CPSC 532D, Fall 2023: Assignment 4 due Wednesday December 20th, 11:59 pm

Use $L^{A} T_{E} X$, like usual.
You can do this with a partner if you'd like (there's a "find a group" post on Piazza). If so, do not just split the questions up; if you hand in an assignment with your name on it, you're pledging that you participated in and understand all of the solutions. (If you work with a partner on some problems and then end up doing some of them separately, hand in separate answers and put a note in each question saying whether you did it with a partner or not.)

If you look stuff up anywhere other than in SSBD or MRT, cite your sources: just say in the answer to that question where you looked. If you ask anyone else for help, cite that too. Please do not look at solution manuals / search for people proving the things we're trying to prove / etc. Also, please do not ask ChatGPT or similar models. It's okay to talk to others outside your group about general strategies - if so, just say who and for which questions - but not to sit down and do the assignment together.

Submit your answers as a single PDF on Gradescope: here's the link. Make sure to use the Gradescope group feature if you're working in a group. You'll be prompted to mark where each question is in your PDF; make sure you mark all relevant pages for each part (which saves a surprising amount of grading time).

Please put your name(s) on the first page as a backup, just in case. If something goes wrong, you can also email your assignment to me directly (dsuth@cs.ubc.ca).

1 Expectation bounds imply PAC-learning [10 points]

Our SGD bound, as well as the stability bound that we actually proved (not the one relying on appealing to a complicated proof we didn't cover), only showed learning in expectation. This problem establishes that this
is equivalent to PAC learning, albeit maybe with a bad rate.
Let \mathcal{A} be a learning algorithm, \mathcal{D} a probability distribution, and ℓ a loss function bounded in $[0,1]$. For brevity's sake, let L be the random variable $L_{\mathcal{D}}(\mathcal{A}(S))$.

Prove that the following two statements are equivalent:

1. There is some $m(\varepsilon, \delta)$ such that for every $\varepsilon, \delta \in(0,1)$, for all $m \geq m(\varepsilon, \delta), \operatorname{Pr}_{S \sim \mathcal{D}^{m}}(L>\varepsilon)<\delta$.
2. \mathcal{A} 's expected loss is asymptotically zero: $\lim _{m \rightarrow \infty} \mathbb{E}_{S \sim \mathcal{D}^{m}} L=0$.

Answer: TODO

2 A really hard convex-Lipschitz-bounded problem [15 points]

Recall that we showed in class that regularized loss minimization can learn any convex-Lipschitz-bounded problem: if $h \mapsto \ell(h, z)$ is convex and ρ-Lipschitz for each $z \in \mathcal{Z}, \mathcal{H}$ is convex, and there is some strongly convex function $R(h)$ - e.g. $R(h)=\frac{1}{2}\|h\|^{2}$ - such that $R\left(h^{*}\right) \leq \frac{1}{2} B^{2}$, then regularized loss minimization with the right choice of regularization weight can find \hat{h} such that $L_{\mathcal{D}}(\hat{h}) \leq L_{\mathcal{D}}\left(h^{*}\right)+\mathcal{O}(1 / \sqrt{m})$, either appealing to the complicated paper or by our expectation bound plus Question 1. We also showed that in this setting, gradient descent can implement regularized loss minimization up to ε accuracy using $\mathcal{O}\left(1 / \varepsilon^{2}\right)$ gradient steps. ${ }^{1}$ Thus, any convex-Lipschitz-bounded problem can be PAC-learned in polynomially many gradient steps.

