CPSC 532D, Fall 2023: Assignment 4
due Wednesday December 20th, 11:59 pm
Use BTEX, like usual.

You can do this with a partner if you'd like (there’s a “find a group” post on Piazza). If so, do not just
split the questions up; if you hand in an assignment with your name on it, you're pledging that you
participated in and understand all of the solutions. (If you work with a partner on some problems and then
end up doing some of them separately, hand in separate answers and put a note in each question saying
whether you did it with a partner or not.)

If you look stuff up anywhere other than in SSBD or MRT, cite your sources: just say in the answer to
that question where you looked. If you ask anyone else for help, cite that too. Please do not look at solution
manuals / search for people proving the things we’re trying to prove / etc. Also, please do not ask ChatGPT
or similar models. It’s okay to talk to others outside your group about general strategies — if so, just say who
and for which questions — but not to sit down and do the assignment together.

Submit your answers as a single PDE on Gradescope: here’s the link. Make sure to use the Gradescope
group feature if you're working in a group. You’'ll be prompted to mark where each question is in your PDF};
make sure you mark all relevant pages for each part (which saves a surprising amount of grading time).

Please put your name(s) on the first page as a backup, just in case. If something goes wrong, you can
also email your assignment to me directly (dsuth@cs.ubc.ca).


https://canvas.ubc.ca/courses/123461/external_tools/46711?display=borderless

1 Expectation bounds imply PAC-learning [10 points]

Our SGD bound, as well as the stability bound that we actually proved (not the one relying on appealing to
a complicated proof we didn’t cover), only showed learning in expectation. This problem establishes that this
is equivalent to PAC learning, albeit maybe with a bad rate.

Let A be a learning algorithm, D a probability distribution, and ¢ a loss function bounded in [0,1]. For
brevity’s sake, let L be the random variable Lp(.A(S)).

Prove that the following two statements are equivalent:
1. There is some m(e, d) such that for every ¢,6 € (0, 1), for all m > m(e,d), Prgupm (L > ) < 6.
2. A’s expected loss is asymptotically zero: lim,, ., Eg.pm L = 0.

Answer: TODO



2 A really hard convex-Lipschitz-bounded problem [15 points|

Recall that we showed in class that regqularized loss minimization can learn any convex-Lipschitz-bounded
problem: if h — ((h,z) is convex and p-Lipschitz for each z € Z, H is convex, and there is some strongly
convez function R(h) — e.g. R(h) = &||h||? - such that R(h*) < $B?, then regularized loss minimization with
the right choice of reqularization weight can find h such that LD(E) < Lp(h*) + O(1/\/m), either appealing
to the complicated paper or by our expectation bound plus Question 1. We also showed that in this setting,
gradient descent can implement regularized loss minimization up to € accuracy using O(1/€2) gradient steps.*
Thus, any convex-Lipschitz-bounded problem can be PAC-learned in polynomially many gradient steps.

This doesn’t guarantee that convex-Lipschitz-bounded problems can be efficiently learned.

Let H = [0, 1] — nice and simple — but let the example domain Z be the class of all pairs of Turing machines
T and input strings s. Define

1(T halts on the input s) ith=20
U(h, (T, s)) = < 1(T does not halt on the input s) if h =1
(1 —=h)e(0,(T,s)) + he(1,(T,s)) f0O<h<l.
Prove that this problem is convex-Lipschitz-bounded, but no computable algorithm can PAC-learn it.
Hint: Think about what the loss minimizer h*, or the ERM, represents with this loss.
Hint: If you have no idea what I'm talking about: look up the “halting problem.”
Answer: TODO

You can actually show O(1/¢); we didn’t assume strong convexity in our bound.



3 Learning without concentration [25 points]

We're going to do an unsupervised learning task, where we try to estimate the mean of a distribution, but
we do it with some missing observations. Specifically, let B be the closed unit ball B = {w € R : |Jw| < 1},
and let the samples be in Z = B x {0,1}¢, where an entry z = (x,a) with « is a binary “mask” vector
indicating whether the given entry is missing. We want to estimate the mean ignoring the missing entries,

ie. H =B and J
0 if Q; = 1
Uw, (z,a)) = Z{

=1 (5131 — ’U.)Z')Q if Q; = 0.
[3.1] [10 points| Show that regularized loss minimization can PAC-learn this problem with a sample com-
plexity independent of d.
Hint: Feel free to use the result of Question 1 and results from class.
Answer: TODO

[3.2] [10 points] Let D be a distribution where z is always the fixed vector 0, and « has its entries i.i.d.
Unif({0,1}) = Bernoulli(1/2). Let mp(e, ) denote the sample complexity of uniform convergence for
this D, so that if m > mp(e,d), then

Pr (sup Lp(w) — Lg(w) < 5) >1-4.
S~D™ \weH

Show that for some particular value of £ > 0 and § > 0, mp(e,d) increases with d.

Hint: Show that if d is large enough relative to m, you're likely to get at least one dimension j where
() =1 for all your m samples x; € S,.

Answer: TODO

[3.3] [5 points| Describe a problem where RLM is a PAC learner, but uniform convergence doesn’t hold.
Why doesn’t this contradict the fundamental theorem of statistical learning?

