
CPSC 532D — 10. KERNELS

Danica J. Sutherland

University of British Columbia, Vancouver

Fall 2023

We’ve mentioned a couple times the idea of implementing a polynomial classifier as
a special case of a linear one: in R, a cubic classifier might look like

h(x) = w0 + w1x + w2x
2 + w3x

3

where we have four parameters in w. Notice that we can also write this as

h(x) = w · φ(x), w ∈ R4, φ(x) = (1, x, x2, x3).

As we saw last time, the SVM problem in particular allows us to solve problems of
this form in two ways:

• by finding the coefficients w directly, operating on the data φ(x);

• by finding the dual variables α, looking only at inner products between data
points given by

φ(x) · φ(x′) = 1 + xx′ + (xx′)2 + (xx′)3.

Now, consider the set of all cubic functions

F ′ = {x 7→ w · φ(x) = w0 + w1x + w2x
2 + w3x

3 : w ∈ R4}.

We can re-parameterize this set as, for any c > 0,

F = {x 7→ w · φ(x) = w0

√
c3 + w1

√
3c2x + w2

√
3cx2 + w3x

3 : w ∈ R4};

this changes the meaning of w, but the set of available functions is the same. This
form is helpful, though, in that for this different φwe have

φ(x) · φ(x′) = c3 + 3c2xx′ + 3c(xx′)2 + (xx′)3 = (xx′ + c)3.

So, computing dot products is now pretty simple, compared to operating in the
explicit feature space. In higher dimensions, we can do the same thing; there’ll be
O(dk) terms in the full version, since we’ll need all kinds of interaction terms, but
we can still parameterize the inner product as (x · x′ + c)k .

We’re going to call this a kernel function, “Kernel” is a
super-overloaded word.
This is not the same thing
as in kernel density
estimation, the kernel of a
convolution, the kernel of a
probability density, the
kernel of a linear map, a
CUDA kernel, an operating
system kernel. . .

which for general features φwill be

k(x, x′) = φ(x) · φ(x′).

1 defining a function space

We’re going to think of F as a vector space of functions. Let f , f ′ ∈ F correspond
to weight vectors w, w′. Then we can let f + f ′ be the function with weight vector

For more, visit https://cs.ubc.ca/˜dsuth/532D/23w1/.

1

https://cs.ubc.ca/~dsuth/532D/23w1/

10. Kernels CPSC 532D

w + w′, and af that with weight vector af . This definition makes it a valid vector
space.

Now, we’re going to given F some even stronger structure: making it a (real) Hilbert
space. To do this, define an inner product ⟨f , f ′⟩F by w · w′, which also induces
the norm ∥f ∥F = ∥w∥. This satisfies the necessary linearity conditions and so on;
the only thing left is to show that it’s complete, meaning that all Cauchy sequences
converge in F ; this will also be true.

It’s worth emphasizing that while the F for each value of c, and F ′, are all the
exact same set, ∥w∥, and hence ∥f ∥F , is different between them. (Larger c will mean
the lower-order coefficients can be smaller in order to express the same function,
and so means that ∥f ∥F is more determined by the coefficient on x3.) This will be
important when we use algorithms that depend on ∥f ∥F .

Now, let’s do something slightly weird. Recall that

φ(x) = (
√
c3,
√
c2x,
√
cx2, x3) ∈ R4.

Elements of F are functions corresponding to any w ∈ R4. So what happens if we
think of the element of φ(x) as a weight vector for an element in F ? This would give
us a function of the form

x′ 7→
√
c3
√
c3 +
√

3c2x
√

3c2x′ +
√

3cx
√

3c(x′)2 + x3(x′)3

= c3 + 3c2xx′ + 3c(xx′)2 + (xx′)3

= (xx′ + c)3 = k(x, x′).

That is, if we evaluate the function with weights φ(x) at a point x′, we just get the
kernel back. There actually isn’t any magic here at all; we defined F that way in the
first place! Letting ϕ(x) ∈ F denote the function with weight vector φ(x) ∈ R4, this
means that

⟨ϕ(x),ϕ(x′)⟩F = k(x, x′).

Now, because it’s a vector space, we know that
n∑
i=1

αiϕ(xi) ∈ F for any n, αi ∈ R, and

choice of xi . By the linearity properties of inner product spaces,〈 n∑
i=1

αiϕ(xi),ϕ(x)
〉
F

=
n∑
i=1

αi⟨ϕ(xi),ϕ(x)⟩F =
n∑
i=1

αik(xi , x).

