Grab bag:
Failures of uniform convergence
PAC-Bayes
Online learning

CPSC 532D: Modern Statistical Learning Theory
7 Dec 2022
cs.ubc.ca/~dsuth/532D/22w1/
Admin

• Topics that won’t be on the final:
 • “Kernels IV”, the stuff about operators / etc
 • The last couple lectures:
 • Implicit regularization
 • Neural tangent kernels
 • Universality
 • Rademacher complexity of deep nets
 • Details of any proof
• Stuff that could:
 • Working with basic definitions, etc
 • The homework question about monotonicity of VC/Rademacher is a decent example
A. under-fitting : over-fitting

Test risk

Training risk

sweet spot

Risk

Capacity of \mathcal{H}

B. under-parameterized : over-parameterized

Test risk

"classical" regime

Training risk

"modern" interpolating regime

interpolation threshold

Risk

Capacity of \mathcal{H}

\[
L_D(h) \leq L_S(h) + \sup_{n \in \mathbb{N}} \sup_{h^*} L_D(h) - L_S(h)
\]

\[
\Rightarrow 0
\]

if realizable

\[
\sup_{n \in \mathbb{N}} \sup_{h^*} L_D(h) - L_S(h)
\]

bound

\[
\Rightarrow 0
\]

non-realizable

classically

interpolating

non-realizable

\[
L_D(h) \leq L_S(h) + \sup_{n \in \mathbb{N}} \sup_{h^*} L_D(h) - L_S(h)
\]

\[
\Rightarrow 0
\]

\[
\frac{3}{3}
\]

bound

\Rightarrow Bayes error
Bounds?

\[L_D(\hat{f}) \leq L_S(\hat{f}) + \sqrt{\frac{C_{F,\delta}}{n}} \]

What kind of generalization bound could work here?

Uniform convergence may be unable to explain generalization in deep learning

Misha Belkin
Simons Institute
July 2019

M. Belkin, J. Zico Kolter
Department of Computer Science
Carnegie Mellon University
Pittsburgh, PA
vaishnavh@cs.cmu.edu
zikolter@cs.cmu.edu
\[\sup_{h \in \mathcal{H}} \left| L_D(h) - L_S(h) \right| \geq 3 \sigma^2 \]

\[L_D(A(s)) \rightarrow \sigma^2 \text{ is the Bayes error} \]

\[X \sim \mathcal{N}(0, \Sigma) \in \mathbb{R}^d \]

\[d = \omega(n) \]

\[y = Xw^* + \varepsilon \]

\[\varepsilon \sim \mathcal{N}(0, \sigma^2) \]

\[A(s) = X^\top y \]

If \(\Sigma \) satisfies some conditions,

\[L_D(A(s)) \rightarrow \sigma^2 \]

choose e.g. \(\mathcal{H} = \{ \mathbf{x} \in \mathbb{R}^d : \| \mathbf{x} \| \leq \frac{1}{n} \} \)

smallest possible \(\mathcal{H} \): \(\mathcal{H}_n = \{ A(s) : S \in S_n^3 \} \)

\[\Pr(S \in S_n) \geq 1 - \delta \]

\[L_S(A(s)) = 0 \]

\[L_S(A(\tilde{s})) \]

\[= \frac{1}{n} \sum_{i=1}^{n} (w^* \cdot x_i - \varepsilon_i)^2 \]

\[= \frac{1}{n} \sum_{i=1}^{n} (2 \varepsilon_i)^2 \]

\[= 4 \cdot \frac{1}{n} \sum_{i=1}^{n} \varepsilon_i^2 \rightarrow 4 \sigma^2 \]

must be at least one pair with \(S \in S_n, \tilde{s} \in S_n \)
(pause)
A road to PAC-Bayes

• Bayesians say:
 • Start with a prior distribution $\pi(h)$ on choice of hypothesis
A road to PAC-Bayes

• Bayesians say:
 • Start with a prior distribution $\pi(h)$ on choice of hypothesis
 • Observe data S with likelihood $\mathcal{L}(S \mid h)$
A road to PAC-Bayes

- Bayesians say:
 - Start with a prior distribution $\pi(h)$ on choice of hypothesis
 - Observe data S with likelihood $\mathcal{L}(S \mid h)$
 - End up with posterior distribution $\rho(h \mid S) \propto \mathcal{L}(S \mid h) \pi(h)$
A road to PAC-Bayes

- Bayesians say:
 - Start with a prior distribution $\pi(h)$ on choice of hypothesis
 - Observe data S with likelihood $L(S \mid h)$
 - End up with posterior distribution $\rho(h \mid S) \propto L(S \mid h) \pi(h)$
 - Make predictions/decision based on posterior mean/median, MAP, single draw, ...
A road to PAC-Bayes

• Bayesians say:
 • Start with a prior distribution $\pi(h)$ on choice of hypothesis
 • Observe data S with likelihood $\mathcal{L}(S \mid h)$
 • End up with posterior distribution $\rho(h \mid S) \propto \mathcal{L}(S \mid h) \pi(h)$
 • Make predictions/decision based on posterior mean/median, MAP, single draw, …
 • This is optimal if you believe in your prior + likelihood! 😊
A road to PAC-Bayes

- Bayesians say:
 - Start with a prior distribution $\pi(h)$ on choice of hypothesis
 - Observe data S with likelihood $\mathcal{L}(S \mid h)$
 - End up with posterior distribution $\rho(h \mid S) \propto \mathcal{L}(S \mid h) \pi(h)$
 - Make predictions/decision based on posterior mean/median, MAP, single draw, ...
- This is optimal if you believe in your prior + likelihood! 😊
- Frequentists say: “but how good is it actually???”
A road to PAC-Bayes

- Bayesians say:
 - Start with a prior distribution $\pi(h)$ on choice of hypothesis
 - Observe data S with likelihood $\mathcal{L}(S | h)$
 - End up with posterior distribution $\rho(h | S) \propto \mathcal{L}(S | h) \pi(h)$
 - Make predictions/decision based on posterior mean/median, MAP, single draw, …
- This is optimal if you believe in your prior + likelihood! 😊
- Frequentists say: “but how good is it actually???”
- What if your model class / prior / … are wrong?
A road to PAC-Bayes

- Bayesians say:
 - Start with a prior distribution $\pi(h)$ on choice of hypothesis
 - Observe data S with likelihood $\mathcal{L}(S | h)$
 - End up with posterior distribution $\rho(h | S) \propto \mathcal{L}(S | h) \pi(h)$
 - Make predictions/decision based on posterior mean/median, MAP, single draw, …
- This is optimal if you believe in your prior + likelihood! 😊
- Frequentists say: “but how good is it actually???”
- What if your model class / prior / … are wrong?
- Tempered likelihood (Zhang 06) / SafeBayes (Grünwald 12):
A road to PAC-Bayes

- Bayesians say:
 - Start with a prior distribution \(\pi(h) \) on choice of hypothesis
 - Observe data \(S \) with likelihood \(\mathcal{L}(S \mid h) \)
 - End up with posterior distribution \(\rho(h \mid S) \propto \mathcal{L}(S \mid h) \pi(h) \)
 - Make predictions/decision based on posterior mean/median, MAP, single draw, …
- This is optimal if you believe in your prior + likelihood! 😊
- Frequentists say: “but how good is it actually???”
- What if your model class / prior / … are wrong?
- Tempered likelihood (Zhang 06) / SafeBayes (Grünwald 12):
 - If your model is misspecified, can be provably better to use \(\mathcal{L}^\lambda \) for \(\lambda < 1 \)
A road to PAC-Bayes