Answer: TODO



4 Maximizing differences [40 + 5 challenge points]

Let’s consider learning a kernel classifier with the somewhat unusual linear loss, £(h, (x,y)) = —yh(x), where
y € {—1,1}. Assume a continuous kernel k : X x X — R with associated RKHS F and canonical feature
map ¢ : X — F with k(z,2") = (p(z), ¢(z")) 7.

[4.1] [10 points] Find the regularized loss minimizer

hy = argmin Lg(h) + 2A[|h|/%, (RLM)
heF

for a training sample S = ((z1,91),- .-, (Tn,yn)) and A > 0.

Answer: TODO

. 2
[4.2] [5 points] Show that Lg(hy) = —

LS i el@) — L5 ()

1
A

-
Answer: TODO
[4.3] [10 points| Find a (data-dependent) value of A, call it A, such that Hiz)\Hf = 1, and simplify the

expression for Lg(hy).
Answer: TODO
[4.4] [5 points] Argue that /Azj\ is a solution to

i Le(h). ERM
e Ls(h) (ERM)

Further argue that solving (ERM) is equivalent to solving

SETD TR ) o

yi=1 iy =—1
i.e. finding a function high on the positively-labeled points and low on the negatively-labeled ones.
Answer: TODO

Let P and Q be probability distributions. A distribution-level version of (MAX) is known as the mazimum
mean discrepancy,

MMD(P, Q) = E f(X)— E _f(Y).
(P.Q)= s \E_F(X)- E V)

Let ¢ : X — F be the canonical feature map k(z,z') = (p(z), ¢(2')) 7, and assume for simplicity that
sup,cx|¢(@)| < k < co. Define the kernel mean embedding of a distribution P as up = Ex.p ¢(X); for
bounded kernels, this is guaranteed to exist.? Moreover, you can move the expectation inside or outside of
inner products: for any f € F,

</’(‘73af>]: = <X@’P
[4.5] [10 points] Prove that
MMD(P, Q) = [up — nellx

and

MMD*(P, Q)= E (KX, X7) = 26X, V) + K(Y, V).
Y:Y’NQ

Answer: TODO

2As long as P is a Borel measure, which is the kind of very mild assumption we don’t worry about in this class.




[4.6]

[4.7]

[2 challenge points| Let X’ be a compact metric space. Prove that if & is universal, then MMD(P, Q) = 0
implies P = Q.

Hint: You can use the following helpful result, where C(X) is as usual the space of all bounded contin-
uous functions X — R.

Lemma 4.1. Two Borel probability measures P and Q on a metric space X are equal if and only if
forall f € C(X), Exop f(X) = Ey.o f(Y).

Answer: TODO

[3 challenge points| Prove that k(z,y) = [|z| + ||yl — ||z — yl|, where ||| is the norm of any Hilbert

space, is a valid kernel. Further show that the MMD with this kernel is exactly the energy distance,
whose square is

p(P,Q?*=2_ E |X-Y|- E |X-X'|-_ E [vy-Y|
X~PY ~Q X, X'~P Y,Y'~Q
Hint: You can use without proof that for alln > 1, for all xq,...,x, and c1, ..., ¢, such that > 1 | ¢; =
0, it holds that
Z Z L,||L7 - l’jHCj S O

i=1 j=1
You’ll need to fiddle a bit from this inequality to get the desired result: how to get the ||z|| in k?
Answer: TODO

We won’t prove this, but it turns out that the energy distance is positive for any P # Q, but this k actually
isn’t uniwersal.



5 Lasso and stability [5 challenge points]

The Lasso algorithm uses linear predictors h,,(z) = w - , the square loss £(h, (z,y)) = (h(x) — y)?, and a
wll = 329, |w;| regularizer:
Ax(S) € argmin Lg(hy) + AlJw||1-

weR?
(If there are multiple minimizers, let’s have Ay return one uniformly at random from the set of possible
minimizers.) The Lasso algorithm is nice because it often returns sparse solutions, i.e. w with many w; = 0.
Let'suse Z =X x Y ={z € R?: ||z| < C} x [-M, M] for simplicity.

[5.1] [5 points| Show that the Lasso algorithm is not uniformly stable. That is, there is no 3(m) satisfying
Definition 3 of the stability notes such that S(m) — 0 as m — oo.

Hint: There’s a reason I mentioned multiple minimizers above.
Answer: TODO

I think the Lasso algorithm for any A > 0 is actually on-average-replace-one stable under these assumptions
on Z, because any algorithm that on-average learns D is on-average-replace-one-stable. We can show this
under these assumptions for the Lagrange dual problem to the Lasso, ERM with H = {h,, : ||w||1 < B}, with
Rademacher bounds (depending on B, C, and M ). But the relationship of B to X is complicated, and I don’t
even know how to get a worst-case upper bound on it, though something might be possible.?

3In fact, I'm not 100% sure that Lasso even does learn without any distributional assumptions. For typical analyses with
some distributional assumptions, see Chapter 8 of the Bach book; e.g. Exercise 8.5 is pretty close.


https://cs.ubc.ca/~dsuth/532D/23w1/notes/13-stability.pdf
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