
CPSC 532D — 14. (STOCHASTIC) GRADIENT DESCENT

Danica J. Sutherland

University of British Columbia, Vancouver

Fall 2023

We haven’t yet really talked in this course about any optimization algorithms to
actually implement our learning algorithms ERM, RLM, or SRM.

By far the most common optimization algorithm used in machine learning is
(stochastic) gradient descent and its variants. We’re going to do one particular
analysis of SGD, which can both be used for learning bounds in and of itself – SGD
automatically generalizes, in some settings – and is useful for knowing how long it
takes to optimize a function.

This presentation pretty much follows Chapter 14 of Shalev-Shwartz and Ben-David
[SSBD]. For much much more about optimization, some good resources are graduate
courses by Michael Friedlander (536M) and Mark Schmidt (“5XX”), the books of
Boyd and Vandenbreghe [BV04], Nocedal and Wright [NW06], and Bubeck [Bub15],
and the recent survey of Garrigos and Gower [GG23].

1 stochastic gradient descent

Gradient descent tries to find minw f (w) for some function f , such as LS(fw). Here
w should be some finite-dimensional parameter; in kernel methods, we’d typically
use the representer theorem, though there’s also something called “kernel gradient
descent.”

We start at some initial point w1, often either 0 or a sample from, say, N (0, σ2I). We
then update according to the rule

wt+1 = wt − ηt∇f (wt);

ηt > 0 is known as either the “learning rate” or the “step size,” although note that
it’s not actually the size of the step since ∥wt+1 − wt∥ = ηt ∥∇f (wt)∥.

One way to motivate this is to say that we should only “trust” the gradient direction
locally, and then should re-check it regularly. Another way is to notice that this
update actually minimizes the local quadratic approximation given by If instead of 1

2η ∥w − wt∥2
we use
1
2 (w−wt)∇2f (wt) (w−wt),
i.e. the second-order Taylor
expansion, this is called
Newton’s method. Each step
of Newton’s method often
improves your loss much
more than gradient descent,
but each step is also much
more computationally
expensive.

g(w) = f (wt) + ⟨∇f (wt), w − wt⟩ +
1

2η
∥w − wt∥2 ;

if f is 1
η
-strongly convex, then g will be a global lower bound for f . Even if not,

though, it’ll be an okay approximation locally.

We repeat this until we decide to stop, after T steps, and then return a result:

this might be wT (the “last iterate”), w̄ = 1
T

T∑
t=1

wt (the “average iterate”), wt̂ for

t̂ ∈ arg mint∈[T] f (wt) (the “best iterate”), the best iterate according to a validation
set, or some other scheme.

For more, visit https://cs.ubc.ca/˜dsuth/532D/23w1/.

1

https://friedlander.io/teaching/23t1-cpsc542f/
https://www.cs.ubc.ca/~schmidtm/Courses/5XX-S22/
https://cs.ubc.ca/~dsuth/532D/23w1/

14. (Stochastic) gradient descent CPSC 532D

We’re going to assume that ηt follows a fixed scheme independent of the data
(probably constant), and that we optimize for a fixed number of steps T, also chosen
independently of the data. In practice, other schemes might be better; for instance,
it’s often better to use a backtracking scheme to adaptively choose ηt.

1.1 Projected gradient descent

Now, we often have some constraint on the possible parameter: for instance, we
might require that ∥w∥ ≤ B. One way to adapt gradient descent to this setting is to
do what’s called projected gradient descent: if we require w ∈ W , define projW (w) ∈
arg minw′∈W ∥w − w′∥.

For instance,W = {w : ∥w∥ ≤ B} gives the projection operator

proj{w:∥w∥≤B}(w) =

w if ∥w∥ ≤ B
B
∥w∥w if ∥w∥ > B.

proposition 1. LetW be a closed convex set, and define projW (w) = arg minw′∈W ∥w′ − w∥.
This projection is unique, and for all v ∈ W ,∥∥∥projW (w) − v

∥∥∥ ≤ ∥w − v∥ .