This doesn't guarantee that convex-Lipschitz-bounded problems can be efficiently learned.
Let $\mathcal{H}=[0,1]$ - nice and simple - but let the example domain \mathcal{Z} be the class of all pairs of Turing machines T and input strings s. Define

$$
\ell(h,(T, s))= \begin{cases}\mathbb{1}(T \text { halts on the input } s) & \text { if } h=0 \\ \mathbb{1}(T \text { does not halt on the input } s) & \text { if } h=1 \\ (1-h) \ell(0,(T, s))+h \ell(1,(T, s)) & \text { if } 0<h<1\end{cases}
$$

Prove that this problem is convex-Lipschitz-bounded, but no computable algorithm can PAC-learn it.
Hint: Think about what the loss minimizer h^{*}, or the ERM, represents with this loss.
Hint: If you have no idea what I'm talking about: look up the "halting problem."
Answer: TODO

[^0]
3 Learning without concentration [25 points]

We're going to do an unsupervised learning task, where we try to estimate the mean of a distribution, but we do it with some missing observations. Specifically, let \mathcal{B} be the closed unit ball $\mathcal{B}=\left\{w \in \mathbb{R}^{d}:\|w\| \leq 1\right\}$, and let the samples be in $\mathcal{Z}=\mathcal{B} \times\{0,1\}^{d}$, where an entry $z=(x, \alpha)$ with α is a binary "mask" vector indicating whether the given entry is missing. We want to estimate the mean ignoring the missing entries, i.e. $\mathcal{H}=\mathcal{B}$ and

$$
\ell(w,(x, \alpha))=\sum_{i=1}^{d} \begin{cases}0 & \text { if } \alpha_{i}=1 \\ \left(x_{i}-w_{i}\right)^{2} & \text { if } \alpha_{i}=0\end{cases}
$$

[3.1] [10 points] Show that regularized loss minimization can PAC-learn this problem with a sample complexity independent of d.

Hint: Feel free to use the result of Question 1 and results from class.
Answer: TODO
[3.2] [10 points] Let \mathcal{D} be a distribution where x is always the fixed vector 0 , and α has its entries i.i.d. $\operatorname{Unif}(\{0,1\})=\operatorname{Bernoulli}(1 / 2)$. Let $m_{\mathcal{D}}(\varepsilon, \delta)$ denote the sample complexity of uniform convergence for this \mathcal{D}, so that if $m \geq m_{\mathcal{D}}(\varepsilon, \delta)$, then

$$
\operatorname{Pr}_{S \sim \mathcal{D}^{m}}\left(\sup _{w \in \mathcal{H}} L_{\mathcal{D}}(w)-L_{S}(w) \leq \varepsilon\right) \geq 1-\delta
$$

Show that for some particular value of $\varepsilon>0$ and $\delta>0, m_{\mathcal{D}}(\varepsilon, \delta)$ increases with d.
Hint: Show that if d is large enough relative to m, you're likely to get at least one dimension j where $\left(\alpha_{i}\right)_{j}=1$ for all your m samples $x_{i} \in S_{x}$.
Answer: TODO
[3.3] [5 points] Describe a problem where RLM is a PAC learner, but uniform convergence doesn't hold. Why doesn't this contradict the fundamental theorem of statistical learning?

Answer: TODO

4 Maximizing differences [40 +5 challenge points]

Let's consider learning a kernel classifier with the somewhat unusual linear loss, $\ell(h,(x, y))=-y h(x)$, where $y \in\{-1,1\}$. Assume a continuous kernel $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ with associated RKHS \mathcal{F} and canonical feature $\operatorname{map} \varphi: \mathcal{X} \rightarrow \mathcal{F}$ with $k\left(x, x^{\prime}\right)=\left\langle\varphi(x), \varphi\left(x^{\prime}\right)\right\rangle_{\mathcal{F}}$.
[4.1] [10 points] Find the regularized loss minimizer

$$
\begin{equation*}
\hat{h}_{\lambda}=\underset{h \in \mathcal{F}}{\arg \min } L_{S}(h)+\frac{1}{2} \lambda\|h\|_{\mathcal{F}}^{2}, \tag{RLM}
\end{equation*}
$$

for a training sample $S=\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right)$ and $\lambda>0$.
Answer: TODO
[4.2] [5 points] Show that $L_{S}\left(\hat{h}_{\lambda}\right)=-\frac{1}{\lambda}\left\|\frac{1}{n} \sum_{i: y_{i}=1} \varphi\left(x_{i}\right)-\frac{1}{n} \sum_{i: y_{i}=-1} \varphi\left(x_{i}\right)\right\|_{\mathcal{F}}^{2}$.
Answer: TODO
[4.3] [10 points] Find a (data-dependent) value of λ, call it $\hat{\lambda}$, such that $\left\|\hat{h}_{\hat{\lambda}}\right\|_{\mathcal{F}}=1$, and simplify the expression for $L_{S}\left(\hat{h}_{\hat{\lambda}}\right)$.