• Bayesians say:
 • Start with a prior distribution $\pi(h)$ on choice of hypothesis
 • Observe data S with likelihood $\mathcal{L}(S \mid h)$
 • End up with posterior distribution $\rho(h \mid S) \propto \mathcal{L}(S \mid h) \pi(h)$
 • Make predictions/decision based on posterior mean/median, MAP, single draw, …
• This is optimal if you believe in your prior + likelihood! 😊
• Frequentists say: “but how good is it actually???”
• What if your model class / prior / … are wrong?
• Tempered likelihood (Zhang 06) / SafeBayes (Grünwald 12):
 • If your model is misspecified, can be provably better to use \mathcal{L}^λ for $\lambda < 1$
 • No longer quite Bayesian inference, but turns a prior into a posterior
A road to PAC-Bayes

• Bayesians say:
 • Start with a prior distribution $\pi(h)$ on choice of hypothesis
 • Observe data S with likelihood $\mathcal{L}(S | h)$
 • End up with posterior distribution $\rho(h | S) \propto \mathcal{L}(S | h) \pi(h)$
 • Make predictions/decision based on posterior mean/median, MAP, single draw, ...
• This is optimal if you believe in your prior + likelihood! 😊
• Frequentists say: “but how good is it actually???”
• What if your model class / prior / … are wrong?
• Tempered likelihood (Zhang 06) / SafeBayes (Grünwald 12):
 • If your model is misspecified, can be provably better to use \mathcal{L}^λ for $\lambda < 1$
 • No longer quite Bayesian inference, but turns a prior into a posterior
• PAC-Bayes: analyzes any prior-posterior pair (potentially even totally unrelated)
PAC-Bayes: McAllester bound

- We start with some prior π (independent of the data S) on hypotheses
PAC-Bayes: McAllester bound

- We start with some prior π (independent of the data S) on hypotheses
- Our learning algorithm sees S and gives us a posterior ρ
PAC-Bayes: McAllester bound

• We start with some prior \(\pi \) (independent of the data \(S \)) on hypotheses
• Our learning algorithm sees \(S \) and gives us a posterior \(\rho \)
• We’ll analyze \(L_\mathcal{D}(\rho) = \mathbb{E}_{h \sim \rho}[L_\mathcal{D}(h)] \) based on \(L_S(\rho) = \mathbb{E}_{h \sim \rho}[L_S(h)] \)
PAC-Bayes: McAllester bound

- We start with some prior π (independent of the data S) on hypotheses
- Our learning algorithm sees S and gives us a posterior ρ
- We’ll analyze $L_\mathcal{D}(\rho) = \mathbb{E}_{h \sim \rho}[L_\mathcal{D}(h)]$ based on $L_S(\rho) = \mathbb{E}_{h \sim \rho}[L_S(h)]$
- McAllester-style bound (SSBD theorem 31.1):
PAC-Bayes: McAllester bound

• We start with some prior π (independent of the data S) on hypotheses
• Our learning algorithm sees S and gives us a posterior ρ
• We’ll analyze $L_\mathcal{D}(\rho) = \mathbb{E}_{h \sim \rho}[L_\mathcal{D}(h)]$ based on $L_S(\rho) = \mathbb{E}_{h \sim \rho}[L_S(h)]$
• McAllester-style bound (SSBD theorem 31.1):
 • If $\ell(h, z) \in [0, 1]$, with probability at least $1 - \delta$ over $S \sim \mathcal{D}^n$,
 \[
 L_\mathcal{D}(\rho) - L_S(\rho) \leq \sqrt{\text{KL}(\rho \| \pi) + \log \frac{n}{\delta}} \frac{1}{2(n - 1)}
 \]
 where $\text{KL}(\rho \| \pi) = \mathbb{E}_{h \sim \rho} \log \frac{\rho(h)}{\pi(h)}$ (the usual KL divergence)
PAC-Bayes: McAllester bound

- We start with some prior π (independent of the data S) on hypotheses
- Our learning algorithm sees S and gives us a posterior ρ
- We’ll analyze $L_\mathcal{D}(\rho) = \mathbb{E}_{h \sim \rho}[L_\mathcal{D}(h)]$ based on $L_S(\rho) = \mathbb{E}_{h \sim \rho}[L_S(h)]$
- McAllester-style bound (SSBD theorem 31.1):
 - If $\ell(h, z) \in [0, 1]$, with probability at least $1 - \delta$ over $S \sim \mathcal{D}^n$,
 $$L_\mathcal{D}(\rho) - L_S(\rho) \leq \sqrt{\frac{\text{KL}(\rho\|\pi) + \log \frac{n}{\delta}}{2(n-1)}}$$
 where $\text{KL}(\rho\|\pi) = \mathbb{E}_{h \sim \rho} \log \frac{\rho(h)}{\pi(h)}$ (the usual KL divergence)
 - Proved in SSBD chapter 31 (not bad at all)
What learning algorithm?

\[L_D(\rho) - L_S(\rho) \leq \sqrt{\frac{\text{KL}(\rho||\pi) + \log \frac{n}{\delta}}{2(n - 1)}} \]

• What’s the best learning algorithm, according to this bound?
What learning algorithm?

\[L_D(\rho) - L_S(\rho) \leq \sqrt{\frac{\text{KL}(\rho || \pi) + \log \frac{n}{\delta}}{2(n - 1)}} \]

- What’s the best learning algorithm, according to this bound?
- Turns out to be the **Gibbs posterior**: \(\rho(h) \propto \exp(-\lambda L_S(h)) \pi(h) \)
What learning algorithm?

\[L_D(\rho) - L_S(\rho) \leq \sqrt{\frac{\text{KL}(\rho||\pi) + \log \frac{n}{\delta}}{2(n-1)}} \]

- What’s the best learning algorithm, according to this bound?
 - Turns out to be the **Gibbs posterior**: \(\rho(h) \propto \exp(-\lambda L_S(h)) \pi(h) \)
 - Same as tempered likelihood / SafeBayes if \(\mathcal{L}(S \mid h) = -\log L_S(h) + \text{const} \)
What learning algorithm?

\[L_D(\rho) - L_S(\rho) \leq \sqrt{\frac{\text{KL}(\rho\|\pi) + \log \frac{n}{\delta}}{2(n - 1)}} \]

- What’s the best learning algorithm, according to this bound?
- Turns out to be the **Gibbs posterior**: \(\rho(h) \propto \exp(-\lambda L_S(h)) \pi(h) \)
- Same as tempered likelihood / SafeBayes if \(\mathcal{L}(S \mid h) = -\log L_S(h) + \text{const} \)
- Typical choice (see 340): e.g. squared loss \(\leftrightarrow \) Gaussian likelihood
What learning algorithm?

\[L_\mathcal{D}(\rho) - L_S(\rho) \leq \sqrt{\frac{\text{KL}(\rho||\pi) + \log \frac{n}{\delta}}{2(n - 1)}} \]

