
CPSC 532D — 13. STABILITY, REGULARIZATION, AND

CONVEX PROBLEMS

Danica J. Sutherland

University of British Columbia, Vancouver

Fall 2023

We’ve argued that it’s important to consider algorithm-specific bounds: sometimes
H is too big for uniform convergence, but A still learns well. We motivated this last
time from deep learning, but this is true even for, say, kernel ridge regression with a
universal kernel,

arg min
h∈F

Lsq
S (h) + λ ∥h∥2F .

This algorithm could feasibly return any h ∈ F , Consider a D where
y | x = h∗(x), the
distribution on x is
“sufficiently broad,” and
λ→ 0 as m→∞. If this
kernel is also continuous,
h∗ is the unique minimizer
of LD, and checking the
details in some asymptotic
analysis will give us that
ĥS → h∗.

and so a typical uniform conver-
gence analysis will have to use H = F . But we know that the VC dimension and
Rademacher complexity of F are both infinite for a universal kernel, so a uniform
convergence analysis won’t tell us anything useful.

We can generalize this setting a bit to regularized loss minimization (RLM):

arg min
h∈H

LS(h) + λR(h). (RLM)

(Kernel ridge regression uses square loss, with H the RKHS F , and R(h) = ∥h∥2F .)

We’ve appealed before to a connection between RLM and constrained ERM:

arg min
h∈H:R(h)≤B

LS(h).

The two problems are Lagrange dual to each other: for any λ, there is some B such
that the solutions agree, and vice versa. But converting between λ and B generally
requires actually solving the problem, (RLM) is typically easier computationally,
and it’s usually easier to choose a good λ than to choose a good B. So, we’d like to
come up with a direct analysis of (RLM) for its own sake, in addition to developing
techniques that will help with other analyses.

Randomized algorithms Our analyses of ERM applied to any empirical risk mini-
mizer, so exactly what the algorithm did didn’t really matter. When we’re dealing
with specific algorithms, though, it’s important to note that these algorithms might
be randomized: for instance, stochastic gradient descent sees points in a random
order, and might start at a random location.

Notationally, we’ll use A(S) to denote the potentially random result of the algorithm
on a set S: even for a fixed S, the result could be a random variable. Something like
EA ℓ(A(S), z) will denote the mean of the loss on a fixed z when training on a fixed S.
We’ll always assume that this randomness is independent of S (other than its size):
for instance, this will be the random seed that determines that pattern in which we
access the zi . If A is deterministic, it’s just a point-mass distribution.

For more, visit https://cs.ubc.ca/˜dsuth/532D/23w1/.

1

https://cs.ubc.ca/~dsuth/532D/23w1/

13. Stability, Regularization, and Convex Problems CPSC 532D

1 definitions of stability

The general intuition we’re going to use is algorithmic stability: if two training sets
S and S′ are “similar,” then A(S) and A(S′) will also be “similar.” Then A doesn’t
“depend too much” on the particular sample set, and so it’s likely to not really
overfit too much. (Defining “similar” in different ways will yield different notions
of stability.)

In (RLM), the regularizer R(h) “stabilizes” the algorithm. For instance, if you run
linear regression on “multicollinear” data (where the n × d data matrix isn’t full
rank), there are multiple possible solutions: the algorithm isn’t stable. But if you add
the regularizer λ ∥w∥2, then there’s always a unique solution that doesn’t depend too
much on any one input point.

We’ll use the following notation for changing single sample points:

If S = (z1, . . . , zm), then S(i←z′) = (z1, . . . , zi−1, z
′ , zi+1, . . . , zm).

Now, notice the following basically-trivial result:

proposition 1. For any distribution D and learning algorithm A,

E
S∼Dm,A

[LD(A(S)) − LS(A(S))] = E
S∼Dm, z′∼D

i∼Unif([m]),A

[
ℓ(A(S(i←z′)), zi) − ℓ(A(S), zi)

]
.

On the right-hand side, the first loss term is the generalization loss, since A(S(i←z′))
doesn’t train on zi . The second one is the training error, since A(S) does train on zi .

Proof. Splitting up the expectation, the second term has

E
S∼Dm

i∼Unif([m]),A

[ℓ(A(S), zi)] = E
S∼Dm,A

 1
m

m∑
i=1

ℓ(A(S), zi)

 = E
S∼Dm,A

[LS(A(S))] .

The first is

E
S∼Dm, z′∼D

i∼Unif([m]),A

[
ℓ(A(S(i←z′)), zi)

]
= E

S∼Dm, z′∼D
i∼Unif([m]),A

[
ℓ(A(S), z′)

]
= E

S∼Dm,A
LD(A(S)),

where we switched the names of the iid variables zi and z′ in the first equality.