Notice that, thinking of ϕ(xi) as a function from X to R, this is the same as taking a
linear combination of the functions, in terms of their pointwise evaluations.

So, we could think of F as having a vector space structure totally independent of
w, where af + f ′ is defined as the function x 7→ af (x) + f ′(x), and where f (x) =
⟨f ,ϕ(x)⟩F (also known as the reproducing property) – at least for any f that’s a
linear combination of ϕ(xi) for some xi . This will be the basis for our construction
of a reproducing kernel Hilbert space (RKHS) for a generic kernel.

2 reproducing kernels

Not every function can be a kernel: it needs to be possible to write as an inner
product. So:

2

https://en.wikipedia.org/wiki/Vector_space#Definition_and_basic_properties
https://en.wikipedia.org/wiki/Vector_space#Definition_and_basic_properties
https://en.wikipedia.org/wiki/Hilbert_space
https://en.wikipedia.org/wiki/Hilbert_space

definition 1. A function k : X × X → R is a positive definite kernel if and only if
there exists some Hilbert space F and feature map φ : X → F such that k(x, x′) =
⟨φ(x),φ(x′)⟩F .

Notice that the space, and the map, don’t need to be unique (e.g. you could always
use −φ instead of φ). Sometimes it’s clear what such a map is: for the cubic kernel we
considered above, we used F = R4 and φ(x) = (

√
c3,
√

3c2x,
√

3cx2, x3). Sometimes,
though, it’s not obvious for a given k whether there is such a map or not.

The definition implies that we need k(x, x′) = k(x′ , x), and that k(x, x) ≥ 0. But those
are only necessary, not sufficient.

theorem 2 ([Aro50]). Unfortunately people are
very inconsistent about
terminology around
positive definiteness. For
matrices, “positive
semi-definite”
unambiguously means the
eigenvalues are
nonnegative, and “strictly
positive definite”
unambiguously means
eigenvalues are all positive,
but “positive definite”
might mean either. Some
people get annoyed if you
try to say “positive
semi-definite kernel
function,” though.

A function k : X ×X → R is a positive definite kernel if and only if

for all m ≥ 1 and x1, . . . , xm ∈ X , the kernel matrix

k(x1, x1) . . . k(x1, xm)

...
. . .

...
k(xm, x1) . . . k(xm, xm)

 ∈ Rm×m

is positive semi-definite.

Recall that a positive semi-definite matrix can be equivalently characterized as:

• For all α ∈ Rm, αTKα ≥ 0.

• All eigenvalues of K are nonnegative.

• K = LLT for some L ∈ Rm×m.

Proof (sketch). One direction is easy: if k(x, x′) = ⟨ϕ(x),ϕ(x′)⟩F , then

αTKα =
m∑
i=1

m∑
j=1

αi⟨φ(xi),φ(xj)⟩F αj =

∥∥∥∥∥∥∥
m∑
i=1

αiφ(xi)

∥∥∥∥∥∥∥
2

F

≥ 0.

To show the other direction, given a k satisfying this property, we’ll construct a
space F : the reproducing kernel Hilbert space.

We’ll start by building a “pre-Hilbert space” F0, containing functions X → R. Start
by defining the functions ϕ(x) = [x′ 7→ k(x, x′)] for all x. Then, let F0 be the set of

all linear combinations of these functions,
m∑
i=1

αiϕ(xi) for any m ≥ 0, x1, . . . , xm ∈ X ,

α1, . . . , αm ∈ R. Define an inner product by〈 m∑
i=1

αiϕ(xi),
n∑

j=1

βjϕ(x′j)
〉
F0

=
m∑
i=1

n∑
j=1

k(xi , x
′
j).

This satisfies the required linearity and nonnegativity properties to be an inner
product. It also has the reproducing properties that we expect:

⟨ϕ(x),ϕ(x′)⟩F0
= k(x, x′) ⟨f ,ϕ(x)⟩F0

= f (x).

Notice also that this is well-defined in the sense that it’s representation-independent:〈 m∑
i=1

αiϕ(xi), f
′
〉
F0

=
m∑
i=1

αi⟨ϕ(xi), f
′⟩F0

=
m∑
i=1

αif
′(xi),

which doesn’t depend on how we wrote f ′ as a linear combination, just on its values.