• What’s the best learning algorithm, according to this bound?
 • Turns out to be the **Gibbs posterior**: \(\rho(h) \propto \exp(-\lambda L_S(h)) \pi(h) \)
 • Same as tempered likelihood / SafeBayes if \(\mathcal{L}(S \mid h) = -\log L_S(h) + \text{const} \)
 • Typical choice (see 340): e.g. squared loss ↔ Gaussian likelihood

• But the bound applies to **any** prior-posterior pair (with \(\pi \) independent of \(S \))
What learning algorithm?

\[L_\mathcal{D}(\rho) - L_S(\rho) \leq \sqrt{\frac{\text{KL}(\rho||\pi) + \log \frac{n}{\delta}}{2(n-1)}} \]

- What’s the best learning algorithm, according to this bound?
 - Turns out to be the **Gibbs posterior**: \(\rho(h) \propto \exp(-\lambda L_S(h))\pi(h) \)
 - Same as tempered likelihood / SafeBayes if \(\mathcal{L}(S \mid h) = -\log L_S(h) + \text{const} \)
 - Typical choice (see 340): e.g. squared loss \(\leftrightarrow\) Gaussian likelihood

- But the bound applies to **any** prior-posterior pair (with \(\pi \) independent of \(S \))
 - For instance: could learn a \(\hat{h} \) with (S)GD and then add noise to it
What learning algorithm?

\[L_D(\rho) - L_S(\rho) \leq \sqrt{\frac{\text{KL}(\rho||\pi) + \log \frac{n}{\delta}}{2(n-1)}} \]

- What’s the best learning algorithm, according to this bound?
 - Turns out to be the **Gibbs posterior**: \(\rho(h) \propto \exp(-\lambda L_S(h)) \pi(h) \)
 - Same as tempered likelihood / SafeBayes if \(\mathcal{L}(S \mid h) = -\log L_S(h) + \text{const} \)
 - Typical choice (see 340): e.g. squared loss \(\leftrightarrow \) Gaussian likelihood

- But the bound applies to **any** prior-posterior pair (with \(\pi \) independent of \(S \))
 - For instance: could learn a \(\hat{h} \) with (S)GD and then add noise to it
 - If \(\hat{h} \) is in a **flat minimum**, then \(\hat{h} + \text{noise} \) will still be good
What learning algorithm?

\[L_\mathcal{D}(\rho) - L_S(\rho) \leq \sqrt{\frac{\text{KL}(\rho \| \pi) + \log \frac{n}{\delta}}{2(n - 1)}} \]

• What’s the best learning algorithm, according to this bound?
 • Turns out to be the **Gibbs posterior**: \(\rho(h) \propto \exp(-\lambda L_S(h)) \pi(h) \)
 • Same as tempered likelihood / SafeBayes if \(\mathcal{L}(S \mid h) = -\log L_S(h) + \text{const} \)
 • Typical choice (see 340): e.g. squared loss ↔ Gaussian likelihood

• But the bound applies to any prior-posterior pair (with \(\pi \) independent of \(S \))
 • For instance: could learn a \(\hat{h} \) with (S)GD and then add noise to it
 • If \(\hat{h} \) is in a **flat minimum**, then \(\hat{h} + \text{noise} \) will still be good
 • But note that if \(\rho \rightarrow \text{point mass} \) and \(\pi \) continuous, \(\text{KL}(\rho \| \pi) \rightarrow \infty \)
What prior?

\[L_D(\rho) - L_S(\rho) \leq \sqrt{\frac{\text{KL}(\rho||\pi) + \log \frac{n}{\delta}}{2(n - 1)}} \]

• What’s the best prior?
 • Bound on generalization gap is better if \(\rho \) is “closer” to \(\pi \)
What prior?

What’s the best prior?

- Bound on generalization gap is better if ρ is “closer” to π
 - S didn’t make us “change our mind” too much – similar to MDL

\[
L_D(\rho) - L_S(\rho) \leq \sqrt{\frac{\text{KL}(\rho||\pi) + \log \frac{n}{\delta}}{2(n - 1)}}
\]
What prior?

\[L_\mathcal{D}(\rho) - L_S(\rho) \leq \sqrt{\frac{KL(\rho||\pi) + \log \frac{n}{\delta}}{2(n - 1)}} \]

• What’s the best prior?
 • Bound on generalization gap is better if \(\rho \) is “closer” to \(\pi \)
 • \(S \) didn’t make us “change our mind” too much – similar to MDL
 • But we also want a good \(\rho \), i.e. average training loss \(L_S(\rho) \) should be small
What prior?

\[L_D(\rho) - L_S(\rho) \leq \sqrt{\frac{\text{KL}(\rho||\pi) + \log \frac{n}{\delta}}{2(n - 1)}} \]

- What’s the best prior?
 - Bound on generalization gap is better if \(\rho \) is “closer” to \(\pi \)
 - \(S \) didn’t make us “change our mind” too much – similar to MDL
 - But we also want a good \(\rho \), i.e. average training loss \(L_S(\rho) \) should be small
 - Notice \(\pi \) only shows up in the bound – nothing to do with the learning algorithm
What prior?

$$L_D(\rho) - L_S(\rho) \leq \sqrt{\frac{\text{KL}(\rho||\pi) + \log \frac{n}{\delta}}{2(n - 1)}}$$

- What’s the best prior?
 - Bound on generalization gap is better if ρ is “closer” to π
 - S didn’t make us “change our mind” too much – similar to MDL
 - But we also want a good ρ, i.e. average training loss $L_S(\rho)$ should be small
- Notice π only shows up in the bound – nothing to do with the learning algorithm
 - We could potentially pick a prior that actually depends on \mathcal{D}
What prior?

$$L_{D}(\rho) - L_{S}(\rho) \leq \sqrt{\frac{\text{KL}(\rho||\pi) + \log \frac{n}{\delta}}{2(n - 1)}}$$

- What’s the best prior?
 - Bound on generalization gap is better if ρ is “closer” to π
 - S didn’t make us “change our mind” too much – similar to MDL
 - But we also want a good ρ, i.e. average training loss $L_{S}(\rho)$ should be small
- Notice π only shows up in the bound – nothing to do with the learning algorithm
 - We could potentially pick a prior that actually depends on D
 - ...as long as we can still bound $\text{KL}(\rho||\pi)$
Other forms of PAC-Bayes bounds

- Linear bound: \(L_\mathcal{D}(\rho) \leq \frac{1}{\beta} L_s(\rho) + \frac{\text{KL}(\rho||\pi) + \log \frac{1}{\delta}}{2\beta(1 - \beta)n} \) for any \(\beta \in (0,1) \)

- Catoni bound: for \(\alpha > 1 \), \(\Phi_{-1}(x) = (1 - \exp(-\gamma x))/(1 - \exp(-\gamma)) \),

\[
L_\mathcal{D}(\rho) \leq \inf_{\lambda > 1} \Phi_{\lambda/n}^{-1} \left(L_s(\rho) + \frac{\alpha}{\lambda} \left[\text{KL}(\rho||\pi) - \log \varepsilon + 2 \log \frac{\log(\alpha^2 \lambda)}{\log \alpha} \right] \right)
\]

- Can be much tighter (unfortunately) if \(\text{KL}(\rho||\pi)/n \) is big

- Also variants based on general f-divergences, Wasserstein, …
• Pre-pick a coding scheme to represent networks (e.g. compress the weights)
• Train a network with SGD, sparsify it/etc to \(\hat{h} \), then add a little noise to weights
• Pre-pick a coding scheme to represent networks (e.g. compress the weights)
• Train a network with SGD, sparsify it/etc to \(\hat{h} \), then add a little noise to weights