This motivates what is basically the weakest useful notion of stability:

definition 2. A is ε(m)-on-average-replace-one stable if for all D,

E
S∼Dm, z′∼D

i∼Unif([m]),A

[
ℓ(A(S(i←z′)), zi) − ℓ(A(S), zi)

]
≤ ε(m).

We say an algorithm is on-average-replace-one stable if limm→∞ ε(m) = 0 for all D.

Thus, an ε(m)-on-average-replace-one stable algorithm will have small average-case
generalization gap LD(A(S)) − LS(A(S)): it won’t overfit much, on average. Like
for uniform convergence, there are bad stable algorithms: consider A that always
returns x 7→ 0 regardless of S. But a stable algorithm that also usually fits its training

2

data, one with small ES LS(A(S)), will have small ES LD(A(S)). This is the notion
studied by Chapter 13 of [SSBD]; also see [SSSS10].

Notice that since Proposition 1 is an equality, any algorithm where ES LD(A(S)) is
always close to ES LS(A(S)) will necessarily be on-average replace-one stable; this
is what I meant by it being the weakest notion. There’s also a more commonly
considered but much stronger notion of stability:

definition 3. [BE02] defined β as the
change from removing the
ith element, which implies
this one with a factor of 2
difference; [EEP05]
extended to random
algorithms. This version
(without the 2) is called
strongly-uniform-replace-
one stable by [SSSS10].

A learning algorithm A is β(m)-uniformly stable if for all m ≥ 1,

sup
S∈Zm, i∈[m]

z,z′∈Z

∣∣∣∣∣EA ℓ(A(S(i←z′)), z) − E
A
ℓ(A(S), z)

∣∣∣∣∣ ≤ β(m).

We say an algorithm is uniformly stable if limm→∞ β(m) = 0.

That is, changing one point in any training set gives you a hypothesis that looks
almost the same for any test point.

If you know differential privacy, this might seem familiar: it turns out that an
(ε, δ)-differentially private algorithm with loss ℓ ∈ [0,1] is (eε − 1 + δ)-uniformly
stable [WLF16, Lemma 23].

If A is β(m)-uniformly stable, it’s ε(m)-on-average-replace-one stable, just by plug-
ging in the definitions. But the converse is not true. (There are also in-between
notions; see [BE02; SSSS10].)

If we do have uniform stability, though, we can get stronger bounds:

theorem 4 ([BE02], basically). Suppose that ℓ(h, z) ∈ [a, b] almost surely. Let A be
β(m)-uniformly stable. Then, with probability at least 1 − δ over the choice of training
points S ∼ Dm,

E
A

[LD(A(S)) − LS(A(S))] ≤ β(m) + (2mβ(m) + b − a)

√
1

2m
log

1
δ
.

The best case for this bound is when β(m) = O(1/m), in which case you get a usual
O(1/

√
m) rate. That turns out to be often the case.

Proof. We’ll apply McDiarmid’s inequality (Theorem 7 of the Rademacher notes) to
the function f (S) = EA[LD(A(S)) − LS(A(S))].

Since β(m)-uniformly stable algorithms are ε(m)-on-average-replace-one stable,
Proposition 1 implies that ES f (S) ≤ β(m).

For brevity, write ĥS for A(S), and Si for S(i←z′). Then we have directly that∣∣∣∣∣EA LD(ĥSi) − E
A

LD(ĥS)
∣∣∣∣∣ ≤ E

z∼D

∣∣∣∣∣EA ℓ(ĥSi , z) − E
A
ℓ(ĥS, z)

∣∣∣∣∣ ≤ β(m).

3

https://cs.ubc.ca/~dsuth/532D/23w1/notes/5-rademacher.pdf

13. Stability, Regularization, and Convex Problems CPSC 532D

LS is slightly more complicated, since one evaluation point changes too:∣∣∣∣∣EA LSi (ĥSi) − E
A

LS(ĥS)
∣∣∣∣∣ ≤ 1

m

∑
j,i

∣∣∣∣∣EA ℓ(ĥSi , zj) − EA
ℓ(ĥS, zj)

∣∣∣∣∣ +
1
m

∣∣∣∣∣EA ℓ(ĥSi , z′) − E
A
ℓ(ĥS, zi)

∣∣∣∣∣
≤ 1

m

∑
j,i

β(m) +
1
m

(b − a) =
m − 1
m

β(m) +
b − a
m

≤ β(m) +
b − a
m

.

Thus f satisfies the bounded differences condition of McDiarmid with ci = 2β(m) +
b−a
m . Combining with ES f (S) ≤ β(m) gives the desired result.

In fact, even stronger rates have been shown recently, with more complex techniques;
I don’t know whether their
results hold for random A

or not.

