
CPSC 532D, Fall 2023: Assignment 3
due Friday November 10th, 11:59 pm

Use LATEX, like usual.

You can do this with a partner if you’d like (there’s a “find a group” post on Piazza). If so, do not just
split the questions up; if you hand in an assignment with your name on it, you’re pledging that you
participated in and understand all of the solutions. (If you work with a partner on some problems and then
end up doing some of them separately, hand in separate answers and put a note in each question saying
whether you did it with a partner or not.)

If you look stuff up anywhere other than in SSBD or MRT, cite your sources: just say in the answer to
that question where you looked. If you ask anyone else for help, cite that too. Please do not look at solution
manuals / search for people proving the things we’re trying to prove / etc. Also, please do not ask ChatGPT
or similar models. It’s okay to talk to others outside your group about general strategies – if so, just say who
and for which questions – but not to sit down and do the assignment together.

Submit your answers as a single PDF on Gradescope: here’s the link. Make sure to use the Gradescope
group feature if you’re working in a group. You’ll be prompted to mark where each question is in your PDF;
make sure you mark all relevant pages for each part (which saves a surprising amount of grading time).

Please put your name(s) on the first page as a backup, just in case. If something goes wrong, you can
also email your assignment to me directly (dsuth@cs.ubc.ca).
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https://canvas.ubc.ca/courses/123461/external_tools/46711?display=borderless


1 Monotonicity and model selection [20 points]

[1.1] [5 points] Prove that if H ⊆ H′, then VCdim(H) ≤ VCdim(H′).

Answer: TODO

[1.2] [5 points] Prove that if H ⊆ H′, then Rad(H|S) ≤ Rad(H′|S).

Answer: TODO

[1.3] [5 points] Comment on how we should expect Questions [1.1] and [1.2] to affect the generalization
loss of running ERM in H versus H′ ⊇ H, that is, LD(ERMH(S)) versus LD(ERMH′(S)) for a fixed
sample size m. What other factors are relevant to that comparison?

Answer: TODO

[1.4] [5 points] For any H, show that

E
S∼Dm

[LS(ERMH(S))] ≤ inf
h∈H

LD(h) ≤ E
S∼Dm

[LD(ERMH(S))].

Answer: TODO
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2 Rademacher complexity of weirder linear classes [20 points]

Consider H∥·∥≤B = {x 7→ w · x : ∥w∥ ≤ B}, where throughout this question ∥w∥ denotes a generic vector
norm of w, not necessarily the Euclidean norm ∥w∥2. For example, we could use ∥w∥1 =

∑
j∈[d]|wj |,

∥w∥∞ = maxj∈[d]|wj |, or ∥w∥S =
√
wTSw.

The dual norm of a norm ∥·∥ is given by

∥v∥∗ = sup
∥w∥≤1

v · w.

For instance, for the Euclidean norm ∥w∥2, we have

∥v∥∗2 = sup
∥w∥2≤1

v · w ≤ sup
∥w∥2≤1

∥v∥2∥w∥2 = ∥v∥2,

using Cauchy-Schwarz; the inequality is actually an equality, achieved by picking w = v/∥v∥2.

More generally, Hölder’s inequality shows the dual norm of ∥w∥p = (
∑d

j=1|wj |p)1/p is ∥·∥q, where 1
p +

1
q = 1.

Thus the dual of ∥·∥2 is still ∥·∥2, but also the dual of ∥·∥1 is ∥·∥∞, and vice versa.

Consider for a general norm the function class

H∥·∥≤B = {x 7→ x · w : ∥w∥ ≤ B}.

Recall that we bounded the Rademacher complexity of H∥·∥2≤B in Section 3.2 of the Rademacher notes.

[2.1] [5 points] Follow the same strategy to show that

Rad(H∥·∥≤B |Sx
) =

B

m
E
σ

∥∥∥∥∥
m∑
i=1

σixi

∥∥∥∥∥
∗

.

Answer: TODO

We can use this result, as in SSBD Lemma 26.11, to see that for H∥·∥1≤B (corresponding to Lasso),

E
σ

∥∥∥∥∥
m∑
i=1

σixi

∥∥∥∥∥
∞

= E
σ
max

(∣∣∣∣∣
(

m∑
i=1

σixi

)
1

∣∣∣∣∣ , . . . ,
∣∣∣∣∣
(

m∑
i=1

σixi

)
d

∣∣∣∣∣
)

= E
σ
max

(∑
i

σi(xi)1,
∑
i

σi(−xi)1, . . . ,
∑
i

σi(xi)d,
∑
i

σi(−xi)d,

)
= Rad

({(
(x1)1, . . . , (xm)1

)
,
(
(−x1)1, . . . , (−xm)1

)
, . . . ,

(
(x1)d, . . . , (xm)d

)
,
(
(−x1)d, . . . , (−xm)d

)})
.

