
CPSC 532D — 11. UNIVERSAL APPROXIMATION

Danica J. Sutherland

University of British Columbia, Vancouver

Fall 2023

Estimation error bounds in an RKHS are relatively simple: if F is the RKHS with
kernel k(x, x′) = ⟨ϕ(x),ϕ(x′)⟩F , and HB = {f ∈ F : ∥f ∥F ≤ B}, we can use exactly the
same Rademacher bound as before (Section 3.2 of the Rademacher notes) to see that

Rad(HB|Sx
) ≤ B
√
m

√
1
m

∑
i

∥∥∥ϕ(xi)
∥∥∥2
F =

B
√
m

√
1
m

∑
i

k(xi , xi).

With a linear kernel, k(x, x) = ∥x∥2 and so this becomes exactly the result we had
before (as it should be). But with many kernels, such as the Gaussian, k(x, x) = 1
and so we get simply B/

√
m.

Our previous style of bounds then immediately work for constrained ERM in HB.
Our SVM algorithms also work for kernel SVMs, where now ∥w∥ becomes ∥f ∥F : for
instance, if we know that D is such that E k(x, x) ≤ C2 and is perfectly separable by
a predictor f ∗ ∈ F , then hard SVMs achieve

L0−1
D (sgn ◦ĥ) ≤ 1

√
m

(
2C ∥f ∗∥F +

√
1
2 log 1

δ

)
.

But what kind of approximation error can we expect?

definition 1. For a metric space X , C(X) denotes the Banach space of continuous
functions X → R, with norm given by ∥f ∥∞ = supx∈X |f (x)|.

1 universal kernels

definition 2. Consider a kernel k : X × X → R, where X is a compact metric space,
with RKHS F of functions X → R. Let C(X) denote the space of all continuous
functions X → R. k is universal if cF is dense in C(X): for any continuous target
function g : X → R and any ε > 0, there exists an f ∈ F such that

∥f − g∥∞ = sup
x∈X
|f (x) − g(x)| ≤ ε.

proposition 3. Let V, W ⊂ X be disjoint compact sets, Finite sets are compact.and let k be a universal kernel
on X . Then there exists an f ∈ F such that f (x) > 0 for all x ∈ V, and f (x) < 0 for all
x ∈ W.

This means that for any universal RKHS F , For any Sx, we can find
some function to show
Rad(F |Sx) > 0, and then
we can just arbitrarily scale
that function up by a
constant while remaining in
F to push the Rademacher
as high as we want.

we can shatter any finite set without
“repeats,” so VCdim(sgn ◦F) = ∞, and Rad(F |Sx

) = ∞. But since the VC dimension
of homogeneous linear classifiers is d, no kernel with a finite-dimensional feature
map can be universal.

For more, visit https://cs.ubc.ca/˜dsuth/532D/23w1/.

1

https://cs.ubc.ca/~dsuth/532D/23w1/notes/5-rademacher.pdf
https://cs.ubc.ca/~dsuth/532D/23w1/

11. Universal Approximation CPSC 532D

Proof. Define distV(x) = minv∈V ∥x − v∥, and likewise distW. Since the sets are com-
pact, we can use just min instead of inf, and they’ll still be well-defined continuous
functions in C(X). Since the sets are compact and disjoint, if distV(x) = 0 then
distW(x) > 0, and vice versa. Thus the following g is well-defined and continuous:

g(x) =
distV(x) − distW(x)
distV(x) + distW(x)

.

But if x ∈ V, then DV(x) = 0, and so g(x) = −1 for x ∈ V, and likewise g(x) = 1 for
x ∈ W. Thus, any f ∈ F with ∥f − g∥∞ < 1 will satisfy the property we want, which
is called separating compact sets. But universality implies such an f must exist.

proposition 4. The Gaussian kernel exp
(
− 1

2σ2 ∥x − x′∥2
)

is universal for any σ > 0.