Bousquet, Klochkov, and Zhivotovskiy [BKZ20] showed for deterministic A that,
with probability at least 1 − δ over the choice of S,

LD(A(S)) − LS(A(S)) ≤ const

β(m) log(m) log
1
δ

+
b − a
√
m

√
log

1
δ

 (1)

by simplifying and improving techniques of Feldman and Vondrak [FV18; FV19]
inspired by techniques from differential privacy. This shows a Õp(1/

√
m) rate as

long as β(m) = Õ(1/
√
m), much weaker than the Õ(1/m) required by Theorem 4.

2 convex functions

We’ll see that (RLM) is often uniformly stable, but to characterize that we’ll need
various results about convex functions. More details are available lots of places; in
addition to chapters 12-13 of [SSBD] or Appendix B.2 of [MRT], the classic super-
detailed reference is the book of Rockafellar [Roc70], and Boyd and Vandenbreghe
[BV04] is also good (and what I learned from).

Most sources assume functions on Rd ; we’ll assume a separable Hilbert space X ,
though the statements e.g. that don’t use an inner product will also hold for Banach
spaces, and so on. For the results about derivatives, you can use a Fréchet derivative,
and have a gradient/Hessian analogue. Don’t really worry about any of that, you
can just think of everything as on Rd .

definition 5. A set C ⊆ X is convex if for all x0, x1 ∈ C and α ∈ [0, 1], it holds that
(1 − α)x0 + αx1 ∈ C.

Below, we’ll use the set R∪ {∞} a lot. Many of these results hold for the full extended
real line R ∪ {−∞,∞}, but you often have to exclude −∞ for things to make sense.

It’s typical in optimization to, rather than dealing with functions on some restricted
domain that’s a proper subset of X , instead define f (x) = ∞ for x that shouldn’t be
in the domain. Then dom f = {x ∈ X : f (x) < ∞}.

definition 6. A function f : X → R ∪ {∞} is called

• convex if it lies below its chords: for all x0, x1 ∈ X and α ∈ (0, 1),

f ((1 − α)x0 + αx1) ≤ (1 − α)f (x0) + αf (x1);

4

https://en.wikipedia.org/wiki/Fr%C3%A9chet_derivative
https://math.stackexchange.com/q/1755510
https://en.wikipedia.org/wiki/Extended_real_number_line
https://en.wikipedia.org/wiki/Extended_real_number_line

• strictly convex if this inequality is strict;

• and m-strongly convex, for some m > 0, if

f ((1 − α)x0 + αx1) ≤ (1 − α)f (x0) + αf (x1) − 1
2mα(1 − α) ∥x1 − x0∥2 .

A function is convex if and only if its epigraph, {(x, r) ∈ X × (R ∪ {∞}) : r ≥ f (x)}, is a
convex set.

An m-strongly convex function is m′-strongly convex for any m′ < m; convexity is
equivalent to 0-strong convexity, which we don’t call strongly convex. m-strong
convexity implies strict convexity, but the reverse is not true. Likewise, strict
convexity implies convexity.

A concave/strictly concave/m-strongly concave function is one where −f is con-
vex/strictly convex/m-strongly convex.

Any local minimum of a convex function must be a global minimum, since we can
connect any two local minima by chords. The set of global minima must be convex,
for the same reason. If f is strictly convex, it has only one global minimum.

2.1 First-order conditions

proposition 7. If f : X → R ∪ {∞} is differentiable on its convex domain,

• it is convex iff it lies above its tangents: for all x, x′ ∈ dom f ,

f (x′) ≥ f (x) + ⟨∇f (x), x′ − x⟩.

• it is m-strongly convex iff for all x, x′ ∈ X ,

f (x′) ≥ f (x) + ⟨∇f (x), x′ − x⟩ + 1
2m

∥∥∥x′ − x∥∥∥2
.

Proof. We’ll do this for m ≥ 0, in which case the m = 0 results are for plain convexity.

If f (x′) ≥ f (x) + ⟨∇f (x), x′ − x⟩ + 1
2m ∥x

′ − x∥2 for all x, x′, then

f ((1 − α)x + αx′) ≤ (1 − α)f (x) + αf (x′) − 1
2mα(1 − α)

∥∥∥x′ − x∥∥∥2

1
α

[
f ((1 − α)x + αx′) − f (x)

]
≤ f (x′) − f (x) − 1

2m(1 − α)
∥∥∥x′ − x∥∥∥2

lim
α→0

f (x + α(x′ − x)) − f (x)
α

≤ f (x′) − f (x) − 1
2m

∥∥∥x′ − x∥∥∥2
,

and that limit is exactly the directional derivative given by ⟨∇f (x), x′ − x⟩.