Proof. First, a minimizer must exist since the objective is continuous and the domain
is closed. For uniqueness: first, if w ∈ W then clearly w is the unique minimizer.
Otherwise, suppose that v, v′ ∈ W both minimize ∥w − ·∥. Since W is convex, we
must have 1

2v + 1
2v
′ ∈ W . But∥∥∥∥∥w − v + v′

2

∥∥∥∥∥2

=
∥∥∥∥∥1

2
(w − v) +

1
2

(w − v′)
∥∥∥∥∥2

=
1
4
∥w − v∥2 +

1
4

∥∥∥w − v′∥∥∥2
+

1
2
⟨w − v, w − v′⟩

≤ 1
4
∥w − v∥2 +

1
4

∥∥∥w − v′∥∥∥2
+

1
2
∥w − v∥

∥∥∥w − v′∥∥∥
= ∥w − v∥2 ,

since ∥w − v∥ = ∥w − v′∥. Since Cauchy-Schwartz is an equality only when the two
vectors are parallel or antiparallel, and they have the same norm, this inequality is
an equality only if w − v = ±(w − v′). Thus either w − v = w − v′ so that v = v′, or
else w − v = v′ − w, in which case w = 1

2 (v + v′), and hence w ∈ W .

For the second part, let ŵ = projW (w). SinceW is convex, ŵ + α(v − ŵ) ∈ W for all
α ∈ [0, 1]. By definition of projW , we then have

∥ŵ − w∥2 ≤ ∥ŵ + α(v − ŵ) − w∥2

= ∥ŵ − w∥2 + 2α⟨ŵ − w, v − ŵ⟩ + α2 ∥v − ŵ∥2 ,

and so
⟨ŵ − w, v − ŵ⟩ ≥ −1

2α
2 ∥v − ŵ∥ 2.

2

Since this holds for all α ≥ 0, we necessarily have ⟨ŵ − w, v − ŵ⟩ ≥ 0. Thus

∥w − v∥2 = ∥w − ŵ + ŵ − v∥2

= ∥w − ŵ∥2 + ∥ŵ − v∥2 + 2⟨w − ŵ, ŵ − v⟩

≥ ∥ŵ − v∥2 .

Projected gradient descent updates according to

wt+1 = projW
(
wt − ηt∇f (wt)

)
.

1.2 (Projected) subgradient descent

Sometimes the function f isn’t differentiable. It turns out that if f is convex, the
algorithm doesn’t actually need f to be differentiable; it’s enough to get a subgradient
of f .

Recall that differentiable convex f always lie above their tangent planes:

∀w′ , f (w′) ≥ f (w) + ⟨∇f (w), w′ − w⟩.

definition 2. A subgradient of a function f : Rd → R at w is a vector g such that

∀w′ , f (w′) ≥ f (w) + ⟨g, w′ − w⟩.

[SSBD] calls this the
“differential set.”

The subdifferential of f at w, written ∂f (w), is the set of all subgradients of f at w.

Notice that the subdifferential is always a closed convex set.

proposition 3. If a convex function f is differentiable at w, then ∂f (w) = {∇f (w)}.

The fact that ∇f (w) ∈ ∂f (w) is immediate from the first-order characterization of
convex functions. That it is unique is a little harder to show, but if there were more
than one then f wouldn’t be differentiable at w [Roc70, Theorem 25.1].

It’s possible for the subdifferential to have more than one element, though: consider
f (x) = |x| at x = 0. We have |x′ | ≥ |0| + g(x′ − 0) = gx′ for any g with |g | ≤ 1, so
∂f (0) = [−1, 1].

proposition 4. f is convex iff ∂f (w) is nonempty for all w in the interior of its domain.

The following is probably the most commonly useful way to find subgradients:

proposition 5. Suppose that f (w) = maxi∈[k] fi(w), where each function fi is convex.
For any point w, if j ∈ arg maxi∈[k] fi(w), then ∂fj(w) ⊆ ∂f (w).