Table 1: Summary of bounds obtained from compression

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Orig. size</th>
<th>Comp. size</th>
<th>Robust. Adj.</th>
<th>Eff. Size</th>
<th>Error Bound Top 1</th>
<th>Error Bound Top 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNIST</td>
<td>168.4 KiB</td>
<td>8.1 KiB</td>
<td>1.88 KiB</td>
<td>6.23 KiB</td>
<td>< 46 %</td>
<td>NA</td>
</tr>
<tr>
<td>ImageNet</td>
<td>5.93 MiB</td>
<td>452 KiB</td>
<td>102 KiB</td>
<td>350 KiB</td>
<td>< 96.5 %</td>
<td>< 89 %</td>
</tr>
</tbody>
</table>
Derandomizing PAC-Bayes

• In practice, we don’t actually use randomized predictors (usually)
Derandomizing PAC-Bayes

• In practice, we don’t actually use randomized predictors (usually)
• Possible to “derandomize” to a high-probability bound on $L_\mathcal{D}(h) - L_\mathcal{S}(h)$:
Derandomizing PAC-Bayes

• In practice, we don’t actually use randomized predictors (usually)
• Possible to “derandomize” to a high-probability bound on $L_\mathcal{D}(h) - L_S(h)$:
 • Show convergence of $L_\mathcal{D}(h)$ to $\mathbb{E}_{h \sim \rho} L_\mathcal{D}(h)$, $L_S(h)$ to $\mathbb{E}_{h \sim \rho} L_S(h)$, under ρ
Derandomizing PAC-Bayes

- In practice, we don’t actually use randomized predictors (usually)
- Possible to “derandomize” to a high-probability bound on $L_{\mathcal{D}}(h) - L_{S}(h)$:
 - Show convergence of $L_{\mathcal{D}}(h)$ to $\mathbb{E}_{h \sim \rho} L_{\mathcal{D}}(h)$, $L_{S}(h)$ to $\mathbb{E}_{h \sim \rho} L_{S}(h)$, under ρ
 - Or, use a margin-type loss to show 0-1 error doesn’t change under ρ
Derandomizing PAC-Bayes

- In practice, we don’t actually use randomized predictors (usually)
- Possible to “derandomize” to a high-probability bound on $L_D(h) - L_S(h)$:
 - Show convergence of $L_D(h)$ to $\mathbb{E}_{h \sim \rho} L_D(h)$, $L_S(h)$ to $\mathbb{E}_{h \sim \rho} L_S(h)$, under ρ
 - Or, use a margin-type loss to show 0-1 error doesn’t change under ρ
- But…these then become “two-sided” bounds
Derandomizing PAC-Bayes

- In practice, we don’t actually use randomized predictors (usually)
- Possible to “derandomize” to a high-probability bound on $L_\mathcal{D}(h) - L_S(h)$:
 - Show convergence of $L_\mathcal{D}(h)$ to $\mathbb{E}_{h \sim \rho} L_\mathcal{D}(h)$, $L_S(h)$ to $\mathbb{E}_{h \sim \rho} L_S(h)$, under ρ
 - Or, use a margin-type loss to show 0-1 error doesn’t change under ρ
- But…these then become “two-sided” bounds
- Subject to the Nagarajan/Kolter failure mode (their Appendix J)

Uniform convergence may be unable to explain generalization in deep learning

Vaishnavh Nagarajan
Department of Computer Science
Carnegie Mellon University
Pittsburgh, PA
vaishnavh@cs.cmu.edu

J. Zico Kolter
Department of Computer Science
Carnegie Mellon University &
Bosch Center for Artificial Intelligence
Pittsburgh, PA
zkolter@cs.cmu.edu
(pause)
Online learning

• Class so far has been in the **(passive) batch setting**:
 • Observe training set $S \sim \mathcal{D}^n$, pick h, test on new examples from \mathcal{D}
Online learning

• Class so far has been in the **(passive) batch setting**:
 • Observe training set $S \sim \mathcal{D}^n$, pick h, test on new examples from \mathcal{D}

• Today: the **online** setting
Online learning

- Class so far has been in the **(passive) batch setting**:
 - Observe training set $S \sim \mathcal{D}^n$, pick h, test on new examples from \mathcal{D}

- Today: the **online** setting
 - See an x_t, make a prediction \hat{y}_t, see true label y_t, repeat
Online learning

• Class so far has been in the (passive) batch setting:
 • Observe training set $S \sim \mathcal{D}^n$, pick h, test on new examples from \mathcal{D}

• Today: the online setting
 • See an x_t, make a prediction \hat{y}_t, see true label y_t, repeat
 • We learn how to predict as we go
Online learning

• Class so far has been in the (passive) batch setting:
 • Observe training set $S \sim \mathcal{D}^n$, pick h, test on new examples from \mathcal{D}

• Today: the online setting
 • See an x_t, make a prediction \hat{y}_t, see true label y_t, repeat
 • We learn how to predict as we go
 • Focusing on binary classification to start
Online learning

• Class so far has been in the (passive) batch setting:
 • Observe training set $S \sim \mathcal{D}^n$, pick h, test on new examples from \mathcal{D}

• Today: the online setting
 • See an x_t, make a prediction \hat{y}_t, see true label y_t, repeat
 • We learn how to predict as we go
 • Focusing on binary classification to start
 • Usual analysis does not assume a fixed distribution \mathcal{D}
Online learning

• Class so far has been in the (passive) batch setting:
 • Observe training set $S \sim D^n$, pick h, test on new examples from D

• Today: the online setting
 • See an x_t, make a prediction \hat{y}_t, see true label y_t, repeat
 • We learn how to predict as we go
 • Focusing on binary classification to start
 • Usual analysis does not assume a fixed distribution D
 • Labels can even be chosen adversarially
Online learning

• Class so far has been in the (passive) batch setting:
 • Observe training set $S \sim \mathcal{D}^n$, pick h, test on new examples from \mathcal{D}

• Today: the online setting
 • See an x_t, make a prediction \hat{y}_t, see true label y_t, repeat
 • We learn how to predict as we go
 • Focusing on binary classification to start
 • Usual analysis does not assume a fixed distribution \mathcal{D}
 • Labels can even be chosen adversarially

Hello Danica,

I am incredibly sorry about this! It looks like the earlier CMT emails went to my spam folder. I can do this review within the next 12 hours (i.e. by midnight
Realizable online setting

- **Realizable** setting: labels y_t have to be consistent with some $h^* \in \mathcal{H}$
Realizable online setting

- **Realizable** setting: labels y_i have to be consistent with some $h^* \in \mathcal{H}$
Realizable online setting

- **Realizable** setting: labels y_i have to be consistent with some $h^* \in \mathcal{H}$
Mistake bounds

- Take a sequence \(S = ((x_1, h^*(x_1)), \ldots, (x_T, h^*(x_T))) \)
Mistake bounds

• Take a sequence $S = ((x_1, h^*(x_1)), \ldots, (x_T, h^*(x_T)))$

• $M_A(S)$ is the number of **mistakes** the algorithm A makes on S
Mistake bounds