This last expression is the Rademacher complexity of a set of size 2d. If |(xi)j | ≤ C for all i ∈ [m], j ∈ [d],

then each vector in this set has Euclidean norm at most
√∑m

i=1 C
2 = C

√
m; thus, applying Massart’s finite

class lemma (Lemma 1 from the VC notes) gives that Rad(H∥·∥1≤B |Sx
) ≤ BC

√
2 log(2d)/m.

[2.2] [5 points] Bound Rad(H∥·∥p≤B |Sx
) in terms of 1

m

∑m
i=1∥xi∥22 for general p ≥ 1, with a bound that goes

to zero as m → ∞.

Hint: If 0 < a < b, then Hölder’s inequality implies ∥x∥b ≤ ∥x∥a ≤ d
1
a− 1

b ∥x∥b for x ∈ Rd.

(This isn’t the most natural bound; there should be one in terms of ∥xi∥q with 1
p + 1

q = 1, but honestly

I couldn’t figure it out right away.)

Answer: TODO
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https://en.wikipedia.org/wiki/H%C3%B6lder%27s_inequality#Counting_measure
https://cs.ubc.ca/~dsuth/532D/23w1/notes/5-rademacher.pdf
https://cs.ubc.ca/~dsuth/532D/23w1/notes/6-vc.pdf


[2.3] [10 points] The Mahalanobis norm is ∥x∥S =
√
xTSx for a strictly positive-definite matrix S. Show

that ∥x∥∗S = ∥x∥S−1 , and bound Rad(H∥·∥S≤B |Sx
) in terms of 1

m

∑m
i=1∥xi∥S−1 , with a bound that goes

to zero as m → ∞.

Hint: Recall that if S is strictly positive definite, there is a symmetric matrix S
1
2 such that S = S

1
2S

1
2 .

Answer: TODO
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3 Threshold functions [20 points]

This question is about the class of threshold functions on R:

H = {x 7→ 1(x ≥ θ) : θ ∈ R} .

We showed in class (VC notes, section 4.1.1) that the VCdim(H) = 1: it can shatter a single point, but it
cannot shatter any set of size two (since it can’t label the left point 1 and the right point 0).

[3.1] [5 points] Use Sauer-Shelah (Lemma 11 in the notes), and also the simpler Corollary 9, to give two
upper bounds on the growth function ΓH(n).

Answer: TODO

[3.2] [5 points] Directly derive the exact value of the growth function ΠH from its definition. How tight are
the upper bounds from Question [3.1]?

Answer: TODO

[3.3] [5 points] Plug the previous parts in to upper bound Rad(H|Sx
) for an S containing m distinct real

numbers. You should give multiple bounds here, one per distinct bound from the previous parts.

Answer: TODO

[3.4] [5 points] Give the asymptotic value of Rad(H|Sx) for an Sx containing m distinct real numbers. Your
answer might look something like “Rad(H|Sx

) = 7m + O(1),” with a justification. To be clear, this
means that 7m− an ≤ Rad(H|Sx

) ≤ 7m+ an for some am = O(1). How does it compare to the bound
from Question [3.3]?

Hint: Imagine playing a (pretty boring) betting game where you bet $1 whether a coin I’m flipping
comes up heads or tails, with even odds. Since all physical coin flips are unbiased, you have a 50-50 shot
of getting it right. The distribution of how much money I owe you is known as a simple random walk.
Your expected winnings at any time t are always 0 (it’s the sum of a bunch of mean-zero variables).
If we play for a while, and then you conveniently “lose” the records of what happened after some time
t that just so happens to be the best possible time for you to have forgotten, you’ll probably be able to
win some money: the expected maximum value achieved at any point during a simple random walk of

length m turns out to be
√

2m
π − 1

2 +O(m− 1
2 ). (This is from equations (4) and (7) of the linked paper.)

Answer: TODO
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https://cs.ubc.ca/~dsuth/532D/23w1/notes/6-vc.pdf
http://www.stat.columbia.edu/~gelman/research/published/diceRev2.pdf
https://arxiv.org/abs/cond-mat/0506195


4 Piecewise-constant functions [30 points + 4 challenge points]

Let a = (a1, a2, . . . , ak, 0, 0, . . . ) be an eventually-zero sequence with entries ai ∈ {0, 1}. Then define a
hypothesis ha : R>0 → {0, 1} by

ha(x) = a⌈x⌉ =


a1 if 0 < x ≤ 1

a2 if 1 < x ≤ 2
...

.

Consider the hypothesis class of all such functions: H = {ha : ∀i ∈ N, ai ∈ {0, 1} and a is eventually zero}.
We’ll use the 0-1 loss in this question.