3

10. Kernels CPSC 532D

The only thing left is that we need F0 to be complete: it’s conceivable that not
all Cauchy sequences have limits in this space. So, we construct the RKHS as the
completion of F0: just add the limits in, defining their inner products as limits of
the inner products of the sequence (which is guaranteed to exist since the sequence

is Cauchy). So, not all f ∈ F can be written as
n∑
i=1

αiϕ(xi), but you can always get

arbitrarily close (in the distance defined by ∥·∥F) to f with things of that form.

After checking all the details work out, we’ve constructed a Hilbert space and a
feature map for any k.

(There are also other ways to define an RKHS; it turns out each RKHS has a unique
kernel, and each kernel has a unique RKHS, though there could be more than Hilbert
space aligning with the definition.)

2.1 Special case: linear kernel

If we use k(x, x′) = x · x′ for x ∈ Rd , then ϕ(x) = [x′ 7→ x′ · x] is just a linear function
with weight x. Also,∥∥∥ϕ(x)

∥∥∥F =
√
⟨ϕ(x),ϕ(x)⟩F =

√
k(x, x) = ∥x∥ .

So everything we’ve done with linear predictors can be thought of as operating in
the RKHS corresponding to a linear kernel. This is often a useful thing to think
about if you’re looking at some complicated kernel expression: see what it’d be with
a linear kernel.

3 optimizing in the rkhs

theorem 3 (Representer theorem). If F is an RKHS with feature map ϕ, then for any
function L : Rm → R and any nondecreasing function R : R→ R ∪ {∞},

arg min
f ∈F

L(f (x1), . . . , f (xm)) + R(∥f ∥)

contains a solution of the form f =
m∑
i=1

αiϕ(xi), where S = (x1, . . . , xm). If R is strictly

increasing, all solutions are of this form.

Notice that arg minf :∥f ∥F ≤B LS(f) fits this form: use R(t) =

0 t ≤ B

∞ t > B
.

Proof. Let F∥ be the subspace of F spanned by {ϕ(xi)}mi=1, and F⊥ its orthogonal
complement. Then any element of F can be uniquely decomposed into f∥ + f⊥,
where f∥ ∈ F∥, f⊥ ∈ F⊥, and ⟨f∥, f⊥⟩F = 0. Now, since

f (xi) = ⟨f ,ϕ(xi)⟩F = ⟨f∥ + f⊥,ϕ(xi)⟩F = ⟨f∥,ϕ(xi)⟩F + ⟨f⊥,ϕ(xi)⟩F︸ ︷︷ ︸
0

,

the L component only depends on f∥. Also,

∥f ∥2F =
∥∥∥f∥∥∥∥2

F + ∥f⊥∥2F + 2 ⟨f∥, f⊥⟩F︸ ︷︷ ︸
0

=
∥∥∥f∥∥∥∥2

F + ∥f⊥∥2F .

4

Thus, having a nonzero value of f⊥ does not change L, and cannot help R. If R is
strictly increasing, it can only hurt the overall objective.

This means that the form w =
∑
i
αiϕ(xi) This αi is slightly different

than we used in the SVM;
there we had αiyi with
αi ≥ 0, whereas here we
just have a generic αi ∈ R.

that we got from SVM duality wasn’t just a

coincidence: any problem will have a solution of that form. But this allows us to
reduce optimization in F – potentially infinite-dimensional – to optimization over
α ∈ Rm.

3.1 Example: kernel ridge regression

Consider the problem
min
h∈F

Lsq
S (h) + λ ∥h∥2F (1)

for λ > 0. First off, with a linear kernel, this becomes just plain ridge regression
minw Lsq

S (x 7→ w · x) + λ ∥w∥2.

We know that all solutions will be of the form
m∑
i=1

αiϕ(xi), so (1) is equivalent to

min
α∈Rm

Lsq
S

∑
i

αiϕ(xi)

 + λ

∥∥∥∥∥∥∥∑i αiϕ(xi)

∥∥∥∥∥∥∥
2

F

. (2)

The second term here is just∥∥∥∥∥∥∥∑i αiϕ(xi)

∥∥∥∥∥∥∥
2

F

=
∑
i,j

αik(xi , xj)αj = αTK|Sx
α,

where K|Sx
∈ Rm×m is the kernel matrix on Sx, as in Theorem 2. For the first term,

notice that ∑
i

αik(xi , xj) = αTK|Sx
ej

where ej ∈ Rm is the jth standard basis vector. Then

Lsq
S

∑
i

αiϕ(xi)

 =
1
m

∑
i

(
αTK|Sx

ei − yi
)2

=
1
m

∥∥∥Kα − y
∥∥∥2
Rm .