This can be proved via the Stone-Weierstrass theorem [more soon, but for full
deatails see SC08, Section 4.6], or via Fourier properties [SC08, Exercise 4.12]; there
are also versions that work for non-compact X [SFL10, with a Fourier approach].

Some infinite-dimensional kernels are not universal. One silly example is the kernel
on Rd given by k(x, x′) = exp(−(x1 − x′1)2), a Gaussian kernel that only looks at
the first coordinate. A less silly example is the distance kernel k(x, x′) = ∥x∥ +
∥x′∥ − ∥x − x′∥ on compact subsets of Rd , which is an excellent kernel for certain
applications but isn’t “quite” universal [SSGF13, Appendix B].

We can also think about the Bayes predictor, e.g. for square loss the regression function
fD(x) = E(x,y)∼D[y | x]. If fD ∈ F , called the well-specified settingNote that this isn’t

assuming realizability; we
might have LD(fD) > 0.

then constrained
ERM with a large enough bound, or SRM, or similar algorithms, will have zero
approximation error. Because F is only dense in C(X) and not equal to C(X), though,
in the misspecified setting where fD < F we can always get closer and closer to fD
with increasing norm. This means there’s always some approximation error as a
function of the allowed norm of h. In either case, how close you can get to fD with
any finite ∥h∥F is a function of “how hard” the problem is.

2 universal approximation of neural networks

The situation is similar for neural networks, where the result is more famous and
treated more mystically.

A feedforward neural network (or multilayer perceptron, MLP) is a function defined
hierarchically as

f (x) = f (D)(x) f (k)(x) = σk(Wkf
(k−1)(x) + bk) f (0)(x) = x,

where Wk ∈ Rd′k×dk−1 , bk ∈ Rd′k , and σk : Rd′k → Rdk ; usually, dk = d′k. Typically
σD(z) = z, while intermediate hidden layers use nonlinear activations. Many common
choices are componentwise, such as ReLU(z) = max{z,0}, tanh, or sigmoid(z) =

1
1+exp(−z) . Other choices include softmax(z) = (exp(zj))j /

∑
j

exp(zj), max pooling,

attention operators, and so on.

The solutions to A2 Q3 bound the Rademacher complexity for some such networks,
with some assumptions on the σk, the data distribution,We also assumed bk = 0 for

simplicity. This could
potentially be handled by
making σk always add a

constant 1 dimension to its
output, though our proof

also assumed σ had an
elementwise structure.

and various norms of the
parameters. (There are [slightly] better bounds than this one; we’ll talk about this a
bit soon.) Like for kernels, this bound is based on the norm of the various weight
matrices; it doesn’t depend on the number of parameters.

2

It’s worth noting now that neural networks are usually trained via stochastic gradient
descent, but this non-convex optimization can be difficult: in general, it’s NP-hard,
even to optimize a single ReLU unit with square loss [GKMR21]. We’ll talk more
about optimization soon.

2.1 Constructive proofs

The following result is easy to understand, and extremely simple, but is indicative
of universal approximation results in general.

theorem 5. Let g : [0,1]→ R be ρ-Lipschitz. For any ε > 0, there exists a network f
such that ∥f − g∥∞ ≤ ε, where the network has one hidden layer of width N = ⌈ρ/ε⌉ using
threshold activations σ(t) = 1(t ≥ 0), and a linear output unit.

Proof. We’re going to construct a piecewise-constant approximation to g. For i ∈
{0, . . . , N − 1}, let bi = iε

ρ
, i.e.

b0 = 0, b1 =
ε

ρ
, · · · , bN−1 =

(⌈
ρ

ε

⌉
− 1

)
ε

ρ
<

ρ

ε
· ε
ρ

= 1.