In the other direction, let xα = (1 − α)x0 + αx1, and note xα − x0 = α(x1 − x0),
xα − x1 = −(1 − α)(x1 − x0). Then

f (xα) ≤ f (x0) + ⟨∇f (xα), xα − x0⟩ − 1
2m ∥xα − x0∥2

= f (x0) + α⟨∇f (xα), x1 − x0⟩ − 1
2mα2 ∥x1 − x0∥2

and

f (xα) ≤ f (x1) + ⟨∇f (xα), xα − x1⟩ − 1
2m ∥xα − x1∥2

= f (x1) − (1 − α)⟨∇f (xα), x1 − x0⟩ − 1
2m(1 − α)2 ∥x1 − x0∥2 .

5

13. Stability, Regularization, and Convex Problems CPSC 532D

Adding 1 − α times the first inequality plus α times the second yields

f (xα) ≤ (1 − α)f (x0) + αf (x1) − 1
2mα(1 − α)(α + 1 − α) ∥x1 − x0∥2 .

proposition 8. If f : X → R ∪ {∞} is continuously differentiable on its convex domain,

• it is convex iff ∀x, x′ ∈ dom f , ⟨∇f (x) − ∇f (x′), x − x′⟩ ≥ 0;

• it is m-strongly convex iff ∀x, x′ ∈ dom f , ⟨∇f (x) − ∇f (x′), x − x′⟩ ≥ m ∥x − x′∥2.

This result is important for convex optimization: if x∗ is a minimizer, ∇f (x∗) = 0,
and so then m ∥x − x∗∥2 ≤ ⟨∇f (x), x−x∗⟩ ≤ ∥∇f (x)∥ ∥x − x∗∥, i.e. ∥x − x∗∥ ≤ 1

m ∥∇f (x)∥,
and if we know m > 0 then the right-hand side is something we can actually measure
for any point x and upper-bound how far we can be from the minimizer.

Proof. We’ll again use m = 0 for plain convexity.

If f is convex/m-strongly convex, then

f (x) ≥ f (x′) + ⟨∇f (x′), x − x′⟩ + 1
2m

∥∥∥x − x′∥∥∥2

f (x′) ≥ f (x) − ⟨∇f (x), x − x′⟩ + 1
2m

∥∥∥x − x′∥∥∥2

and so

f (x) + f (x′) ≥ f (x′) + f (x) + ⟨∇f (x′) − ∇f (x), x − x′⟩ + m
∥∥∥x − x′∥∥∥2

.

In the other direction, again using xα = (1 − α)x0 + αx1 we know that

f (x1) = f (x0) +

1∫
0

⟨f (xα), x1 − x0⟩dα

= f (x0) + ⟨∇f (x0), x1 − x0⟩ +

1∫
0

⟨f (xα) − ∇f (x0), x1 − x0⟩dα

= f (x0) + ⟨∇f (x0), x1 − x0⟩ +

1∫
0

1
α
⟨f (xα) − ∇f (x0), xα − x0⟩dα

≥ f (x0) + ⟨∇f (x0), x1 − x0⟩ +

1∫
0

1
α
m ∥xα − x0∥2 dα

= f (x0) + ⟨∇f (x0), x1 − x0⟩ + m ∥x1 − x0∥2
1∫

0

αdα

= f (x0) + ⟨∇f (x0), x1 − x0⟩ + 1
2m ∥x1 − x0∥2 .

2.2 Second-order conditions

The notation A ⪰ 0 means that the square matrix (or Hilbert-space operator) A is
positive semi-definite; A ⪰ B means that A − B ⪰ 0. Thus A ⪰ mI means that all

6

eigenvalues of A are at least m. The notation ∇2f denotes the Hessian, the matrix of
all second derivatives. (This is a F → F operator in Hilbert spaces.)

If f is a function on scalars, ∇2f (x) ⪰ mI exactly means than f ′′(x) ≥ m.

proposition 9. If f : X → R ∪ {∞} is continuously twice-differentiable on its convex
domain,

• it is convex iff ∀x ∈ dom f , ∇2f ⪰ 0;

• it is m-strongly convex iff ∀x ∈ dom f , ∇2f ⪰ mI.

Proof. Again use m = 0 for the plain convexity case, and xα = (1 − α)x0 + αx1.

If f is convex / m-strongly convex, then using Proposition 8 gives

m ∥x1 − x0∥2 ≤ ⟨∇f (x1) − ∇f (x0), x1 − x0⟩

=
〈 1∫

0

∇2f (xα)(x1 − x0) dα, x1 − x0

〉

=
〈
x1 − x0,

1∫

0

∇2f (xα) dα

 (x1 − x0)
〉

0 ≤
〈
x1 − x0,

1∫

0

∇2f (xα) dα −mI

 (x1 − x0)
〉
.