- Take a sequence $S = ((x_1, h^*(x_1)), \ldots, (x_T, h^*(x_T)))$
- $M_A(S)$ is the number of mistakes the algorithm A makes on S
- $M_A(\mathcal{H})$ is the worst-case number of mistakes for any S with labels in \mathcal{H}
Mistake bounds

• Take a sequence $S = ((x_1, h^*(x_1)), \ldots, (x_T, h^*(x_T)))$

• $M_A(S)$ is the number of mistakes the algorithm A makes on S

• $M_A(\mathcal{H})$ is the worst-case number of mistakes for any S with labels in \mathcal{H}

• \mathcal{H} is online learnable if there’s an A with $M_A(\mathcal{H}) < \infty$
Mistake bounds

• Take a sequence \(S = ((x_1, h^*(x_1)), \ldots, (x_T, h^*(x_T))) \)

• \(M_A(S) \) is the number of mistakes the algorithm \(A \) makes on \(S \)

• \(M_A(\mathcal{H}) \) is the worst-case number of mistakes for any \(S \) with labels in \(\mathcal{H} \)

• \(\mathcal{H} \) is online learnable if there’s an \(A \) with \(M_A(\mathcal{H}) < \infty \)

• If \(\mathcal{H} \) is finite, consider the algorithm Consistent (basically ERM):
Mistake bounds

• Take a sequence $S = ((x_1, h^*(x_1)), \ldots, (x_T, h^*(x_T)))$

• $M_A(S)$ is the number of **mistakes** the algorithm A makes on S

• $M_A(\mathcal{H})$ is the **worst-case** number of mistakes for any S with labels in \mathcal{H}

• \mathcal{H} is **online learnable** if there’s an A with $M_A(\mathcal{H}) < \infty$

• If \mathcal{H} is finite, consider the algorithm Consistent (basically ERM):
 • Start with the **version space** $V_1 = \mathcal{H}$
Mistake bounds

- Take a sequence \(S = ((x_1, h^*(x_1)), \ldots, (x_T, h^*(x_T))) \)
- \(M_A(S) \) is the number of mistakes the algorithm \(A \) makes on \(S \)
- \(M_A(\mathcal{H}) \) is the worst-case number of mistakes for any \(S \) with labels in \(\mathcal{H} \)
- \(\mathcal{H} \) is online learnable if there’s an \(A \) with \(M_A(\mathcal{H}) < \infty \)

- If \(\mathcal{H} \) is finite, consider the algorithm Consistent (basically ERM):
 - Start with the version space \(V_1 = \mathcal{H} \)
 - Given \(x_t \), predict \(\hat{y}_t = h(x_t) \) for any arbitrary \(h \in V_t \)
Mistake bounds

• Take a sequence $S = ((x_1, h^*(x_1)), \ldots, (x_T, h^*(x_T)))$

• $M_A(S)$ is the number of mistakes the algorithm A makes on S

• $M_A(\mathcal{H})$ is the worst-case number of mistakes for any S with labels in \mathcal{H}

• \mathcal{H} is online learnable if there’s an A with $M_A(\mathcal{H}) < \infty$

• If \mathcal{H} is finite, consider the algorithm Consistent (basically ERM):
 • Start with the version space $V_1 = \mathcal{H}$
 • Given x_t, predict $\hat{y}_t = h(x_t)$ for any arbitrary $h \in V_t$
 • Seeing y_t, update $V_{t+1} = \{h \in V_t : h(x_t) = y_t\}$
Mistake bounds

• Take a sequence \(S = ((x_1, h^*(x_1)), \ldots, (x_T, h^*(x_T))) \)

• \(M_A(S) \) is the number of mistakes the algorithm \(A \) makes on \(S \)

• \(M_A(\mathcal{H}) \) is the worst-case number of mistakes for any \(S \) with labels in \(\mathcal{H} \)

• \(\mathcal{H} \) is online learnable if there’s an \(A \) with \(M_A(\mathcal{H}) < \infty \)

If \(\mathcal{H} \) is finite, consider the algorithm Consistent (basically ERM):

• Start with the version space \(V_1 = \mathcal{H} \)

• Given \(x_t \), predict \(\hat{y}_t = h(x_t) \) for any arbitrary \(h \in V_t \)

• Seeing \(y_t \), update \(V_{t+1} = \{ h \in V_t : h(x_t) = y_t \} \)

• Have mistake bound \(M_{\text{Consistent}}(\mathcal{H}) \leq |\mathcal{H}| - 1 \)
A smarter algorithm for finite, realizable H

- If Consistent made a mistake, we might only remove one h from V_t
- Better algorithm can always either (a) be right or (b) make lots of progress
A smarter algorithm for finite, realizable \mathcal{H}

- If Consistent made a mistake, we might only remove one h from V_t
- Better algorithm can always either (a) be right or (b) make lots of progress
- Halving:
 - Start with the version space $V_1 = \mathcal{H}$
 - Given x_t, predict $\hat{y}_t \in \arg\max_{r \in \{0, 1\}} \left\{ h \in V_t : h(x_t) = r \right\}$
 - Seeing y_t, update $V_{t+1} = \{ h \in V_t : h(x_t) = y_t \}$
A smarter algorithm for finite, realizable \mathcal{H}

- If Consistent made a mistake, we might only remove one h from V_t
- Better algorithm can always either (a) be right or (b) make lots of progress
- Halving:
 - Start with the version space $V_1 = \mathcal{H}$
 - Given x_t, predict $\hat{y}_t \in \arg\max_{r \in \{0,1\}} \left\{ h \in V_t : h(x_t) = r \right\}$
 - Seeing y_t, update $V_{t+1} = \{ h \in V_t : h(x_t) = y_t \}$
- If we were wrong, we removed at least half of V_t
A smarter algorithm for finite, realizable \mathcal{H}

- If Consistent made a mistake, we might only remove one h from V_t
- Better algorithm can always either (a) be right or (b) make lots of progress
- Halving:
 - Start with the version space $V_1 = \mathcal{H}$
 - Given x_t, predict $\hat{y}_t \in \arg\max_{r \in \{0, 1\}} \left\{ h \in V_t : h(x_t) = r \right\}$
 - Seeing y_t, update $V_{t+1} = \{ h \in V_t : h(x_t) = y_t \}$
 - If we were wrong, we removed at least half of V_t
- $M_{\text{Halving}}(\mathcal{H}) \leq \log_2|\mathcal{H}|$ – way better bound
Online learnability

- Think about the **game tree** for the learner and the **adversary**
 - Put points $x_i \in \mathcal{X}$ into a full binary tree
 - Start at the root, move left if learner predicts 0, right if it predicts 1
Online learnability

• Think about the **game tree** for the learner and the **adversary**
 • Put points $x_i \in \mathcal{X}$ into a full binary tree
 • Start at the root, move left if learner predicts 0, right if it predicts 1
• \mathcal{H} **shatters a tree** if everywhere in the tree is reached by some $h \in \mathcal{H}$
Online learnability

- Think about the **game tree** for the learner and the **adversary**
 - Put points $x_i \in \mathcal{X}$ into a full binary tree
 - Start at the root, move left if learner predicts 0, right if it predicts 1
- \mathcal{H} **shatters a tree** if everywhere in the tree is reached by some $h \in \mathcal{H}$
- The **Littlestone dimension** $\text{Ldim}(\mathcal{H})$ is the max depth of any tree \mathcal{H} shatters
Online learnability