Proof. By definition, f (w′) ≥ fj(w′) for all w′, and f (w) = fj(w). Thus, if g ∈ ∂fj(w),

f (w′) ≥ fj(w
′) ≥ fj(w) + ⟨g, w′ − w⟩ = f (w) + ⟨g, w′ − w⟩.

3

14. (Stochastic) gradient descent CPSC 532D

In subgradient descent, rather than following the gradient, we follow any subgradi-
ent:

wt+1 = projW (wt − ηgt) for gt ∈ ∂f (wt).

proposition 6.The converse also holds: for
functions f defined on an

open set, if all of their
subgradients have norm at

most ρ, then f is
ρ-Lipschitz. To see this,

bound f (w) − f (w′) and
f (w′) − f (w) by

subgradients, and use
Cauchy-Schwartz.

If f is ρ-Lipschitz, then for all points w in the interior of its domain, for
all g ∈ ∂f (w), it holds that ∥g∥ ≤ ρ.

Proof. For any w in the interior of the domain of f , let g ∈ ∂f (w). Then we have for
some ε > 0 that w + εg/ ∥g∥ is in the domain of f , and so since g is a subgradient

f

(
w + ε

g

∥g∥

)
− f (w) ≥

〈
g, w +

ε

∥g∥
g − w

〉
= ε ∥g∥ .

Since f is ρ-Lipschitz, however, we know that

ε ∥g∥ ≤ f

(
w + ε

g

∥g∥

)
− f (w) ≤ ρ

∥∥∥∥∥w + ε
g

∥g∥
− w

∥∥∥∥∥ = ρε.

1.3 Analysis for convex, Lipschitz functions

The most common case in the literature is to analyze β-smooth functions, functions
whose gradient is β-Lipschitz. We’re going to instead assume that f is Lipschitz.

Because the proof is simpler, we’ll analyze the average iterate w̄ = 1
T

T∑
t=1

wt. The

average iterate works better if you’re using a constant learning rate than

We’re going to upper bound f (w̄) − f (w∗), where as we often do we let w∗ be any
arbitrary weight vector with ∥w∗∥ ≤ B (though probably w∗ ∈ arg minw f (w) is nicest,
the proof won’t use that).

By Jensen’s inequality,

f (w̄) − f (w∗) = f

 1
T

T∑
t=1

wt

 − f (w∗) ≤ 1
T

T∑
i=1

f (wt) − f (w∗). (1)

Now, since f is convex, we know that

f (w∗) − f (wt) ≥ ⟨gt , w∗ − wt⟩ for gt ∈ ∂f (wt),

or equivalently

f (wt) − f (w∗) ≤ ⟨gt , wt − w∗⟩ for gt ∈ ∂f (wt).

Thus

f (w̄) − f (w∗) ≤ 1
T

T∑
t=1

⟨gt , w∗ − wt⟩.

Applying Lemma 7 below will yield that for projected subgradient descent,

f (w̄) − f (w∗) ≤ 1
2ηT

∥w1 − w∗∥2 +
η

2T

T∑
t=1

∥gt∥2 .

If f is ρ-Lipschitz, Proposition 6 tells us that ∥gt∥ ≤ ρ, and so for any w∗ with

4

∥w1 − w∗∥ ≤ B,

f (w̄) − f (w∗) ≤ B2

2ηT
+

1
2
ηρ.

Recalling that ax + b/x is minimized at x =
√
b/a with value 2

√
ab, the bound is

optimized when η =
√
ρT/B, giving

f (w̄) ≤ inf
w∗:∥w∗∥≤B

f (w∗) + B

√
ρ

T
.

Alternatively, we can phrase the bound for any η as

f (w̄) ≤ inf
w∗:∥w∗∥≤

√
ρT
η

f (w∗) +
ρ

η
.