Now, let x0 be any point in the interior of the domain and let x1 = x0 + εv, getting

〈
εv,

1∫

0

∇2f (x0 + εαv) dα −mI

 εv
〉
≥ 0

〈
v,

1∫

0

∇2f (x0 + εαv) dα −mI

 v
〉
≥ 0.

As ε→ 0, we have that
1∫

0
∇2f (x0 + εαv)dα→ ∇2f (x0) since ∇2f is continuous. Thus

⟨v, (∇2f (x) − mI)v⟩ ≥ 0 for all x in the interior of the domain and all v. This is
exactly the condition that ∇2f (X) ⪰ mI.

For the other direction, we have that

f (x′) = f (x) + ⟨∇f (x), x′ − x⟩ +

1∫
0

α∫
0

⟨x′ − x,∇2f (xτ)(x′ − x)⟩dτdα

≥ f (x) + ⟨∇f (x), x′ − x⟩ +

1∫
0

α∫
0

m
∥∥∥x′ − x∥∥∥2

dτdα

= f (x) + ⟨∇f (x), x′ − x⟩ + 1
2m

∥∥∥x′ − x∥∥∥2

7

13. Stability, Regularization, and Convex Problems CPSC 532D

since
α∫
0

dτ = α, and
1∫

0
αdα = 1

2 .

2.3 Properties

proposition 10. If f , g, and fy for all y ∈ Y are all convex functions, then so are

• αf for any α ≥ 0;

• f + g, or more generally
∫
fydw(y) if w is any (nonnegative) measure on Y ;

• x 7→ f (Ax + b) for any A, b;

• x 7→ g(f (x)) if g : R→ R is also nondecreasing;

• x 7→ max(f (x), g(x)), or more generally x 7→ supy∈Y fy(x);

• x 7→ infy∈Y f (x, y) if f (x, y) is convex in (x, y), and Y is a nonempty convex set.

The proofs are mostly straightforward, and omitted here.

Similarly, the sum of an m-strongly convex and an m′-strongly convex function is
(m + m′)-strongly convex, and the sum of an m-strongly convex function with a
convex function is m-strongly convex. Scaling an m-strongly convex function by
α > 0 gives you an mα-strongly convex function.

Notice that the square loss, hinge loss, and logistic loss are all convex functions of
the function h.

theorem 11 (Jensen’s inequality). If f : X → R is convex and X a random variable on
X such that the expectations exist, f (E X) ≤ E f (X).

We also have that ∥h∥2 is 2-strongly convex: for instance, its gradient is 2h and so its
Hessian is 2I, or you can use directly that

∥(1 − α)h + αg∥2 + 1
2 · 2 · α(1 − α) ∥h − g∥2

= (1 − α)2 ∥h∥2 + α2 ∥g∥2 + 2α(1 − α)⟨h, g⟩

+ α(1 − α) ∥h∥2 + α(1 − α) ∥g∥2 − 2α(1 − α)⟨h, g⟩

= (1 − α + α)(1 − α) ∥h∥2 + α(α + 1 − α) ∥g∥2

= (1 − α) ∥h∥2 + α ∥g∥2 .

Thus 1
2 ∥h∥

2 is 1-strongly convex.

3 convex rlm

Recall regularized loss minimization (RLM), and suppose h 7→ ℓ(h, z) is convex for
each z,If it’s strongly convex with

some different m, just scale
it and inversely scale λ.

and R(h) is 1-strongly convex. Then fS(h) = LS(h) + λR(h), the sum of a
convex function and a λ-strongly convex function, is λ-strongly convex. Let A(S)
denote arg minh∈H fS(h); since fS is strongly convex, it has a unique minimizer.

Now, notice that for any h ∈ H, we have that

fS(h) = fS(i←z′)(h) − 1
m
ℓ(h, z′) +

1
m
ℓ(h, zi).

8

Thus for any h, g ∈ H,

fS(h) − fS(g) = fS(i←z′)(h) − fS(i←z′)(g) +
ℓ(h, zi) − ℓ(g, zi)

m
+
ℓ(g, z′) − ℓ(h, z′)

m
.

Plugging in h = ĥi = A(S(i←z′)) and g = ĥ = A(S), since ĥi minimizes fS(i←z′) , we get
that

fS(ĥi) − fS(ĥ) ≤ ℓ(ĥi , zi) − ℓ(ĥ, zi)
m

+
ℓ(ĥ, z′) − ℓ(ĥi , z′)

m
.

Noting also that ∇fS(ĥ) = 0, Proposition 7 implies that fS(ĥi) − fS(ĥ) ≥ 1
2λ

∥∥∥ĥi − ĥ∥∥∥2
.