We’re going to construct

f (x) =


g(0) if 0 ≤ x < b1

g(b1) if b1 ≤ x < b2
...

g(bN−1) if bN−1 ≤ x ≤ 1

as a two-layer network. To do this, let a0 = g(0), and for i ≥ 1 let ai = g(bi) − ai−1, so
that

k∑
i=0

ai = g(0) + (g(b1) − g(0)) + (g(b2) − (g(b1) − g(0))) + · · · = g(bk).

Thus the desired f is just

f (x) =
N−1∑
i=0

ai 1(x ≥ bi),

which is a network of the desired form: the first layer has a weight matrix of all ones,
and a bias vector collecting the negatives of the thresholds bi , while the second layer
has weights collecting the ai and no offset.

Now, consider any input x, and let k = max{k : bk ≤ x}. You could use a narrower
network by depending on
the total variation of g,
how much it “wiggles” up
and down: if g is pretty flat
in some region, there’s no
need to keep putting points
there, you only need a new
one when g changes more
than ε.

Then, since g is ρ-Lipschitz,

|g(x) − f (x)| ≤ |g(x) − g(bk)|︸ ︷︷ ︸
≤ρ |x−bk |

+ |g(bk) − f (bk)|︸ ︷︷ ︸
0

+ |f (bk) − f (x)|︸ ︷︷ ︸
0

≤ ρ
ε

ρ
= ε.

We could do a similar thing with ReLU networks, using piecewise-linear approxima-
tions rather than piecewise-constant.

Here’s a similar result in Rd :

theorem 6. Let g : [0,1]d → R be continuous. For any ε > 0, δ exists for any ε, since
continuous functions on
compact domains are
uniformly continuous, and
∥·∥2 and ∥·∥∞ are
equivalent.

choose δ > 0 such that
∥x − x′∥∞ ≤ δ implies |g(x) − g(x′)| ≤ ε. Then there is a three-layer ReLU network f with

3

11. Universal Approximation CPSC 532D

Ω
(

1
δd

)
ReLU nodes satisfying

∫
[0,1]d

|f (x) − g(x)| dx ≤ 2ε.

Proof (sketch). Approximate the continuous g by a piecewise-constant h, with pieces
given by hyper-rectangles. Construct a two-layer ReLU net to check whether the
input x is in each hyper-rectangle. Put those networks side-by-side as the first two
layers of f , so that the second hidden layer is just an indicator vector of which
hyper-rectangle x is in; use a linear readout layer to set any value on those pieces.

For more details, see Telgarsky [Tel, Theorem 2.1].

Notice the curse of dimensionality: the size of the network depends exponentially
on the dimension, which for deep learning is typically at least hundreds, perhaps
millions or more. This isn’t just a proof artifact; it’s necessary to approximate
arbitrary continuous functions. The construction also needs really large weights,
and has a really bad Lipschitz constant; it also only gives an L1 approximation
bound, not sup-norm like before.

2.2 Non-constructive bound via Stone-Weierstrass

We can actually get a sup-norm bound with only one hidden layer a different way,
using the celebrated Stone-Weierstrass approximation theorem from analysis.

theorem 7 (Stone-Weierstrass, special case). Let X be a compact metric space. Suppose
F is a set of functions from X → R such that:

• Each f ∈ F is continuous: F ⊆ C(X).

• For each x ∈ X , there is at least one f ∈ F with f (x) , 0.

• For all f , g ∈ F and α ∈ R, we have αf + g ∈ F and f g = (x 7→ f (x)g(x)) ∈ F .F is an algebra.

• For each x , x′ ∈ X , there is at least one f ∈ F with f (x) , f (x′).F separates points.

Then F is dense in C(X): for any continuous function g : X → R and any ε > 0, there is
some f ∈ F such that ∥f − g∥∞ = supx∈X |f (x) − g(x)| ≤ ε.

You may have heard of the Weierstrass theorem, which shows that polynomial
functions are dense in C(X); this is a generalization.

proposition 8. The set of functions Fexp is dense in C(X), where

Fexp =

x 7→ m∑
i=1

ai exp(wi · x) : m ≥ 1;w1, . . . , wm ∈ Rd ; a1, . . . , am ∈ R

 .