Thus, to compete with any possible w∗ for a sequence of optimizations with longer
and longer T, we want

√
T/η→ ∞ and 1/η→ 0, i.e. η = ω(1), η = o(

√
T). As with

stability bounds, if we don’t establish an upper bound on ∥w∗∥ the rate might be bad,
depending on how fast infw:∥w∥≤B f (w) shrinks as B→∞.

lemma 7. Let v1, . . . , vT be an arbitrary sequence of vectors. If

wt+1 = projW (wt − ηvt),

Rd is closed and convex, if
you don’t actually want to
project.

whereW is a closed convex set, we have for any w∗ ∈ W that

T∑
t=1

⟨wt − w∗, vt⟩ ≤
1

2η
∥w1 − w∗∥2 +

η

2

T∑
t=1

∥vt∥2 .

Proof. First notice that, without using any particular properties yet, it holds that

⟨wt − w∗, vt⟩ =
1
η
⟨wt − w∗, ηvt⟩

=
1
2η

(
−
∥∥∥wt − w∗ − ηvt

∥∥∥2
+ ∥wt − w∗∥2 + η2 ∥vt∥2

)
.

As wt+1 = projW (wt − ηvt), Proposition 1 implies ∥wt+1 − w∗∥ ≤
∥∥∥wt − ηvt − w∗

∥∥∥, so

⟨wt − w∗, vt⟩ ≤
1

2η

(
− ∥wt+1 − w∗∥2 + ∥wt − w∗∥2

)
+
η

2
∥vt∥2 .

Let dt = ∥wt − w∗∥2. Summing this inequality over t yields

T∑
t=1

⟨wt − w∗, vt⟩ ≤
1

2η

T∑
t=1

(−dt+1) +
1

2η

T∑
t=1

dt +
η

2

T∑
t=1

∥vt∥2 . (2)

The first two sums mostly cancel in a telescoping sum, leaving us with

T∑
t=1

⟨wt − w∗, vt⟩ ≤
1

2η
∥w1 − w∗∥2 −

1
2η
∥wT+1 − w∗∥2 +

η

2

T∑
t=1

∥vt∥2 .

The result follows from ∥wT+1 − w∗∥ ≥ 0.

5

14. (Stochastic) gradient descent CPSC 532D

2 stochastic (projected) (sub)gradient descent

If we’re trying to minimize LS(w) = 1
m

m∑
i=1

ℓ(w, zi) for very large m, it can be wasteful

to use the whole dataset in calculating a (sub)gradient. Instead, stochastic gradi-
ent descent goes in a random direction, which is on average the direction of the
(sub)gradient:

wt+1 = projW (wt − ηĝt) for E [ĝt | wt] ∈ ∂f (wt).

Our analysis will assume that the ĝt | wt are independent, although the ĝt will
probably be marginally dependent since which ĝ1 we take will affect where w2 is.

For instance, when f (w) = 1
m

m∑
i=1

fi(w), we could pick ĝt ∈ ∂ft(wt). More generally,

we could use ĝt ∈ ∂

(
1
|I |

∑
i∈I

fi

)
(wt) for some random minibatch I ⊆ [m]; larger |I |

will have lower variance, but higher computational cost.

Even more interestingly, we could also consider minimizing the function f (w) =
Ez∼D ℓ(w, z) by sampling a fresh zt ∼ D, defining ft(w) = ℓ(w, zt), and taking ĝt ∈
∂ft(wt). This is sometimes called pure SGD, but the analysis only works if we do
only one pass over our dataset: if we repeat samples, then the ĝt | wt won’t be
independent anymore.

theorem 8. LetW be a closed convex set and f : W → R convex. For any w1, w
∗ ∈ W ,

let wt+1 = projW (wt − ηĝt) with independent ĝt | wt such that E[ĝt | wt] ∈ ∂f (wt).

Letting w̄ = 1
T

T∑
t=1

wt,

Ê
g1:T

[f (w̄)] ≤ f (w∗) +
1

2η
∥w1 − w∗∥2 +

η

2

T∑
t=1

Ê
g1:t

∥ĝt∥2 .

