
CPSC 532D — 1. SETUP; ERM

Danica J. Sutherland

University of British Columbia, Vancouver

Fall 2023

For syllabus-type material, see the course website.

This course is about: When should we expect machine learning algorithms to work?
What kind of problems are possible for machine learning models to represent? What
is possible to learn from data?

To phrase these questions more precisely, we’ll start by formalizing a bit a default
problem setup for the course.

1 problem setup

Our default learning problem is as follows:

• We have a data distribution D over some domain Z. For supervised learning,
this is often (but not always) actually a product space Z = X × Y of (x, y) pairs,
where x is an input object (e.g. an image) and y is a label (e.g. whether the
image contains a dog).

• We have m independent, identically distributed samples z1, . . . , zm ∼ D.

• The sequence S = (z1, . . . , zm) ∼ Dm is our training “set.”

– The “set” terminology is extremely well-established, so we’ll use it. But
we want to allow repeats, and occasionally (e.g. in online learning) we
might want to care about the order, so we’ll mathematically treat it as an
m-tuple and not actually a set.

• We have a hypothesis class H. In supervised learning, this is usually a set of
predictors h : X → Ŷ , a space of prediction functions.

– Often, we might have Ŷ = Y , but we also might not; for example, it’s
common to have a problem with binary labels so Y = {0,1}, but make
probabilistic predictions in Ŷ = [0, 1], or general confidence predictions
in R.

– An exampleHmight be a set of linear predictors, x 7→ 2x + 3 means “the
function which, given the
argument x, returns
2x + 3”; H is a set of
functions. This is like
lambda x: 2*x+3 in
Python.

e.g. {x 7→ w ·x : w ∈ Rd},
or {x 7→ w · x : ∥w∥ ≤ B}.

• We have a loss function ℓ : H × Z → R. In supervised learning, this often
takes the form ℓ(h, (x, y)) = l(h(x), y) for some l : Ŷ × Y → R. Some common
examples:

– Zero-one loss: l(ŷ, y) = 1(ŷ , y), The function 1 returns one
if its boolean argument is
true, and zero if not.

usually used for Y = Ŷ a discrete set of
labels. This corresponds to one minus the accuracy of a predictor.

– Logistic loss: l(ŷ, y) = log(1 + exp(−ŷy)) for Ŷ = R, Y = {−1,1}. This
loss → 0 if ŷ → ∞y (very confidently right), is log 2 if ŷ = 0 (a totally
ambiguous prediction), and→∞ if ŷ → −∞y (very confidently wrong).

For more, visit https://cs.ubc.ca/˜dsuth/532D/23w1/.

1

https://cs.ubc.ca/~dsuth/532D/23w1/

1. Setup; ERM CPSC 532D

– Square loss: l(ŷ, y) = 1
2 (ŷ − y)2. (Sometimes the 1

2 isn’t included.)

• LD(h) = Ez∼D ℓ(h, z) = E(x,y)∼D l(h(x), y) is called the risk, the population loss,
the true loss, etc.

• LS(h) = 1
m

m∑
i=1

ℓ(h, zi) = 1
m

m∑
i=1

l(h(xi), yi) is the empirical risk, the sample loss, the

training loss (if S is the training set), etc.

• A learning algorithm A is a function that takes in a sample S and returns a
hypothesis in H. Ideally, one with low risk.

Translating notation across relevant sources, for reference:

These notes [SSBD] [MRT] [Bach23] [Zhang23]
Number of samples m m m n n

Sample set S S S Dn Sn

Distribution over X × Y D D D D D
Hypothesis class H H H – –
Parameter set1 – – – Θ Ω

Loss H × Z → R ℓ ℓ – – φ(w, z)
Loss Ŷ × Y → R l – L ℓ2 L
Empirical risk LS(h) LS(h) R̂S(h) R̂(θ) φ(w,D)
Population risk LD(h) LD(h) R(h) R(θ) φ(w, Sn)

2 emprical risk minimization

The most common learning algorithm we’ll think about is empirical risk minimization:
ERM(S) ∈ arg minh∈H LS(h).If H is infinite, there might

be not be a minimizer; we
usually won’t worry about

this explicitly, but basically
everything we talk about

could be generalized to
approximate minimizers.

(If there are ties, by default we think of the algorithm
returning an arbitrary choice.)

The returned hypothesis, ERM(S), which we will also often denote ĥS, is called an
empirical risk minimizer (“an ERM”).

