “edge of stability” [also see Fox23]. Damian, Nichani, and Lee [DNL23] have
recently proposed a mechanism for how this happens, based on Taylor expansions
of the training process.

2 is a stationary point enough?

One model we can look at is deep linear nets, f (x) = wdWd−1 · · ·W2W1x. These are
just linear models, but they’re nonconvex and hierarchical and so exhibit some of
the same behaviour as regular deep nets. It’s reasonable to expect that, generally
speaking, if something doesn’t work on deep linear nets, it won’t work on deep
nonlinear nets either.

It turns out that for deep linear nets:

• Fortunately, all local minima in deep linear nets are global minima [Kaw16;
LvB18].

• Unfortunately, stationary points can also be saddle points – including poten-
tially “bad” saddles with λmin(∇2f) = 0 even though they’re not local minima.
(For example, x3 has a saddle point like this at x = 0; they can be even worse
in high dimensions.)

• Fortunately, in general, gradient descent almost surely converges to local
minimizers, not saddles (or local maxes) [LSJR16].

• Unfortunately, doing so can take exponential time [Du+17].

• Fortunately, this doesn’t happen for deep linear networks, under some condi-
tions [ACGH19].

Unfortunately, there are bad local minima in nonlinear networks. For a very simple
example, consider the network h : R→ R given by h(x) = ReLU(wx), where w ∈ R;
use square loss with a single example, (1, 1). Then the loss is

ℓ(hw, (1, 1)) =

(w − 1)2 w ≥ 0

1 w ≤ 0
.

4

−3 −2 −1 0 1 2 3
0

1

2

3

w

ℓ(
h
w
,(

1,
1)

)

Any negative input is a local min (since f (w) ≥ f (v) for all v in a neighbourhood of
w), but it’s not a global min (since f (1) = 0). Thus, if you start gradient descent with
a negative w, it’s just stuck. In fact, this kind of thing can happen for almost any
activation function [DLS20].

But, do bad local minima exist for realistic networks, with realistic data? Even if
they do, does SGD find them?

We’ll see next that, in one unrealistic (but not too ridiculous) setting, gradient
descent always finds a local minimum.

references

[ACGH19] Sanjeev Arora, Nadav Cohen, Noah Golowich, and Wei Hu. “A Conver-
gence Analysis of Gradient Descent for Deep Linear Neural Networks.”
ICLR. 2019. arXiv: 1810.02281.

[Coh+21] Jeremy M. Cohen, Simran Kaur, Yuanzhi Li, J. Zico Kolter, and Ameet
Talwalkar. “Gradient Descent on Neural Networks Typically Occurs at
the Edge of Stability.” ICLR. 2021. arXiv: 2103.00065.

[DLS20] Tian Ding, Dawei Li, and Ruoyu Sun. Sub-Optimal Local Minima Exist
for Neural Networks with Almost All Non-Linear Activations. 2020. arXiv:
1911.01413.

[DNL23] Alex Damian, Eshaan Nichani, and Jason D. Lee. “Self-Stabilization:
The Implicit Bias of Gradient Descent at the Edge of Stability.” ICLR.
2023. arXiv: 2209.15594.

[Du+17] Simon S. Du, Chi Jin, Jason D. Lee, Michael I. Jordan, Barnabás Póczos,
and Aarti Singh. “Gradient Descent Can Take Exponential Time to
Escape Saddle Points.” NeurIPS. 2017. arXiv: 1705.10412.

[Fox23] Curtis Fox. “A study of the edge of stability in deep learning.” MSc.
Thesis. University of British Columbia, 2023.

[Kaw16] Kenji Kawaguchi. “Deep Learning without Poor Local Minima.” NeurIPS.
2016. arXiv: 1605.07110.

[KR23] Ahmed Khaled and Peter Richtárik. “Better Theory for SGD in the
Nonconvex World.” TMLR (2023).

[LSJR16] Jason D. Lee, Max Simchowitz, Michael I. Jordan, and Benjamin Recht.
“Gradient Descent Only Converges to Minimizers.” COLT. 2016.

[LvB18] Thomas Laurent and James von Brecht. “Deep Linear Networks with
Arbitrary Loss: All Local Minima Are Global.” ICML. 2018.

5

https://arxiv.org/abs/1810.02281
https://arxiv.org/abs/1810.02281
https://arxiv.org/abs/1810.02281
https://arxiv.org/abs/2103.00065
https://arxiv.org/abs/2103.00065
https://arxiv.org/abs/2103.00065
https://arxiv.org/abs/1911.01413
https://arxiv.org/abs/1911.01413
https://arxiv.org/abs/1911.01413
https://arxiv.org/abs/2209.15594
https://arxiv.org/abs/2209.15594
https://arxiv.org/abs/2209.15594
https://arxiv.org/abs/1705.10412
https://arxiv.org/abs/1705.10412
https://arxiv.org/abs/1705.10412
http://dx.doi.org/10.14288/1.0435607
https://arxiv.org/abs/1605.07110
https://arxiv.org/abs/1605.07110
https://openreview.net/forum?id=AU4qHN2VkS
https://openreview.net/forum?id=AU4qHN2VkS
https://proceedings.mlr.press/v49/lee16.html
https://proceedings.mlr.press/v80/laurent18a.html
https://proceedings.mlr.press/v80/laurent18a.html

	Gradient descent with -smooth functions
	-smooth functions
	Descent lemma
	Are deep networks -smooth?

	Is a stationary point enough?