Thus, if ∥w1 − w∗∥ ≤ B, E ∥ĝt∥2 ≤ ρ2, and η = B
ρ
√

T
,

Ê
g1:T

[f (w̄)] ≤ f (w∗) +
Bρ
√

T
.

We’ll have E ∥ĝt∥2 ≤ ρ2We could also take a
ρ/2-Lipschitz loss and add
N (0, ρ/(2d)) noise to its

gradients, if we felt like it.

if ĝt is a stochastic subgradient for a ρ-Lipschitz loss.

Notice that if we want to minimize f up to ε accuracy, it requires T =
(Bρ

ε

)2
steps. A

1/ε2 rate isn’t particularly great in optimization: for “nice” functions (e.g. smooth,
strongly convex functions)Optimizers call a log 1

ε rate
“linear,” because it looks
linear on a log-scale plot.

gradient descent actually gets a log 1
ε

rate.

Proof. Use ĝt:τ to denote (ĝt , ĝt+1, . . . , ĝτ). As in (1), Jensen’s inequality tells us that

Ê
g1:T

[f (w̄) − f (w∗)] ≤ Ê
g1:T

 1
T

T∑
t=1

f (wt) − f (w∗)

 . (3)

Using linearity of expectation, let’s consider each term of the form

Ê
g1:T

[f (wt) − f (w∗)] = E
ĝ1:t−1

[f (wt) − f (w∗)],

since wt = projW (wt−1 − ηĝt−1) doesn’t depend on ĝt:T. Now, recall that the mean of

6

the (sub)gradient estimator, gt = E[ĝt | wt], is a subgradient of f : gt ∈ ∂f (wt). Thus
we know that

f (wt) − f (w∗) ≤ ⟨wt − w∗, Ê
gt

[ĝt | ĝ1:t−1]⟩ = Ê
gt

[
⟨wt − w∗, ĝt⟩

∣∣∣ ĝ1:t−1

]
.

Taking the expectation with respect to ĝ1:t−1 of both sides, we get

E
ĝ1:t−1

[f (wt) − f (w∗)] ≤ E
ĝ1:t−1

Ê
gt

[
⟨wt − w∗, ĝt⟩

∣∣∣ ĝ1:t−1

]
= Ê

g1:t

⟨wt − w∗, ĝt⟩,

by the law of total expectation. Summing over t and using (3), we get that

Ê
g1:T

[f (w̄) − f (w∗)] ≤ Ê
g1:T

 1
T

T∑
i=1

⟨wt − w∗, ĝt⟩

 . (4)

Now, inside the expectation, the sequence of realized ĝ1:t is just some set of vectors,
and we can apply Lemma 7, getting the first result. The second follows by using
that ax + b/x = 2

√
ab for x =

√
b/a.

Aside (not covered in class)

This choice of a constant learning rate that depends on how long we’ll optimize for
is a little weird. Often, it makes sense to instead use a learning rate that decays over
time (so we get in the general vicinity of a good solution first, then hone in as we get
closer).

lemma 9. Let v1, . . . , vT be an arbitrary sequence of vectors, and ηt = α/
√
t for some

α > 0. If
wt+1 = projW (wt − ηtvt),

The diameter ofW is

maxw,w′∈W
∥∥∥w − w′∥∥∥.

whereW is a closed convex set with diameter at most 2B. We have for any w∗ ∈ W that

T∑
t=1

⟨wt − w∗, vt⟩ ≤
(

2B2

α
+ αmax

t∈[T]
∥vt∥2

)√
T.

Proof. The start of the proof is the same as Lemma 7, but instead of a telescoping
sum in (2), we get (recalling the notation dt = ∥wt − w∗∥2) that

T∑
t=1

⟨wt − w∗, vt⟩ ≤
T∑
t=1

dt
2ηt
−

T∑
t=1

dt+1

2ηt
+

1
2

T∑
t=1

ηt ∥vt∥2

=
d1

2η1
+

1
2

T∑
t=2

(
1
ηt
− 1
ηt−1

)
dt −

dT+1

2ηT
+

1
2

T∑
t=1

ηt ∥vt∥2 .