[4.1] [5 points] Show VCdim(H) = ∞.

Answer: TODO

[4.2] [10 points] Give an example of a continuous distribution Dx on (a subset of) R>0 where, for some
m < VCdim(H), samples Sx ∼ Dm

x have probability zero of being shattered by H. Thus prove that,
for any D with this x marginal Dx, ERM over H (ε, δ)-competes with the best hypothesis in H for
that D with some finite sample complexity, rather than the infinite sample complexity that would be
implied by the VC bound.

Answer: TODO

[4.3] [10 points] Write H = H1 ∪ H2 ∪ · · · , where each Hk has a finite VC dimension, and write down an
explicit SRM algorithm that nonuniformly learns H. By “an explicit algorithm,” I mean to expand
out things like the uniform convergence bound for Hk; it’s okay to write something as an argmin over
H (like in equation (2) of the SRM notes, if you say what kh is for a given h and give the value of
the Rademacher complexity term), or to just appeal to the SRM algorithm pseudocode from the notes
(as long as you say what’s in each Hk, what the εk functions are, and how to compute the stopping
condition).

Answer: TODO

[4.4] [2 challenge points] Challenge question: Suppose that instead of eventually-zero sequences, we
allowed all possible sequences a, e.g. the a that infinitely alternates between 0 and 1 could be an
option. Prove that this bigger H′ is not nonuniformly learnable. This implies a sort of no-free-lunch
theorem for nonuniform learnability.

Hint: Try a diagonalization argument.

Answer: TODO

[4.5] [2 challenge points]Challenge question: Prove that, for any Dx, ESx∼Dm
x
Rad(H|Sx

) → 0 asm → ∞.

Hint: One way to do it (there’s probably more than one): first, reduce to the “ceiled” distribution over
N instead of over R>0. Then, letting QS denote the number of unique integers you’ve seen in your
sample, get a bound in terms of EQS/m. Then prove that EQS = o(m) for any distribution over N.

Answer: TODO

[4.6] [5 points] An absentminded professor made the following argument on the final exam for a course:

If a hypothesis class has ESx∼Dm
x
Rad(H|Sx) → 0 for all Dx, then for all realizable D,

LD(ĥS) ≤ E
SX∼Dm

x

Rad(H|Sx) +

√
1

2m
log

1

δ
→ 0.

Thus, by the “fundamental theorem of statistical learning,” H must have finite VC dimension.
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https://cs.ubc.ca/~dsuth/532D/23w1/notes/8-srm.pdf
https://en.wikipedia.org/wiki/Cantor's_diagonal_argument


Clearly this argument is wrong, since it puts Questions [4.1] and [4.5] in contradiction. What was her
mistake?

Answer: TODO
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5 Challenge: Rademacher lower bounds [6 challenge points]

Using the no-free-lunch theorem, we proved a lower bound on the ability of any algorithm to learn a binary
classifier from H in 0-1 loss based on VCdim(H) (Theorem 3 in the no-free-lunch notes).

We didn’t say anything about Rademacher lower bounds, though. In this challenge question, we’ll explore
what can and can’t be said for lower bounds based on Rademacher complexity.

First, let F be some class of functions Z → R. We’re going to prove that, for any D over Z,

1

2

(
E

S∼Dm
sup
f∈F

(
1

m

m∑
i=1

f(zi)− E
z∼D

f(z)

)
+ E

S∼Dm
sup
f∈F

(
E

z∼D
f(z)− 1

m

m∑
i=1

f(zi)

))

≥ 1

2
E

S∼Dm
Rad(F|S)−

1

2
√
m

sup
f∈F

∣∣∣ E
z∼D

f(z)
∣∣∣ . (1)

The left-hand side here is the average of the two directions of one-sided uniform convergence. Recall that the
left-hand side is upper-bounded by 2ES∼Dm Rad(F|S): we bounded the Ez f(z)− 1

m

∑
i f(zi) term by this

in the Rademacher notes, and examining the symmetrization argument shows that the same bound holds
for the 1

m

∑
i f(zi)− E f(z) one as well.

Let’s start by proving (1):

[5.1] [1 points] Let F ′ = {z 7→ f(z) − cf : f ∈ F}, where cf ∈ R may differ for each f . Prove that
Rad(F ′|S) ≤ Rad(F|S) + 1√

m
supf∈F |cf |.

Answer: TODO

[5.2] [3 points] Prove (1).

Hint: Start by defining the centred class F̃D = {z 7→ f(z) − Ez∼D[f(z)] : f ∈ F}, and consider
1
2 ES Rad(F̃D|S). An appropriate application of Question [5.1] will show this is at least the right-hand
side. To show it’s at most the left-hand side, expand out the definition and follow essentially the same
argument as the symmetrization proof from Section 2 of the Rademacher notes.