Thus the overall problem is

α̂ ∈ arg min
α

1
m
αTK|Sx

K|Sx
α − 2

m
yTK|Sx

α +
1
m
yTy + λαTK|Sx

α

= arg min
α

αTK|Sx
(K|Sx

+ mλI)α − 2yTK|Sx
α.

Setting the gradient to zero gives that we want

K|Sx
(K|Sx

+ mλI)α = K|Sx
y,

which is achieved by
α̂ = (K|Sx

+ mλI)−1y.

When λ > 0 this inverse is guaranteed to exist, since K|Sx
is positive semidefinite, so

K|Sx
+ mλ has all eigenvalues at least mλ.

5

10. Kernels CPSC 532D

We can also make predictions on an arbitrary test point with

⟨
∑
i

α̂iϕ(xi),ϕ(x)⟩F =
∑
i

α̂ik(xi , x) = α̂ ·

k(x1, x)

...
k(xm, x)

 .
Unlike SVMs, we don’t in general expect α̂ to be sparse.

It’s worth checking for yourself that this agrees with standard ridge regression.
People sometimes call this

transformed version a dual
form, especially e.g. for
kernel ridge regression.

While “dual” isn’t
necessarily a strictly

defined term, note that it’s
not a Lagrange dual.

(You might have to use the Woodbury matrix identity to line them up, since usual
expressions for ridge regression invert a d × d matrix instead of an m × m one. In
340, we called this version the “other normal equations.”)

3.2 Other problems

We often won’t be able to solve things in closed form like we can for kernel ridge
regression. But the representer theorem will still be helpful for any problem of the
right form; we just still might have to run an optimization algorithm like gradient
descent on the α variables. This allows you to, for example, run kernel SVMs in the
“primal”; you’ll still have m variables, but it’ll be a minimization of the hinge loss
objective instead of a maximization of the Lagrange dual.

4 other kernels

The most common kernel people use is the Gaussian kernel, also called the “square
exponential” or “exponentiated quadratic” by some communities:

k(x, x′) = exp
(
− 1

2σ2

∥∥∥x − x′∥∥∥2
)
.

My preferred way to prove this is a kernel goes through the following construction:

proposition 4. Let k, k1, k2, . . . be positive definite kernels on X . Then the following are
all also positive definite kernels:

1. γk = (x, x′) 7→ γk(x, x′) for any γ > 0.

2. k1 + k2 = (x, x′) 7→ k1(x, x′) + k2(x, x′).

3. k1k2 = (x, x′) 7→ k1(x, x′)k2(x, x′).

4. kn = (x, x′) 7→ k(x, x′)n for any nonnegative integer n.

5. k∞ = (x, x′) 7→ limn→∞ kn(x, x′), when the limit always exists.

6. ek = (x, x′) 7→ exp(k(x, x′)).

7. (x, x′) 7→ f (x)k(x, x′)f (x′) for any function f : X → R.

8. (x, x′) 7→ k′(f (x), f (x′)) for any function f : X → X ′ and k′ a kernel on X ′.

Proof. Let ϕ,ϕ1,ϕ2, . . . be the feature maps for these kernels, and K, K1, K2, . . . the
kernel matrices for arbitrary (x1, . . . , xm) ∈ Xm.

1. Use the feature map x 7→ √γφ.

2. αT(K1 + K2)α = αTK1α + αTK2α ≥ 0.

6

https://en.wikipedia.org/wiki/Woodbury_matrix_identity

3. This is called the Schur product theorem. Define independent multivariate
normal random vectors V ∼ N (0, K1) and W ∼ N (0, K2). Let V ⊙W be the
elementwise product of V and W; this has covariance matrix K1 ⊙ K2, and
covariances must be psd.

4. Iteratively apply the previous property; also, k0 has feature map x 7→ 1.

5. αTK∞α = αT[limn→∞ Kn]α = limn→∞ α
TKnα ≥ 0.

6. Use exp(k(x, x′)) = limN→∞
N∑
n=0

1
n!k(x, x′)n and the previous properties.