- Think about the **game tree** for the learner and the **adversary**
 - Put points $x_i \in \mathcal{X}$ into a full binary tree
 - Start at the root, move left if learner predicts 0, right if it predicts 1
- \mathcal{H} **shatters a tree** if everywhere in the tree is reached by some $h \in \mathcal{H}$
- The **Littlestone dimension** $\text{Ldim}(\mathcal{H})$ is the max depth of any tree \mathcal{H} shatters
- Any algorithm A must have $M_A(\mathcal{H}) \geq \text{Ldim}(\mathcal{H})$
Online learnability

• Think about the game tree for the learner and the adversary
 • Put points $x_i \in \mathcal{X}$ into a full binary tree
 • Start at the root, move left if learner predicts 0, right if it predicts 1
• \mathcal{H} shatters a tree if everywhere in the tree is reached by some $h \in \mathcal{H}$
• The Littlestone dimension $\text{Ldim}(\mathcal{H})$ is the max depth of any tree \mathcal{H} shatters
• Any algorithm A must have $M_A(\mathcal{H}) \geq \text{Ldim}(\mathcal{H})$
• If \mathcal{H} can shatter a set, it can shatter any tree from that set
Online learnability

• Think about the **game tree** for the learner and the **adversary**
 • Put points \(x_i \in \mathcal{X} \) into a full binary tree
 • Start at the root, move left if learner predicts 0, right if it predicts 1
• \(\mathcal{H} \) **shatters a tree** if everywhere in the tree is reached by some \(h \in \mathcal{H} \)
• The **Littlestone dimension** \(\text{Ldim}(\mathcal{H}) \) is the max depth of any tree \(\mathcal{H} \) shatters
• Any algorithm \(A \) must have \(M_A(\mathcal{H}) \geq \text{Ldim}(\mathcal{H}) \)
• If \(\mathcal{H} \) can shatter a set, it can shatter any tree from that set
 • \(\text{VCdim}(\mathcal{H}) \leq \text{Ldim}(\mathcal{H}) \)
Littlestone dimension examples

- If \mathcal{H} is finite, can’t shatter a full tree deeper than $\log_2 |\mathcal{H}|$
Littlestone dimension examples

• If \mathcal{H} is finite, can’t shatter a full tree deeper than $\log_2 |\mathcal{H}|$

• If $\mathcal{X} = [d]$, $\mathcal{H} = \{ x \mapsto \mathbb{1}(x = i) : i \in [d] \}$, have $L\text{dim}(\mathcal{H}) = 1$
Littlestone dimension examples

- If \mathcal{H} is finite, can’t shatter a full tree deeper than $\log_2|\mathcal{H}|$
- If $\mathcal{X} = [d]$, $\mathcal{H} = \{x \mapsto \mathbf{1}(x = i) : i \in [d]\}$, have $\text{Ldim}(\mathcal{H}) = 1$
- If $\mathcal{X} = [0,1]$ and $\mathcal{H} = \{x \mapsto \mathbf{1}(x \leq a) : a \in [0,1]\}$, have $\text{Ldim}(\mathcal{H}) = \infty$ (!)
Standard Optimal Algorithm

- Like Halving, but tries to reduce Littlestone dimension instead of cardinality:
 - Start with the version space $V_1 = \mathcal{H}$
 - Given x_t, predict $\hat{y}_t \in \text{argmax}_{r \in \{0, 1\}} \text{Ldim} \left(\{ h \in V_t : h(x_t) = r \} \right)$
 - Seeing y_t, update $V_{t+1} = \{ h \in V_t : h(x_t) = y_t \}$
Standard Optimal Algorithm

• Like Halving, but tries to reduce Littlestone dimension instead of cardinality:
 • Start with the version space $V_1 = \mathcal{H}$
 • Given x_t, predict $\hat{y}_t \in \arg\max_{r \in \{0,1\}} \text{Ldim} \left(\{ h \in V_t : h(x_t) = r \} \right)$
 • Seeing y_t, update $V_{t+1} = \{ h \in V_t : h(x_t) = y_t \}$
 • Whenever we make a mistake, $\text{Ldim}(V_{t+1}) \leq \text{Ldim}(V_t) - 1$:
Standard Optimal Algorithm

- Like Halving, but tries to reduce Littlestone dimension instead of cardinality:
 - Start with the version space $V_1 = \mathcal{H}$
 - Given x_t, predict $\hat{y}_t \in \arg\max_{r \in \{0,1\}} \text{Ldim} \left(\{ h \in V_t : h(x_t) = r \} \right)$
 - Seeing y_t, update $V_{t+1} = \{ h \in V_t : h(x_t) = y_t \}$
 - Whenever we make a mistake, $\text{Ldim}(V_{t+1}) \leq \text{Ldim}(V_t) - 1$:
 - If not, $\text{Ldim} \left(\{ h \in V_t : h(x_t) = 0 \} \right) = \text{Ldim}(V_t) = \text{Ldim} \left(\{ h \in V_t : h(x_t) = 1 \} \right)$
Standard Optimal Algorithm

- Like Halving, but tries to reduce Littlestone dimension instead of cardinality:
 - Start with the version space $V_1 = \mathcal{H}$
 - Given x_t, predict $\hat{y}_t \in \arg\max_{r \in \{0, 1\}} \text{Ldim} \left(\left\{ h \in V_t : h(x_t) = r \right\} \right)$
 - Seeing y_t, update $V_{t+1} = \{ h \in V_t : h(x_t) = y_t \}$
 - Whenever we make a mistake, $\text{Ldim}(V_{t+1}) \leq \text{Ldim}(V_t) - 1$:
 - If not, $\text{Ldim} \left(\left\{ h \in V_t : h(x_t) = 0 \right\} \right) = \text{Ldim}(V_t) = \text{Ldim} \left(\left\{ h \in V_t : h(x_t) = 1 \right\} \right)$
 - Then combine shattered trees into one shattered tree of depth $\text{Ldim}(V_t) + 1$
Standard Optimal Algorithm

- Like Halving, but tries to reduce Littlestone dimension instead of cardinality:
 - Start with the version space $V_1 = \mathcal{H}$
 - Given x_t, predict $\hat{y}_t \in \arg\max_{r \in \{0, 1\}} \text{Ldim} \left(\{ h \in V_t : h(x_t) = r \} \right)$
 - Seeing y_t, update $V_{t+1} = \{ h \in V_t : h(x_t) = y_t \}$
 - Whenever we make a mistake, $\text{Ldim}(V_{t+1}) \leq \text{Ldim}(V_t) - 1$:
 - If not, $\text{Ldim} \left(\{ h \in V_t : h(x_t) = 0 \} \right) = \text{Ldim}(V_t) = \text{Ldim} \left(\{ h \in V_t : h(x_t) = 1 \} \right)$
 - Then combine shattered trees into one shattered tree of depth $\text{Ldim}(V_t) + 1$
 - But then $\text{Ldim}(V_t) = \text{Ldim}(V_t) + 1$...contradiction
Standard Optimal Algorithm