Notice that Fexp is a set of one-hidden-layer neural networks with exponential
hidden activations and unbounded width.

Proof. We just need to show that it satisfies the conditions of Stone-Weierstrass. The

4

first two are clear. For f (x) =
m∑
i=1

ai exp(wi · x) and g(x) =
m′∑
i=1

a′i exp(w′i · x), we have

αf + g =

x 7→ m∑
i=1

(αai) exp(wi · x) +
m′∑
i=1

a′i exp(w′i · x)

 ∈ Fexp

f g =

x 7→ m∑
i=1

m′∑
j=1

aia
′
i exp((wi + w′j) · x)

 ∈ Fexp.

To show Fexp separates x1 and x2, consider f (x) = exp((x1 − x2) · x), so that

f (x1)
f (x2)

=
exp

(
∥x1∥2 − x2 · x1

)
exp

(
x1 · x2 − ∥x2∥2

) = exp
(
∥x1∥2 − 2x1 · x2 + ∥x2∥2

)
= exp

(
∥x1 − x2∥2

)
,

which is one iff x1 = x2.

(The proof that Gaussian kernels are universal is very similar.)

proposition 9 ([HSW89]). Let σ : R → R be continuous with limz→−∞ σ(z) = 0,
limz→∞ σ(z) = 1. Then Fσ is dense in C(X), where Fσ is defined as

Fσ =

x 7→ m∑
i=1

aiσ(wi · x) : m ≥ 1;w1, . . . , wm ∈ Rd ; a1, . . . , am ∈ R

 .

Proof (sketch). For any continuous target g, first find an f0 ∈ Fexp such that ∥f0 − g∥∞ ≤
ε/2. Now, find some coefficients such that

exp(z) ≈
∑
j

cjσ(tjz)

is sufficiently accurate so that when we replace each exp(wi ·x) in f0 by
∑
i
ciσ(tiwi ·x),

we find an f ∈ Fσ such that ∥f − f0∥∞ ≤ ε/2.

More generally, this works if σ is anything that’s not a polynomial [LLPS93]. (A
shallow network with fixed-degree polynomial activations is itself a polynomial of
fixed degree.)

There are also a variety of other results. Maybe most important is an infinite-width
construction of Barron [Bar93]; also see Section 3 of [Tel] or Section 9.3 of [Bach23].

It’s also worth noting that while these results are for shallow, wide networks, univer-
sal approximation is also possible with deep, narrow networks [KL20].

3 circuit complexity

We won’t go into depth on this perspective, but it’s definitely worth knowing it
exists. Shalev-Shwartz and Ben-David [SSBD, Chapter 20] overview the general
basic results, but the standard classic text seems to be Parberry [Par94]. There’s also
recent work, particularly on Transformers.

The short version:

5

11. Universal Approximation CPSC 532D

• Two-layer networks with threshold activations can represent all functions
from {±1}d → {±1}. Since computers always represent things as binary strings,
that’s pretty powerful.

• But, it takes exponential width to do that.

• But, for any Boolean function that can computed with maximal runtime T,
there exists a network of size O(T2) that implements that function.

4 interpretation

“Neural networks can do anything!!”

(You don’t hear “Gaussian kernels can do anything!!” as often, but it’s just as true. . . .)

These results mean that, for any (continuous) function (on a bounded domain) that
we’d like to approximate, there is some neural net that can closely approximate
that behaviour. Continuous functions also aren’t a huge limit: they can closely
approximate lots of noncontinuous functions too. So, there is some neural network
that can approximate “what’s the next byte a very smart human would say in
response to a Unicode string of length at most 128,000 bytes.” But that network is
going to be very large (in parameter count and also weight norm). There’s also a
function in a Gaussian RKHS that can do that, but it has really really big norm.

