
CPSC 532D, Fall 2023: Assignment 4
due Wednesday December 20th, 11:59 pm

Use LATEX, like usual.

You can do this with a partner if you’d like (there’s a “find a group” post on Piazza). If so, do not just
split the questions up; if you hand in an assignment with your name on it, you’re pledging that you
participated in and understand all of the solutions. (If you work with a partner on some problems and then
end up doing some of them separately, hand in separate answers and put a note in each question saying
whether you did it with a partner or not.)

If you look stuff up anywhere other than in SSBD or MRT, cite your sources: just say in the answer to
that question where you looked. If you ask anyone else for help, cite that too. Please do not look at solution
manuals / search for people proving the things we’re trying to prove / etc. Also, please do not ask ChatGPT
or similar models. It’s okay to talk to others outside your group about general strategies – if so, just say who
and for which questions – but not to sit down and do the assignment together.

Submit your answers as a single PDF on Gradescope: here’s the link. Make sure to use the Gradescope
group feature if you’re working in a group. You’ll be prompted to mark where each question is in your PDF;
make sure you mark all relevant pages for each part (which saves a surprising amount of grading time).

Please put your name(s) on the first page as a backup, just in case. If something goes wrong, you can
also email your assignment to me directly (dsuth@cs.ubc.ca).
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https://canvas.ubc.ca/courses/123461/external_tools/46711?display=borderless


1 Expectation bounds imply PAC-learning [10 points]

Our SGD bound, as well as the stability bound that we actually proved (not the one relying on appealing to
a complicated proof we didn’t cover), only showed learning in expectation. This problem establishes that this
is equivalent to PAC learning, albeit maybe with a bad rate.

Let A be a learning algorithm, D a probability distribution, and ℓ a loss function bounded in [0, 1]. For
brevity’s sake, let L be the random variable LD(A(S)).

Prove that the following two statements are equivalent:

1. There is some m(ε, δ) such that for every ε, δ ∈ (0, 1), for all m ≥ m(ε, δ), PrS∼Dm(L > ε) < δ.

2. A’s expected loss is asymptotically zero: limm→∞ ES∼Dm L = 0.

Answer: TODO
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2 A really hard convex-Lipschitz-bounded problem [15 points]

Recall that we showed in class that regularized loss minimization can learn any convex-Lipschitz-bounded
problem: if h 7→ ℓ(h, z) is convex and ρ-Lipschitz for each z ∈ Z, H is convex, and there is some strongly
convex function R(h) – e.g. R(h) = 1

2∥h∥
2 – such that R(h∗) ≤ 1

2B
2, then regularized loss minimization with

the right choice of regularization weight can find ĥ such that LD(ĥ) ≤ LD(h
∗) +O(1/

√
m), either appealing

to the complicated paper or by our expectation bound plus Question 1. We also showed that in this setting,
gradient descent can implement regularized loss minimization up to ε accuracy using O(1/ε2) gradient steps.1

Thus, any convex-Lipschitz-bounded problem can be PAC-learned in polynomially many gradient steps.

This doesn’t guarantee that convex-Lipschitz-bounded problems can be efficiently learned.

Let H = [0, 1] – nice and simple – but let the example domain Z be the class of all pairs of Turing machines
T and input strings s. Define

ℓ(h, (T, s)) =


1(T halts on the input s) if h = 0

1(T does not halt on the input s) if h = 1

(1− h)ℓ(0, (T, s)) + hℓ(1, (T, s)) if 0 < h < 1.

Prove that this problem is convex-Lipschitz-bounded, but no computable algorithm can PAC-learn it.

Hint: Think about what the loss minimizer h∗, or the ERM, represents with this loss.

Hint: If you have no idea what I’m talking about: look up the “halting problem.”