We’ll use that if at , bt ≥ 0 we have
∑
t
atbt ≤

(∑
t
at

)
maxt bt, then

T∑
t=2

(
1
ηt
− 1
ηt−1

)
=

1
ηT
− 1
η1

=

√
T − 1
α

.

7

14. (Stochastic) gradient descent CPSC 532D

Also, since 1√
t

is decreasing,

T∑
t=1

ηt = α

T∑
t=1

1
√
t
≤ α

T∑
t=1

t∫
t−1

1
√
x

dx = α

T∫
0

1
√
x

dx = 2α
√

T.

Thus

T∑
t=1

⟨wt − w∗, vt⟩ ≤
1

2α
d1 +

1
2α

(
√

T − 1) max
t∈[T]

dt −
√

T
2α

dT+1 + α
√

T max
t
∥vt∥2 .

We know that ∥wt − w∗∥ ≤ 2B for all t, so each dt ≤ 4B2. Then

T∑
t=1

⟨wt−w∗, vt⟩ ≤
2B2

α
+

2B2

α
(
√

T−1)+α
√

T max
t
∥vt∥2 =

(
2B2

α
+ αmax

t
∥vt∥2

)√
T.

If we have ∥vt∥ ≤ ρ and choose α = B
ρ

√
2, so that ηt = B

ρ

√
2
T , plugging into (4) gives

Ê
g1:T

f (w̄) ≤ f (w∗) +
2
√

2Bρ
√

T
.

This choice now lets us optimize without pre-committing to a given length, and the
result is only slightly worse: there’s a constant 2

√
2 factor, and we needed slightly

stronger versions of B (supw ∥w − w∗∥ instead of just ∥w1 − w∗∥) and ρ (worst-case
instead of root-mean-square bound on ∥ĝt∥).

Strongly convex functions (not in class)

We can get better rates if we assume that f is λ-strongly convex, not just convex.
Theorem 14.11 of Shalev-Shwartz and Ben-David [SSBD] shows suboptimality of

ρ2

2λT
(1 + log T);

the log T factor can be removed if we instead output a tail average 2
T

T∑
t=T/2+1

wt, and

the version with a log still holds for the last iterate.

Also see Garrigos and Gower [GG23] for more related results (especially Section 9).

references

[Bub15] Sébastien Bubeck. “Convex Optimization: Algorithms and Complexity.”
Foundations and Trends in Machine Learning 8.3-4 (2015). arXiv: 1405.
4980.

[BV04] Stephen Boyd and Lieven Vandenbreghe. Convex Optimization. Cambridge
University Press, 2004.

[GG23] Guillaume Garrigos and Robert M. Gower. Handbook of Convergence Theo-
rems for (Stochastic) Gradient Methods. 2023. arXiv: 2301.11235.

[NW06] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer,
2006.

[Roc70] R. Tyrell Rockafellar. Convex Analysis. Princeton University Press, 1970.
[SSBD] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learn-

ing: From Theory to Algorithms. Cambridge University Press, 2014.

8

https://arxiv.org/abs/1405.4980
https://arxiv.org/abs/1405.4980
https://arxiv.org/abs/1405.4980
https://web.stanford.edu/~boyd/cvxbook/
https://arxiv.org/abs/2301.11235
https://arxiv.org/abs/2301.11235
https://arxiv.org/abs/2301.11235
http://dx.doi.org/10.1007/978-0-387-40065-5
https://convexoptimization.com/TOOLS/AnalyRock.pdf
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/copy.html
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/copy.html

	Stochastic gradient descent
	Projected gradient descent
	(Projected) subgradient descent
	Analysis for convex, Lipschitz functions

	Stochastic (projected) (sub)gradient descent