7. Use the feature map x 7→ f (x)ϕ(x).

8. Use the feature map x 7→ ϕ′(f (x)).

To get the Gaussian kernel, notice that

exp
(
− 1

2σ2

∥∥∥x − x′∥∥∥2
)

= exp
(
− 1

2σ2 ∥x∥
2
)

exp
(1
σ2 x · x

′
)

exp
(
− 1

2σ2

∥∥∥x′∥∥∥2
)

and apply the properties above.

The Gaussian is not always the best kernel, particularly in high dimensions. Func-
tions in F for a Gaussian kernel are very smooth; the Matérn kernel is preferred in
some settings where rougher functions are expected. Another good general-purpose
kernel is the distance kernel [SSGF13]

k(x, x′) = ρ(x, O) + ρ(x′ , O) − ρ(x, x′)

where ρ is a (semi)metric, and O ∈ X is some arbitrary center point.

If you have a good (e.g. deep) feature extractor ψ, using a kernel of the form
k(ψ(x),ψ(x′)) can often be a good idea.

4.1 Some properties

proposition 5. Let f ∈ F , the RKHS with kernel k. Then

|f (x)| ≤ ∥f ∥F
√
k(x, x)

∣∣∣f (x) − f (x′)
∣∣∣ ≤ ∥f ∥F √

k(x, x) + k(x′ , x′) − 2k(x, x′).

Proof. We have by the representer property and Cauchy-Schwartz that

|f (x)| =
∣∣∣⟨f ,ϕ(x)⟩F

∣∣∣ ≤ ∥f ∥F ∥∥∥ϕ(x)
∥∥∥F .

Similarly,∣∣∣f (x) − f (x′)
∣∣∣ =

∣∣∣⟨f ,ϕ(x) − ϕ(x′)⟩F
∣∣∣ ≤ ∥f ∥F √

k(x, x) + k(x′ , x′) − 2k(x, x′).

Many more properties of this kind are available. For shift-invariant kernels, k(x, x′) =
κ(x − x′), a lot is available via Fourier properties of κ.

We’ve only scratched the surface here. We’ll touch on kernels again through the rest
of the course, but if you want more, Chapter 7 of [Bach23] goes in some more depth,
and [SC08] is a classic very deep/mathematically thorough reference. Bayesian-
oriented people might also want to see connections to Gaussian Processes [RW06;
KHSS18], which are very much “almost the same thing” from a slightly different
point of view. There’s also the kernels reading group we’re starting! :)

7

https://en.wikipedia.org/wiki/Schur_product_theorem

10. Kernels CPSC 532D

references

[Aro50] Nachman Aronszajn. “Theory of Reproducing Kernels.” Transactions of
the American Mathematical Society 68.3 (May 1950), pages 337–404.

[Bach23] Francis Bach. Learning Theory from First Principles. April 2023 draft.
[KHSS18] Motonobu Kanagawa, Philipp Hennig, Dino Sejdinovic, and Bharath K

Sriperumbudur. Gaussian Processes and Kernel Methods: A Review on
Connections and Equivalences. 2018. arXiv: 1807.02582.

[RW06] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Pro-
cesses for Machine Learning. MIT Press, 2006.

[SC08] Ingo Steinwart and Andreas Christmann. Support Vector Machines. Springer,
2008.

[SSGF13] Dino Sejdinovic, Bharath K. Sriperumbudur, Arthur Gretton, and Kenji
Fukumizu. “Equivalence of distance-based and RKHS-based statistics
in hypothesis testing.” Annals of Statistics 41.5 (Oct. 2013), pages 2263–
2291.

8

http://dx.doi.org/10.2307/1990404
https://www.di.ens.fr/~fbach/ltfp_book.pdf
https://arxiv.org/abs/1807.02582
https://arxiv.org/abs/1807.02582
https://arxiv.org/abs/1807.02582
https://gaussianprocess.org/gpml/chapters/
https://gaussianprocess.org/gpml/chapters/
http://dx.doi.org/10.1007/978-0-387-77242-4
http://dx.doi.org/10.1214/13-AOS1140
http://dx.doi.org/10.1214/13-AOS1140

	Defining a function space
	Reproducing kernels
	Special case: linear kernel

	Optimizing in the RKHS
	Example: kernel ridge regression
	Other problems

	Other kernels
	Some properties