• Like Halving, but tries to reduce Littlestone dimension instead of cardinality:
 • Start with the version space $V_1 = \mathcal{H}$
 • Given x_t, predict $\hat{y}_t \in \text{argmax}_{r \in \{0,1\}} \text{Ldim}\left(\{h \in V_t : h(x_t) = r\}\right)$
 • Seeing y_t, update $V_{t+1} = \{h \in V_t : h(x_t) = y_t\}$
 • Whenever we make a mistake, $\text{Ldim}(V_{t+1}) \leq \text{Ldim}(V_t) - 1$:
 • If not, $\text{Ldim}\left(\{h \in V_t : h(x_t) = 0\}\right) = \text{Ldim}(V_t) = \text{Ldim}\left(\{h \in V_t : h(x_t) = 1\}\right)$
 • Then combine shattered trees into one shattered tree of depth $\text{Ldim}(V_t) + 1$
 • But then $\text{Ldim}(V_t) = \text{Ldim}(V_t) + 1$...contradiction
 • Thus $M_{\text{SOA}}(\mathcal{H}) = \text{Ldim}(\mathcal{H})$, the best possible mistake bound
Standard Optimal Algorithm

• Like Halving, but tries to reduce Littlestone dimension instead of cardinality:
 • Start with the version space $V_1 = \mathcal{H}$
 • Given x_t, predict $\hat{y}_t \in \text{argmax}_{r \in \{0,1\}} \text{Ldim} \left(\left\{ h \in V_t : h(x_t) = r \right\} \right)$
 • Seeing y_t, update $V_{t+1} = \{ h \in V_t : h(x_t) = y_t \}$
 • Whenever we make a mistake, $\text{Ldim}(V_{t+1}) \leq \text{Ldim}(V_t) - 1$:
 • If not, $\text{Ldim} \left(\left\{ h \in V_t : h(x_t) = 0 \right\} \right) = \text{Ldim}(V_t) = \text{Ldim} \left(\left\{ h \in V_t : h(x_t) = 1 \right\} \right)$
 • Then combine shattered trees into one shattered tree of depth $\text{Ldim}(V_t) + 1$
 • But then $\text{Ldim}(V_t) = \text{Ldim}(V_t) + 1$...contradiction
• Thus $M_{\text{SOA}}(\mathcal{H}) = \text{Ldim}(\mathcal{H})$, the best possible mistake bound
• But SOA is not necessarily easy to compute!
(pause)
Unrealizable online learning

- In the batch setting:
 - Realizable PAC assumes labels come from $h^* \in \mathcal{H}$
 - Agnostic PAC just has us compete with best $h^* \in \mathcal{H}$

- In the online setting:
 - Realizable assumes labels come from $h^* \in \mathcal{H}$
Unrealizable online learning

• In the batch setting:
 • Realizable PAC assumes labels come from $h^* \in \mathcal{H}$
 • Agnostic PAC just has us compete with best $h^* \in \mathcal{H}$

• In the online setting:
 • Realizable assumes labels come from $h^* \in \mathcal{H}$
 • Unrealizable has us compete with best $h^* \in \mathcal{H}$
Unrealizable online learning

• In the batch setting:
 • Realizable PAC assumes labels come from $h^* \in \mathcal{H}$
 • Agnostic PAC just has us compete with best $h^* \in \mathcal{H}$

• In the online setting:
 • Realizable assumes labels come from $h^* \in \mathcal{H}$
 • Unrealizable has us compete with best $h^* \in \mathcal{H}$

\[
\text{Regret}_A(h, T) = \sup_{(x_1, y_1), \ldots, (x_T, y_T)} \left[\sum_{t=1}^{T} |\hat{y}_t - y_t| - \sum_{t=1}^{T} |h(x_t) - y_t| \right]
\]
Unrealizable online learning

- In the batch setting:
 - Realizable PAC assumes labels come from $h^* \in \mathcal{H}$
 - Agnostic PAC just has us compete with best $h^* \in \mathcal{H}$
- In the online setting:
 - Realizable assumes labels come from $h^* \in \mathcal{H}$
 - Unrealizable has us compete with best $h^* \in \mathcal{H}$

Regret $A(h, T) = \sup_{(x_1,y_1),\ldots,(x_T,y_T)} \left[\sum_{t=1}^{T} |\hat{y}_t - y_t| - \sum_{t=1}^{T} |h(x_t) - y_t| \right]$

Regret $A(\mathcal{H}, T) = \sup_{h \in \mathcal{H}} \text{Regret}_A(h, T)$
Unrealizable online learning

- In the batch setting:
 - Realizable PAC assumes labels come from $h^* \in \mathcal{H}$
 - Agnostic PAC just has us compete with best $h^* \in \mathcal{H}$
- In the online setting:
 - Realizable assumes labels come from $h^* \in \mathcal{H}$
 - Unrealizable has us compete with best $h^* \in \mathcal{H}$

$$
\text{Regret}_A(h, T) = \sup_{(x_1, y_1), \ldots, (x_T, y_T)} \left[\sum_{t=1}^{T} |\hat{y}_t - y_t| - \sum_{t=1}^{T} |h(x_t) - y_t| \right]
$$

$$
\text{Regret}_A(\mathcal{H}, T) = \sup_{h \in \mathcal{H}} \text{Regret}_A(h, T)
$$

- Ideally, we want sublinear regret: $\frac{1}{T} \text{Regret}_A(\mathcal{H}, T) \xrightarrow{T \to \infty} 0$
Regret: impossible to avoid

- Regret: “how much better it would have been to just play $h(x_t)$ every time”
- Consider $\mathcal{H} = \{x \mapsto 0, x \mapsto 1\}$
Regret: impossible to avoid

- Regret: “how much better it would have been to just play $h(x_t)$ every time”
- Consider $\mathcal{H} = \{x \mapsto 0, x \mapsto 1\}$
 - Adversary could always just say “no, you’re wrong” and get T mistakes
Regret: impossible to avoid

- Regret: “how much better it would have been to just play $h(x_t)$ every time”
- Consider $\mathcal{H} = \{x \mapsto 0, x \mapsto 1\}$
 - Adversary could always just say “no, you’re wrong” and get T mistakes
Regret: impossible to avoid

- Regret: “how much better it would have been to just play $h(x_t)$ every time”
- Consider $\mathcal{H} = \{ x \mapsto 0, x \mapsto 1 \}$
 - Adversary could always just say “no, you’re wrong” and get T mistakes
 - For any sequence of true y_t, either $x \mapsto 0$ or $x \mapsto 1$ has $\leq \frac{T}{2}$ mistakes
Regret: impossible to avoid

- Regret: “how much better it would have been to just play $h(x_t)$ every time”
- Consider $\mathcal{H} = \{x \mapsto 0, x \mapsto 1\}$
 - Adversary could always just say “no, you’re wrong” and get T mistakes
 - For any sequence of true y_t, either $x \mapsto 0$ or $x \mapsto 1$ has $\leq \frac{T}{2}$ mistakes
 - So regret would be at least $T - \frac{T}{2} = \frac{T}{2}$
Regret: impossible to avoid

- Regret: “how much better it would have been to just play $h(x_t)$ every time”
- Consider $\mathcal{H} = \{x \mapsto 0, x \mapsto 1\}$
 - Adversary could always just say “no, you’re wrong” and get T mistakes
 - For any sequence of true y_t, either $x \mapsto 0$ or $x \mapsto 1$ has $\leq \frac{T}{2}$ mistakes
 - So regret would be at least $T - \frac{T}{2} = \frac{T}{2}$
- To avoid this:
Regret: impossible to avoid