Answer: TODO

1You can actually show O(1/ε); we didn’t assume strong convexity in our bound.
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3 Learning without concentration [25 points]

We’re going to do an unsupervised learning task, where we try to estimate the mean of a distribution, but
we do it with some missing observations. Specifically, let B be the closed unit ball B = {w ∈ Rd : ∥w∥ ≤ 1},
and let the samples be in Z = B × {0, 1}d, where an entry z = (x, α) with α is a binary “mask” vector
indicating whether the given entry is missing. We want to estimate the mean ignoring the missing entries,
i.e. H = B and

ℓ(w, (x, α)) =

d∑
i=1

{
0 if αi = 1

(xi − wi)
2 if αi = 0.

[3.1] [10 points] Show that regularized loss minimization can PAC-learn this problem with a sample com-
plexity independent of d.

Hint: Feel free to use the result of Question 1 and results from class.

Answer: TODO

[3.2] [10 points] Let D be a distribution where x is always the fixed vector 0, and α has its entries i.i.d.
Unif({0, 1}) = Bernoulli(1/2). Let mD(ε, δ) denote the sample complexity of uniform convergence for
this D, so that if m ≥ mD(ε, δ), then

Pr
S∼Dm

(
sup
w∈H

LD(w)− LS(w) ≤ ε

)
≥ 1− δ.

Show that for some particular value of ε > 0 and δ > 0, mD(ε, δ) increases with d.

Hint: Show that if d is large enough relative to m, you’re likely to get at least one dimension j where
(αi)j = 1 for all your m samples xi ∈ Sx.

Answer: TODO

[3.3] [5 points] Describe a problem where RLM is a PAC learner, but uniform convergence doesn’t hold.
Why doesn’t this contradict the fundamental theorem of statistical learning?

Answer: TODO
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4 Maximizing differences [40 + 5 challenge points]

Let’s consider learning a kernel classifier with the somewhat unusual linear loss, ℓ(h, (x, y)) = −yh(x), where
y ∈ {−1, 1}. Assume a continuous kernel k : X × X → R with associated RKHS F and canonical feature
map φ : X → F with k(x, x′) = ⟨φ(x), φ(x′)⟩F .

[4.1] [10 points] Find the regularized loss minimizer

ĥλ = argmin
h∈F

LS(h) +
1
2λ∥h∥

2
F , (RLM)

for a training sample S = ((x1, y1), . . . , (xn, yn)) and λ > 0.

Answer: TODO

[4.2] [5 points] Show that LS(ĥλ) = − 1
λ

∥∥∥ 1
n

∑
i:yi=1 φ(xi)− 1

n

∑
i:yi=−1 φ(xi)

∥∥∥2
F
.

Answer: TODO

[4.3] [10 points] Find a (data-dependent) value of λ, call it λ̂, such that ∥ĥλ̂∥F = 1, and simplify the

expression for LS(ĥλ̂).

Answer: TODO

[4.4] [5 points] Argue that ĥλ̂ is a solution to

min
h∈F :∥h∥F≤1

LS(h). (ERM)

Further argue that solving (ERM) is equivalent to solving

max
h∈F :∥h∥F≤1

∑
i:yi=1

h(xi)−
∑

i:yi=−1

h(xi), (MAX)

i.e. finding a function high on the positively-labeled points and low on the negatively-labeled ones.

Answer: TODO

Let P and Q be probability distributions. A distribution-level version of (MAX) is known as the maximum
mean discrepancy,

MMD(P,Q) = sup
f∈F :∥f∥F≤1

E
X∼P

f(X)− E
Y∼Q

f(Y ).

Let φ : X → F be the canonical feature map k(x, x′) = ⟨φ(x), φ(x′)⟩F , and assume for simplicity that
supx∈X ∥φ(x)∥ ≤ κ < ∞. Define the kernel mean embedding of a distribution P as µP = EX∼P φ(X); for
bounded kernels, this is guaranteed to exist.2 Moreover, you can move the expectation inside or outside of
inner products: for any f ∈ F ,

⟨µP , f⟩F =
〈

E
X∼P

φ(X), f
〉
F
= E

X∼P
⟨φ(X), f⟩F = E

X∼P
f(X).