Answer: TODO

When a ≤ f(z) ≤ b for all f, z, we can bound supf∈F |Ez∼D f(z)| ≤ max(|a|, |b|). Now, while the left-hand
side of (1) doesn’t change if we shift all of F by a constant, and recalling that Rad(V + {w}) = Rad(V ) the
first-term of the right-hand side doesn’t either, max(|a|, |b|) does. Thus, if we shift F so that |f(z)| ≤ 1

2 (b−a)
for all f and z, we get that the average of the two directions of expected worst-case one-sided uniform
convergence is at least

1

2
E

S∼Dm
Rad(F|S)−

b− a

4
√
m
.

Many sources in the literature consider two-sided uniform convergence, supf∈F
∣∣ 1
m

∑m
i=1 f(zi)− Ez∼D f(z)

∣∣,
rather than the one-sided convergence we’ve always used; the upper bound then looks like

E
S∼Dm

sup
f∈F

∣∣∣∣∣ 1m
m∑
i=1

f(zi)− E
z∼D

f(z)

∣∣∣∣∣ ≤ 2 E
S∼Dm

Rad((F ∪ −F)|S),

where −F = {z 7→ −f(z) : f ∈ F}.1 If F = −F , i.e. the function class is symmetric, this is the same bound
as we got in the one-sided case, because then indeed the one-sided and two-sided cases are the same.

1Note that Rad((F ∪ −F)|S) = Eσ supf∈F
∣∣ 1
m

∑m
i=1 σif(zi)

∣∣; the original definition of Rademacher complexity, which still
appears in many sources, was Rad|·|(V ) = Eσ supv∈V |v ·σ|/m. The version we use, without the absolute value, has turned out
to be preferable for a bunch of reasons.
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https://cs.ubc.ca/~dsuth/532D/23w1/notes/7-nfl.pdf
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Notice that the left-hand side of (1) is always at most ES∼Dm supf∈F
∣∣ 1
m

∑m
i=1 f(zi)− Ez∼D f(z)

∣∣. Thus, if
a ≤ f(z) ≤ b for all f and z, the same McDiarmid argument as in Theorem 8 of the Rademacher notes gives
that

Pr
S∼Dm

(
sup
f∈F

∣∣∣∣∣ 1m
m∑
i=1

f(zi)− E
z∼D

f(z)

∣∣∣∣∣ ≥ 1

2
E

S∼Dm
Rad(F|S)−

b− a√
m

(
1

4
+

√
1

2
log

1

δ

))
≥ 1− δ (2)

Pr
S∼Dm

(
sup
f∈F

∣∣∣∣∣ 1m
m∑
i=1

f(zi)− E
z∼D

f(z)

∣∣∣∣∣ ≤ 2 E
S∼Dm

Rad((F ∪ −F)|S) +
b− a√

m

√
1

2
log

1

δ

)
≥ 1− δ.

So far we’ve only really looked at upper bounds on the Rademacher complexity. It’s possible to get lower
bounds, though; Question 3 has one example. Another is given by equation (D.24) of [MRT], which implies2

for HB = {x 7→ w · x : ∥w∥ ≤ B}, Rad(HB |Sx) ≥
B√
2m

·

√√√√ 1

m

m∑
i=1

∥xi∥2. (3)

Jensen’s inequality goes the wrong way to lower-bound bound the expected Rademacher complexity, but at

least asymptotically we know that E
√

1
m

∑m
i=1∥xi∥2 converges to a nonzero constant as m → ∞, as long as

x is not almost surely zero.

The real problem, though, is that Talagrand’s contraction lemma is only one way. Using (2), our lower bound
on suph∈H LD(h)−LS(h) would depend on ES Rad((ℓ◦H)|S), and it’s not obvious how to lower-bound that
by something depending on Rad(H|Sx

).

(It’s also not obvious how to use a lower bound on suph∈H LD(h) − LS(h) to get a lower bound on any
learning algorithm, even the ERM: maybe the h with small LS(h) all have small LD(h)− LS(h), but there
are hypotheses where LD(h) and LS(h) are both big and far away from each other.)

These problems are in fact not possible to fix in general:

[5.3] [2 points] Give an example of a problem (an H, D, and ℓ) where ES∼Dm Rad(H|Sx
) ̸→ 0 as m → ∞,

and yet ERM can achieve arbitrarily small excess error with enough samples.

Answer: TODO

2This means that Rad(HB |S)/
(

B√
m

√
1
m

∑m
i=1∥xi∥2

)
∈

[
1√
2
, 1

]
⊂ [0.7, 1]; that’s pretty nice!
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https://cs.ubc.ca/~dsuth/532D/23w1/notes/5-rademacher.pdf
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