Thus we’ve shown that

λ

2

∥∥∥ĥi − ĥ∥∥∥2 ≤ ℓ(ĥi , zi) − ℓ(ĥ, zi)
m

+
ℓ(ĥ, z′) − ℓ(ĥi , z′)

m
.

3.1 Lipschitz loss

If we further assume that h 7→ ℓ(h, z) is ρ-Lipschitz for each z, i.e. |ℓ(h, z) − ℓ(h′ , z)| ≤
ρ ∥h − h′∥ for all z, then we get that

λ

2

∥∥∥ĥi − ĥ∥∥∥2 ≤
2ρ
m

∥∥∥ĥi − ĥ∥∥∥ ,
and hence ∥∥∥ĥi − ĥ∥∥∥ ≤ 4ρ

λm
.

Using the Lipschitz property again,∣∣∣ℓ(ĥi , z) − ℓ(ĥ, z)
∣∣∣ ≤ ρ

∥∥∥ĥi − ĥ∥∥∥ ≤ 4ρ2

λm

for any z, and we’ve shown 4ρ2

λm -uniform stability. Plugging into Theorem 4, we get

proposition 12. Suppose that h 7→ ℓ(h, z) is ρ-Lipschitz and convex for each z ∈ Z. Let
h 7→ λR(h) be λ-strongly convex. Then (RLM) satisfies that

E
S∼Dm

[LD(A(S)) − LS(A(S))] ≤
4ρ2

λm
.

If we further have that ℓ(h, z) ∈ [a, b] for all h and D-almost all z, (RLM) satisfies that,
with probability at least 1 − δ over the choice of S ∼ Dm,

LD(A(S)) − LS(A(S)) ≤
4ρ2

λm
+

(
8ρ2

λ
+ b − a

)√
1

2m
log

1
δ
.

3.2 Smooth, nonnegative loss

In optimization, a β-smooth function is one whose gradient is β-Lipschitz. It’s possible,
though messier, to show a similar result for nonnegative β-smooth functions: in the
end, if you also assume that λ ≥ 2β/m, you get (see [SSBD, Section 13.3.2]) that

E
S,z′

[
LS(A(S(i←z′))) − LS(A(S))

]
≤

48β
λm

E
S

[LS(A(S))].

If R is nonnegative and there is some h0 with R(h0) = 0, e.g. the zero predictor when

9

13. Stability, Regularization, and Convex Problems CPSC 532D

R(h) = ∥h∥2, and we also have that ℓ(h0, z) ≤ b, say because the loss is always less
than b, then we know that

LS(A(S)) ≤ LS(A(S)) + λR(A(S)) ≤ LS(h0) + λR(h0) ≤ b,

in which case we can upper-bound ES LS(A(S)) by b.

4 fitting-stability trade-off

Proposition 12 shows that LD(A(S)) is closer to LS(A(S)) as λ grows. But LS(A(S))
will also get worse for bigger λ, since A cares more and more about having “simpler”
h than minimizing LS. How can we find the best λ to trade off between them?

For any fixed h∗, if R is nonnegative and 1-strongly convex, we have that

LS(A(S)) ≤ LS(A(S)) + λR(h) ≤ LS(h∗) + λR(h∗),

and hence
E
S

LS(A(S)) ≤ LD(h∗) + λR(h∗). (2)

4.1 Expected loss

So, using (2) and Propositions 1 and 12,

E
S

LD(A(S)) ≤ LD(h∗) + λR(h∗) + E
S

[LD(A(S)) − LS(A(S))]

≤ LD(h∗) + λR(h∗) +
4ρ2

λm
(3)

if the loss is convex and ρ-Lipschitz, and R is nonnegative and 1-strongly convex.

We now have two routes we can take from this bound.

4.1.1 Choosing λ

Because our canonical regularizer is R(h) = 1
2 ∥h∥

2, let’s compare our result to any h∗

satisfying R(h∗) ≤ 1
2 B2. We then have

E
S

LD(A(S)) ≤ LD(h∗) +
1
2
λB2 +

4ρ2

λm
. (4)

Using that αx + β/x is minimized at x =
√
β/α with value 2

√
αβ, we can minimize

this bound by picking λ = ρ

B

√
8
m to get

E
S

LD(A(S)) ≤ inf
h∗:R(h∗)≤ 1

2 B2
LD(h∗) + ρB

√
8
m
.

definition 13. A learning problem is convex, ρ-Lipschitz, B-boundedThe class of problems is
also sometimes described in

terms of Bregman
divergences; see e.g.

Chapter 14 of [MRT].

if the hypothesis
set H is convex, bounded as R(h) ≤ 1

2 B2 for all h ∈ H for some strongly convex
function R, and the loss functions h 7→ ℓ(h, z) are convex and ρ-Lipschitz for each
z ∈ Z.