Answer: TODO
[4.4] [5 points] Argue that $\hat{h}_{\hat{\lambda}}$ is a solution to

$$
\begin{equation*}
\min _{h \in \mathcal{F}:\|h\|_{\mathcal{F}} \leq 1} L_{S}(h) \tag{ERM}
\end{equation*}
$$

Further argue that solving (ERM) is equivalent to solving

$$
\begin{equation*}
\max _{h \in \mathcal{F}:\|h\|_{\mathcal{F}} \leq 1} \sum_{i: y_{i}=1} h\left(x_{i}\right)-\sum_{i: y_{i}=-1} h\left(x_{i}\right) \tag{MAX}
\end{equation*}
$$

i.e. finding a function high on the positively-labeled points and low on the negatively-labeled ones.

Answer: TODO
Let \mathcal{P} and \mathcal{Q} be probability distributions. A distribution-level version of (MAX) is known as the maximum mean discrepancy,

$$
\operatorname{MMD}(\mathcal{P}, \mathcal{Q})=\sup _{f \in \mathcal{F}:\|f\|_{\mathcal{F}} \leq 1} \underset{X \sim \mathcal{P}}{\mathbb{E}} f(X)-\underset{Y \sim \mathcal{Q}}{\mathbb{E}} f(Y)
$$

Let $\varphi: \mathcal{X} \rightarrow \mathcal{F}$ be the canonical feature map $k\left(x, x^{\prime}\right)=\left\langle\varphi(x), \varphi\left(x^{\prime}\right)\right\rangle_{\mathcal{F}}$, and assume for simplicity that $\sup _{x \in \mathcal{X}}\|\varphi(x)\| \leq \kappa<\infty$. Define the kernel mean embedding of a distribution \mathcal{P} as $\mu_{\mathcal{P}}=\mathbb{E}_{X \sim \mathcal{P}} \varphi(X)$; for bounded kernels, this is guaranteed to exist. ${ }^{2}$ Moreover, you can move the expectation inside or outside of inner products: for any $f \in \mathcal{F}$,

$$
\left\langle\mu_{\mathcal{P}}, f\right\rangle_{\mathcal{F}}=\langle\underset{X \sim \mathcal{P}}{\mathbb{E}} \varphi(X), f\rangle_{\mathcal{F}}=\underset{X \sim \mathcal{P}}{\mathbb{E}}\langle\varphi(X), f\rangle_{\mathcal{F}}=\underset{X \sim \mathcal{P}}{\mathbb{E}} f(X)
$$

[4.5] [10 points] Prove that

$$
\operatorname{MMD}(\mathcal{P}, \mathcal{Q})=\left\|\mu_{\mathcal{P}}-\mu_{\mathcal{Q}}\right\|_{\mathcal{F}}
$$

and

$$
\operatorname{MMD}^{2}(\mathcal{P}, \mathcal{Q})=\underset{\substack{X, X^{\prime} \sim \mathcal{P} \\ Y, Y^{\prime} \sim \mathcal{Q}}}{\mathbb{E}}\left[k\left(X, X^{\prime}\right)-2 k(X, Y)+k\left(Y, Y^{\prime}\right)\right]
$$

Answer: TODO

[^1][4.6] [2 challenge points] Let \mathcal{X} be a compact metric space. Prove that if k is universal, then $\operatorname{MMD}(\mathcal{P}, \mathcal{Q})=0$ implies $\mathcal{P}=\mathcal{Q}$.
Hint: You can use the following helpful result, where $C(\mathcal{X})$ is as usual the space of all bounded continuous functions $\mathcal{X} \rightarrow \mathbb{R}$.