For example, ordinary least squares is ERM with the squared loss and H = {x 7→
w · x}:

ERM(S) ∈ arg min
h∈{x 7→w·x :w∈Rd }

LS(h)

= arg min
h∈{x 7→w·x :w∈Rd }

1
m

m∑
i=1

ℓ(h, zi)

= arg min
h∈{x 7→w·x :w∈Rd }

1
m

m∑
i=1

l(h(xi), yi)In our notation here,
ERM(S) is returning a
function (which makes

these last couple of lines
slightly tedious); we could

equally well have let H be a
set of parameter vectors and
define a loss on parameters,
ℓ(w, (x, y)) = 1

2 (x · w − y)2.

=

x 7→ x · ŵ : ŵ ∈ arg min
w∈Rd

1
m

m∑
i=1

l(w · xi , yi)

=

x 7→ x · ŵ : ŵ ∈ arg min
w∈Rd

1
m

m∑
i=1

1
2

(w · xi − yi)2

 ,

and now ŵ in the last line is probably what your intro stats class wrote down in the
first place as the definition of linear regression.

1For these sources, the prediction function X → Ŷ is obtained by fθ(x) or f (w, x).
2Arguments are in the other order: ℓ(y, ŷ).

2

We know that LS(ERM(S)) is small by definition, but when can we expect LD(ERM(S))
to be small? The first big chunk of this course is about this question in particular.
The vital question is about choosing an appropriate hypothesis class H: if it’s too
simple, you’ll never be able to learn the pattern you’re looking for, but if it’s too
complicated, you’ll overfit and pick one that seems good by chance, i.e. has good
LS(ERM(S)) but bad LD(ERM(S)).

Figure 1 illustrates this trade-off for polynomial regression. This is similar to what
you saw in your intro machine learning class, but one of the things we’ll do in this
course is formalize this general intuition and prove theorems about it.

(a) Polynomial regression, h(x) = w0 + w1x + w2x
2 + · · · + wkx

k , for increasing k. Blue is
E[y | x] (a quadratic function); red is estimates. [Bach23, Figure 2.1]

(b) Training and test errors from Fig-
ure 1a. [Bach23, Figure 2.2]

(c) Cartoon version of Figure 1b for general H (he
writes Θ). [Bach23, Chapter 2]

Figure 1: Underfitting to overfitting as H gets bigger.

3

1. Setup; ERM CPSC 532D

2.1 ERM bounds

The basic way to prove when ERM generalizes well is based on this decomposition:

LD(ĥS) = LD(ĥS) − LS(ĥS) + LS(ĥS)︸ ︷︷ ︸
0

− LS(h∗) + LS(h∗)︸ ︷︷ ︸
0

− LD(h∗) + LD(h∗)︸ ︷︷ ︸
0

h∗ can be anything in H
that we want to compare to

= LD(ĥS) − LS(ĥS)︸ ︷︷ ︸
A: ĥS’s overfitting

+ LS(ĥS) − LS(h∗)︸ ︷︷ ︸
≤ 0: ĥS minimizes LS

+ LS(h∗) − LD(h∗)︸ ︷︷ ︸
B: h∗’s “underfitting”

+LD(h∗)

≤ LD(h∗) + A + B.

So, if we can bound A and B, then we can say that ĥS isn’t too much worse than h∗.
But since h∗ was arbitrary (as long as our bound of B didn’t depend on it), then this
means that

LD(ĥS) − inf
h∈H

LD(h) ≤ A + BIf you aren’t familiar with
inf, it’s like min but makes

sense even if there isn’t a
minimizer. For example,

infx∈R:x>0 x = 0 even
though 0 isn’t in that set.

.

This term on the left is called the excess error: it’s how much worse ĥS is than the best
thing in H. The next few weeks will be denoted to different ways to bound A + B.

references

[Bach23] Francis Bach. Learning Theory from First Principles. April 2023 draft.
[MRT] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talkwalkar. Founda-

tions of Machine Learning. 2nd edition. MIT Press, 2018.
[SSBD] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learn-

ing: From Theory to Algorithms. Cambridge University Press, 2014.
[Zhang23] Tong Zhang. Mathematical Analysis of Machine Learning Algorithms.

2023 pre-publication version.

4

https://www.di.ens.fr/~fbach/ltfp_book.pdf
https://cs.nyu.edu/~mohri/mlbook/
https://cs.nyu.edu/~mohri/mlbook/
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/copy.html
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/copy.html
https://tongzhang-ml.org/lt-book/lt-book.pdf

	Problem Setup
	Emprical Risk Minimization
	ERM bounds