So, does ERM in a large enough hypothesis class, or SRM, or whatever other learning
algorithm, necessarily generalize? Maybe not.

Also, for neural networks ERM is NP-hard; does gradient descent approximate it
well? Maybe not.

But, are these constructions with enormous norms indicative of the actual norm
required for functions we care about? Maybe not.

One way to help answer these questions is to characterize what kinds of functions
have large norms. This is mostly beyond the scope of this course, but the typical
traditional scheme is based on functions in Sobolev classes; [Bach23] has a bunch of
material on this. There’s also recent work on, say, constructing Transformers to do
some particular task, as an existence proof of approximation for that task (rather
than universally).

references

[Bach23] Francis Bach. Learning Theory from First Principles. April 2023 draft.
[Bar93] Andrew R. Barron. “Universal Approximation Bounds for Superposi-

tions of a Sigmoidal Function.” IEEE Transactions on Information Theory
39 (3 1993), pages 930–45.

[GKMR21] Surbhi Goel, Adam Klivans, Pasin Manurangsi, and Daniel Reichman.
“Tight Hardness Results for Training Depth-2 ReLU Networks.” ITCS.
2021. arXiv: 2011.13550.

[HSW89] Kurt Hornik, Maxwell Stinchcombe, and Halber White. “Multilayer
Feedforward Networks are Universal Approximators.” Neural Networks
2 (1989), pages 359–366.

[KL20] Patrick Kidger and Terry Lyons. “Universal Approximation with Deep
Narrow Networks.” COLT. 2020. arXiv: 1905.08539.

6

https://www.di.ens.fr/~fbach/ltfp_book.pdf
https://arxiv.org/abs/2011.13550
https://arxiv.org/abs/2011.13550
http://dx.doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
http://dx.doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
https://arxiv.org/abs/1905.08539
https://arxiv.org/abs/1905.08539
https://arxiv.org/abs/1905.08539

[LLPS93] Moshe Leshno, Vladimir Ya. Lin, Allan Pinkus, and Shimon Schocken.
“Multilayer feedforward networks with a nonpolynomial activation
function can approximate any function.” Neural Networks 6.6 (1993),
pages 861–867.

[Par94] Ian Parberry. Circuit complexity and neural networks. MIT Press, 1994.
[SC08] Ingo Steinwart and Andreas Christmann. Support Vector Machines.

Springer, 2008.
[SFL10] Bharath K. Sriperumbudur, Kenji Fukumizu, and Gert R. G. Lanckriet.

“On the relation between universality, characteristic kernels and RKHS
embedding of measures.” AISTATS. 2010. arXiv: 1003.0887.

[SSBD] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learn-
ing: From Theory to Algorithms. Cambridge University Press, 2014.

[SSGF13] Dino Sejdinovic, Bharath K. Sriperumbudur, Arthur Gretton, and Kenji
Fukumizu. “Equivalence of distance-based and RKHS-based statistics
in hypothesis testing.” Annals of Statistics 41.5 (Oct. 2013), pages 2263–
2291.

[Tel] Matus Telgarsky. Deep learning theory lecture notes. Version: 2021-10-27
v0.0-e7150f2d (alpha). 2021.

7

http://dx.doi.org/10.1016/S0893-6080(05)80131-5
http://dx.doi.org/10.1016/S0893-6080(05)80131-5
https://go.exlibris.link/dfCmBkCW
http://dx.doi.org/10.1007/978-0-387-77242-4
https://arxiv.org/abs/1003.0887
https://arxiv.org/abs/1003.0887
https://arxiv.org/abs/1003.0887
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/copy.html
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/copy.html
http://dx.doi.org/10.1214/13-AOS1140
http://dx.doi.org/10.1214/13-AOS1140
https://mjt.cs.illinois.edu/dlt/

	Universal kernels
	Universal approximation of neural networks
	Constructive proofs
	Non-constructive bound via Stone-Weierstrass

	Circuit complexity
	Interpretation