[4.5] [10 points] Prove that
MMD(P,Q) = ∥µP − µQ∥F

and
MMD2(P,Q) = E

X,X′∼P
Y,Y ′∼Q

[
k(X,X ′)− 2k(X,Y ) + k(Y, Y ′)

]
.

Answer: TODO
2As long as P is a Borel measure, which is the kind of very mild assumption we don’t worry about in this class.
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[4.6] [2 challenge points] Let X be a compact metric space. Prove that if k is universal, then MMD(P,Q) = 0
implies P = Q.

Hint: You can use the following helpful result, where C(X ) is as usual the space of all bounded contin-
uous functions X → R.

Lemma 4.1. Two Borel probability measures P and Q on a metric space X are equal if and only if
for all f ∈ C(X ), EX∼P f(X) = EY∼Q f(Y ).

Answer: TODO

[4.7] [3 challenge points] Prove that k(x, y) = ∥x∥ + ∥y∥ − ∥x − y∥, where ∥·∥ is the norm of any Hilbert
space, is a valid kernel. Further show that the MMD with this kernel is exactly the energy distance,
whose square is

ρ(P,Q)2 = 2 E
X∼P,Y∼Q

∥X − Y ∥ − E
X,X′∼P

∥X −X ′∥ − E
Y,Y ′∼Q

∥Y − Y ′∥.

Hint: You can use without proof that for all n ≥ 1, for all x1, . . . , xn and c1, . . . , cn such that
∑n

i=1 ci =
0, it holds that

n∑
i=1

n∑
j=1

ci∥xi − xj∥cj ≤ 0.

You’ll need to fiddle a bit from this inequality to get the desired result: how to get the ∥x∥ in k?

Answer: TODO

We won’t prove this, but it turns out that the energy distance is positive for any P ̸= Q, but this k actually
isn’t universal.
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5 Lasso and stability [5 challenge points]

The Lasso algorithm uses linear predictors hw(x) = w · x, the square loss ℓ(h, (x, y)) = (h(x) − y)2, and a

∥w∥1 =
∑d

j=1|wj | regularizer:
Aλ(S) ∈ argmin

w∈Rd

LS(hw) + λ∥w∥1.

(If there are multiple minimizers, let’s have Aλ return one uniformly at random from the set of possible
minimizers.) The Lasso algorithm is nice because it often returns sparse solutions, i.e. w with many wj = 0.

Let’s use Z = X × Y = {x ∈ Rd : ∥x∥ ≤ C} × [−M,M ] for simplicity.

[5.1] [5 points] Show that the Lasso algorithm is not uniformly stable. That is, there is no β(m) satisfying
Definition 3 of the stability notes such that β(m) → 0 as m → ∞.

Hint: There’s a reason I mentioned multiple minimizers above.

Answer: TODO

I think the Lasso algorithm for any λ > 0 is actually on-average-replace-one stable under these assumptions
on Z, because any algorithm that on-average learns D is on-average-replace-one-stable. We can show this
under these assumptions for the Lagrange dual problem to the Lasso, ERM with H = {hw : ∥w∥1 ≤ B}, with
Rademacher bounds (depending on B, C, and M). But the relationship of B to λ is complicated, and I don’t
even know how to get a worst-case upper bound on it, though something might be possible.3

3In fact, I’m not 100% sure that Lasso even does learn without any distributional assumptions. For typical analyses with
some distributional assumptions, see Chapter 8 of the Bach book; e.g. Exercise 8.5 is pretty close.

7

https://cs.ubc.ca/~dsuth/532D/23w1/notes/13-stability.pdf

	Expectation bounds imply PAC-learning [10 points]
	A really hard convex-Lipschitz-bounded problem [15 points]
	Learning without concentration [25 points]
	Maximizing differences [40 + 5 challenge points]
	Lasso and stability [5 challenge points]