Lemma 4.1. Two Borel probability measures \mathcal{P} and \mathcal{Q} on a metric space \mathcal{X} are equal if and only if for all $f \in C(\mathcal{X}), \mathbb{E}_{X \sim \mathcal{P}} f(X)=\mathbb{E}_{Y \sim \mathcal{Q}} f(Y)$.

Answer: TODO
[4.7] [3 challenge points] Prove that $k(x, y)=\|x\|+\|y\|-\|x-y\|$, where $\|\cdot\|$ is the norm of any Hilbert space, is a valid kernel. Further show that the MMD with this kernel is exactly the energy distance, whose square is

$$
\rho(\mathcal{P}, \mathcal{Q})^{2}=2 \underset{X \sim \mathcal{P}, Y \sim \mathcal{Q}}{\mathbb{E}}\|X-Y\|-\underset{X, X^{\prime} \sim \mathcal{P}}{\mathbb{E}}\left\|X-X^{\prime}\right\|-\underset{Y, Y^{\prime} \sim \mathcal{Q}}{\mathbb{E}}\left\|Y-Y^{\prime}\right\| .
$$

Hint: You can use without proof that for all $n \geq 1$, for all x_{1}, \ldots, x_{n} and c_{1}, \ldots, c_{n} such that $\sum_{i=1}^{n} c_{i}=$ 0 , it holds that

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i}\left\|x_{i}-x_{j}\right\| c_{j} \leq 0
$$

You'll need to fiddle a bit from this inequality to get the desired result: how to get the $\|x\|$ in k ?
Answer: TODO
We won't prove this, but it turns out that the energy distance is positive for any $\mathcal{P} \neq \mathcal{Q}$, but this k actually isn't universal.

5 Lasso and stability [5 challenge points]

The Lasso algorithm uses linear predictors $h_{w}(x)=w \cdot x$, the square loss $\ell(h,(x, y))=(h(x)-y)^{2}$, and a $\|w\|_{1}=\sum_{j=1}^{d}\left|w_{j}\right|$ regularizer:

$$
A_{\lambda}(S) \in \underset{w \in \mathbb{R}^{d}}{\arg \min } L_{S}\left(h_{w}\right)+\lambda\|w\|_{1}
$$

(If there are multiple minimizers, let's have A_{λ} return one uniformly at random from the set of possible minimizers.) The Lasso algorithm is nice because it often returns sparse solutions, i.e. w with many $w_{j}=0$.
Let's use $\mathcal{Z}=\mathcal{X} \times \mathcal{Y}=\left\{x \in \mathbb{R}^{d}:\|x\| \leq C\right\} \times[-M, M]$ for simplicity.
[5.1] [5 points] Show that the Lasso algorithm is not uniformly stable. That is, there is no $\beta(m)$ satisfying Definition 3 of the stability notes such that $\beta(m) \rightarrow 0$ as $m \rightarrow \infty$.

Hint: There's a reason I mentioned multiple minimizers above.
Answer: TODO
I think the Lasso algorithm for any $\lambda>0$ is actually on-average-replace-one stable under these assumptions on \mathcal{Z}, because any algorithm that on-average learns \mathcal{D} is on-average-replace-one-stable. We can show this under these assumptions for the Lagrange dual problem to the Lasso, ERM with $\mathcal{H}=\left\{h_{w}:\|w\|_{1} \leq B\right\}$, with Rademacher bounds (depending on B, C, and M). But the relationship of B to λ is complicated, and I don't even know how to get a worst-case upper bound on it, though something might be possible. ${ }^{3}$

[^2]
[^0]: ${ }^{1}$ You can actually show $\mathcal{O}(1 / \varepsilon)$; we didn't assume strong convexity in our bound.

[^1]: ${ }^{2}$ As long as \mathcal{P} is a Borel measure, which is the kind of very mild assumption we don't worry about in this class.

[^2]: ${ }^{3}$ In fact, I'm not 100% sure that Lasso even does learn without any distributional assumptions. For typical analyses with some distributional assumptions, see Chapter 8 of the Bach book; e.g. Exercise 8.5 is pretty close.