Regularized loss minimization can therefore learn (in the sense of expected loss)
any convex-Lipschitz-bounded learning problem. (Section 12.2.1 of [SSBD] gives

10

examples of problems which are not learnable if they’re convex but not Lipschitz
and/or not bounded.)

You can do a similar thing for the case where the loss is nonnegative and smooth
instead of Lipschitz [SSBD, Corollaries 13.10 and 13.11].

4.1.2 Fixing λ

Instead of fixing some B and picking λ accordingly, we can instead ask: what
happens if we run the algorithm with any particular choice of λ? We minimized (4)
in terms of λ, but it’s equivalent to take λ as given and minimize the bound in terms

of B, in which case we find B = ρ

λ

√
8
m and

E
S

LD(A(S)) ≤ inf
h∗:R(h∗)≤ 1

2

(
ρ

λ

√
8
m

)2
LD(h∗) +

8ρ2

λm
.

This is exactly the same analysis, but tells us what happens with different choices
of λ: for instance, if we pick a constant λ as m grows, then we only compete with
simpler and simpler hypotheses as we see more data (not ideal).

We need 1
λm → 0 for the second term to go to zero, i.e. we need λ = ω(1/m). If we

also want to eventually compete with any possible predictor, we need 1
λ
√
m
→∞, i.e.

λ = o(1/
√
m). Thus, consider picking λ ∝ m−γ for any γ ∈ (1/2, 1): the second term

becomes O(mγ−1).

Note that this means boundedness isn’t actually required for learnability: convexity
and Lipschitzness of the loss is enough. With boundedness, however, we know that
inf

h∗:R(h∗)≤ 1
2

(
ρ

λ

√
8
m

)2 LD(h∗) will become exactly infh∗∈H LD(h∗) for m bigger than some

threshold. Without boundedness, it might be that infh∗∈H LD(h∗) is not actually
achieved, only approached as R(h∗) → ∞; this is actually the case for logistic
regression of separable data. To get a final bound, then, we would need to know the
rate at which inf

h∗:R(h∗)≤ 1
2

(
ρ

λ

√
8
m

)2 LD(h∗) approaches its asymptote as m grows.

4.2 High-probability bound

To get high-probability bounds, also assume that ℓ ∈ [a, b].

We showed in the proof of Theorem 4 that LD(A(S)) satisfies bounded differences
with ci = β(m). We then have that LD(A(S)) is close to ES LD(A(S)), which we just
upper-bounded; we don’t actually need to apply Theorem 4 directly, and doing so
wouldn’t be any tighter. This tells us that

LD(A(S)) ≤ E
S

LD(A(S)) +
4ρ2

λm

√
m
2

log
1
δ
,

and plugging in (4) gives for any fixed h∗, it holds with probability at least 1 − δ that

LD(A(S)) ≤ LD(h∗) + λR(h∗) +
4ρ2

λm
+

4ρ2

λ
√
m

√
1
2

log
1
δ
. (5)

We can see that the choice λ ∝ 1/
√
m, which was optimal in the average-case analysis

of Section 4.1.1, will now give us a constant upper bound. That’s no good. The
problematic term is β(m)

√
m, the same as in Theorem 4, but using λ ∝ 1/

√
m means

that β(m) = O(1
λm) becomes O(1/

√
m).

11

13. Stability, Regularization, and Convex Problems CPSC 532D

We’ll thus need a larger λ. Assuming R(h∗) ≤ 1
2 B2, we can minimize (5) when

λ =

√
2
B2 · 4ρ

2

 1
m

+

√
1

2m
log

1
δ

 =
ρ

B

√
8

 1
m

+

√
1

2m
log

1
δ

,
giving a bound of

LD(A(S)) − LD(h∗) ≤ Bρ

√
8

 1
m

+

√
1

2m
log

1
δ

.
Notice that this upper bound on the suboptimality is bigger than Bρ

(
32
m log 1

δ

)1/4
;

that m−1/4 rate is much slower than the m−1/2 rate for the mean!

Using the sharper bound of (1) instead gives a much better result:

LD(A(S)) − LD(h∗) = O
λB2 +

ρ2

λm
+

ρ2

λm
logm log

1
δ

+
b − a
√
m

√
log

1
δ

 .
This upper bound is minimized by λ = Θ

(
ρ

B

√
1+logm log 1

δ

m

)
= Θ̃

(
ρ

B
√
m

)
, giving

LD(A(S))−LD(h∗) = O

Bρ

√
1 + logm log 1

δ

m
+
b − a
√
m

√
log

1
δ

 = Õp

(
max(Bρ, b − a)

√
m

)
.

This is a far more satisfying final bound, and notice that the choice of λ is similar
(up to log factors) to the case from Section 4.1.1 where we only analyzed the mean.

Either of these analyses shows that convex-Lipschitz-bounded learning problems
are also learnable by RLM with high probability.

A similar, but messier, analysis should also work for the case of a nonnegative
β-smooth loss.

5 more

Other algorithms than RLM are also stable. The theory originated out of analyses
of “local learning rules” like k-nearest neighbour, which are on-average-replace-
one stable (and “hypothesis stable”) but not uniformly stable. You can also show
that (stochastic) gradient descent is uniformly stable for convex problems, and
even get some results in non-convex settings [HRS15; FV19]. And, as mentioned,
any differentially private algorithm is automatically uniformly stable (with the
randomized variant).

Stability is also very useful for analyzing cross-validation, especially leave-one-out
cross-validation, which is discussed by many of the papers here [BE02; SSSS10].

Shalev-Shwartz et al. [SSSS10] also have thorough accounting of when stability is
necessary, or not, to be able to learn different kinds of problems, and Wang, Lei, and
Fienberg [WLF16] a similar accounting of the relationship to privacy.

references

[BE02] Olivier Bousquet and André Elisseeff. “Stability and Generalization.”
Journal of Machine Learning Research 2 (2002), pages 499–526.

12

https://jmlr.org/papers/v2/bousquet02a.html

[BKZ20] Olivier Bousquet, Yegor Klochkov, and Nikita Zhivotovskiy. “Sharper
Bounds for Uniformly Stable Algorithms.” Conference on Learning Theory.
2020.

[BV04] Stephen Boyd and Lieven Vandenbreghe. Convex Optimization. Cam-
bridge University Press, 2004.

[EEP05] Andre Elisseeff, Theodoros Evgeniou, and Massimiliano Pontil. “Stabil-
ity of Randomized Learning Algorithms.” Journal of Machine Learning
Research 6.3 (2005), pages 55–79.

[FV18] Vitaly Feldman and Jan Vondrak. “Generalization Bounds for Uniformly
Stable Algorithms.” Advances in Neural Information Processing Systems.
Volume 31. 2018. arXiv: 1812.09859.

[FV19] Vitaly Feldman and Jan Vondrak. “High probability generalization bounds
for uniformly stable algorithms with nearly optimal rate.” Conference on
Learning Theory. 2019.

[HRS15] Moritz Hardt, Benjamin Recht, and Yoram Singer. “Train faster, general-
ize better: Stability of stochastic gradient descent.” Advances in Neural
Information Processing Systems. 2015. arXiv: 1509.01240.

[MRT] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talkwalkar. Founda-
tions of Machine Learning. 2nd edition. MIT Press, 2018.

[Roc70] R. Tyrell Rockafellar. Convex Analysis. Princeton University Press, 1970.
[SSBD] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learn-

ing: From Theory to Algorithms. Cambridge University Press, 2014.
[SSSS10] Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, and Karthik Srid-

haran. “Learnability, Stability and Uniform Convergence.” Journal of
Machine Learning Research 11 (2010), pages 2635–2670.

[WLF16] Yu-Xiang Wang, Jing Lei, and Stephen E. Fienberg. “Learning with Differ-
ential Privacy: Stability, Learnability and the Sufficiency and Necessity
of ERM Principle.” Journal of Machine Learning Research 17.183 (2016),
pages 1–40.

13

https://proceedings.mlr.press/v125/bousquet20b.html
https://proceedings.mlr.press/v125/bousquet20b.html
https://web.stanford.edu/~boyd/cvxbook/
https://jmlr.org/papers/v6/elisseeff05a.html
https://jmlr.org/papers/v6/elisseeff05a.html
https://arxiv.org/abs/1812.09859
https://arxiv.org/abs/1812.09859
https://arxiv.org/abs/1812.09859
https://proceedings.mlr.press/v99/feldman19a.html
https://proceedings.mlr.press/v99/feldman19a.html
https://arxiv.org/abs/1509.01240
https://arxiv.org/abs/1509.01240
https://arxiv.org/abs/1509.01240
https://cs.nyu.edu/~mohri/mlbook/
https://cs.nyu.edu/~mohri/mlbook/
https://convexoptimization.com/TOOLS/AnalyRock.pdf
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/copy.html
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/copy.html
https://jmlr.org/papers/v11/shalev-shwartz10a.html
https://jmlr.org/papers/v17/15-313.html
https://jmlr.org/papers/v17/15-313.html
https://jmlr.org/papers/v17/15-313.html

	Definitions of Stability
	Convex functions
	First-order conditions
	Second-order conditions
	Properties

	Convex RLM
	Lipschitz loss
	Smooth, nonnegative loss

	Fitting-Stability Trade-Off
	Expected loss
	High-probability bound

	More