• Regret: “how much better it would have been to just play $h(x_t)$ every time”

• Consider $\mathcal{H} = \{x \mapsto 0, x \mapsto 1\}$
 - Adversary could always just say “no, you’re wrong” and get T mistakes
 - For any sequence of true y_t, either $x \mapsto 0$ or $x \mapsto 1$ has $\leq \frac{T}{2}$ mistakes
 - So regret would be at least $T - \frac{T}{2} = \frac{T}{2}$

• To avoid this:
 - Learner has random prediction, $\Pr(\hat{y}_t = 1) = p_t$
Regret: impossible to avoid

- Regret: “how much better it would have been to just play $h(x_t)$ every time”
- Consider $\mathcal{H} = \{x \mapsto 0, x \mapsto 1\}$
 - Adversary could always just say “no, you’re wrong” and get T mistakes
 - For any sequence of true y_t, either $x \mapsto 0$ or $x \mapsto 1$ has $\leq \frac{T}{2}$ mistakes
 - So regret would be at least $T - \frac{T}{2} = \frac{T}{2}$
- To avoid this:
 - Learner has random prediction, $\Pr(\hat{y}_t = 1) = p_t$
 - Adversary commits to y_t without knowing the roll
Regret: impossible to avoid

- Regret: “how much better it would have been to just play \(h(x_t) \) every time”
- Consider \(\mathcal{H} = \{ x \mapsto 0, x \mapsto 1 \} \)
 - Adversary could always just say “no, you’re wrong” and get \(T \) mistakes
 - For any sequence of true \(y_t \), either \(x \mapsto 0 \) or \(x \mapsto 1 \) has \(\leq \frac{T}{2} \) mistakes
 - So regret would be at least \(T - \frac{T}{2} = \frac{T}{2} \)
- To avoid this:
 - Learner has random prediction, \(\Pr(\hat{y}_t = 1) = p_t \)
 - Adversary commits to \(y_t \) without knowing the roll
Regret: impossible to avoid

- Regret: “how much better it would have been to just play $h(x_t)$ every time”
- Consider $\mathcal{H} = \{x \mapsto 0, x \mapsto 1\}$
 - Adversary could always just say “no, you’re wrong” and get T mistakes
 - For any sequence of true y_t, either $x \mapsto 0$ or $x \mapsto 1$ has $\leq \frac{T}{2}$ mistakes
 - So regret would be at least $T - \frac{T}{2} = \frac{T}{2}$
- To avoid this:
 - Learner has random prediction, $\Pr(\hat{y}_t = 1) = p_t$
 - Adversary commits to y_t without knowing the roll
 - Measure expected loss $\Pr(\hat{y}_t \neq y_t) = |p_t - y_t|$
Low regret for online classification

• For every \mathcal{H}, there’s an algorithm with

$$\text{Regret}_A(\mathcal{H}, T) \leq \sqrt{2 \min \left(\log|\mathcal{H}|, (1 + \log T) \text{Ldim}(\mathcal{H}) \right)} T$$

• Also a lower bound of $\Omega \left(\sqrt{\text{Ldim}(\mathcal{H}) T} \right)$

• Based on Weighted-Majority algorithm for learning with expert advice
Learning from expert advice

• There are d available experts who make predictions
Learning from expert advice

- There are d available experts who make predictions.
- At time t, learner chooses to follow expert i with probability $(w_t)_i$.

wunderground.com bbc.com weather.com cnn.com
Learning from expert advice

• There are d available experts who make predictions
• At time t, learner chooses to follow expert i with probability $(w_t)_i$
• Sees potential costs $v_t \in \mathbb{R}^d$; pays expectation $\langle w_t, v_t \rangle$
Learning from expert advice

- There are d available experts who make predictions.
- At time t, learner chooses to follow expert i with probability $(w_t)_i$.
- Sees potential costs $v_t \in \mathbb{R}^d$; pays expectation $\langle w_t, v_t \rangle$.
- Weighted-Majority algorithm:
Learning from expert advice

- There are d available experts who make predictions.
- At time t, learner chooses to follow expert i with probability $(w_t)_i$.
- Sees potential costs $v_t \in \mathbb{R}^d$; pays expectation $\langle w_t, v_t \rangle$.
- Weighted-Majority algorithm:
 - Start with $\tilde{w}_1 = (1, \ldots, 1)$; $\eta = \sqrt{2 \log(d) / T}$.
Learning from expert advice

- There are d available experts who make predictions.
- At time t, learner chooses to follow expert i with probability $(w_t)_i$
- Sees potential costs $v_t \in \mathbb{R}^d$; pays expectation $\langle w_t, v_t \rangle$
- Weighted-Majority algorithm:
 - Start with $\tilde{w}_1 = (1, \ldots, 1)$; $\eta = \sqrt{2 \log(d) / T}$
 - For $t = 1, 2, \ldots$
Learning from expert advice

• There are d available experts who make predictions
• At time t, learner chooses to follow expert i with probability $(w_t)_i$
• Sees potential costs $v_t \in \mathbb{R}^d$; pays expectation $\langle w_t, v_t \rangle$
• Weighted-Majority algorithm:
 • Start with $\tilde{w}_1 = (1, \ldots, 1)$; $\eta = \sqrt{2 \log(d) / T}$
 • For $t = 1, 2, \ldots$
 • Follow with probabilities $w_t = \tilde{w}_t / \|w_t\|_1$
Learning from expert advice

- There are d available experts who make predictions
- At time t, learner chooses to follow expert i with probability $(w_t)_i$
- Sees potential costs $v_t \in \mathbb{R}^d$; pays expectation $\langle w_t, v_t \rangle$
- Weighted-Majority algorithm:
 - Start with $\tilde{w}_1 = (1,\ldots,1)$; $\eta = \sqrt{2 \log(d) / T}$
 - For $t = 1,2,…$
 - Follow with probabilities $w_t = \tilde{w}_t / \|w_t\|_1$
 - Update based on costs v_t as $\tilde{w}_{t+1} = \tilde{w}_t \exp(-\eta v_t)$ (exp is elementwise)
Learning from expert advice

- There are d available experts who make predictions.
- At time t, learner chooses to follow expert i with probability $(w_t)_i$.
- Sees potential costs $v_t \in \mathbb{R}^d$; pays expectation $\langle w_t, v_t \rangle$.
- Weighted-Majority algorithm:
 - Start with $\tilde{w}_1 = (1, \ldots, 1)$; $\eta = \sqrt{2 \log(d) / T}$.
 - For $t = 1, 2, \ldots$
 - Follow with probabilities $w_t = \tilde{w}_t / \|w_t\|_1$.
 - Update based on costs v_t as $\tilde{w}_{t+1} = \tilde{w}_t \exp(-\eta v_t)$ (exp is elementwise).
- **Theorem** (SSBD 21.11): $\sum_{t=1}^T \langle w_t, v_t \rangle - \min_{i \in [d]} \sum_{t=1}^T (v_t)_i \leq \sqrt{2 \log(d) T}$ if $T > 2 \log d$.

25
Learning from expert advice

• There are d available experts who make predictions
• At time t, learner chooses to follow expert i with probability $(w_t)_i$
• Sees potential costs $v_t \in \mathbb{R}^d$; pays expectation $\langle w_t, v_t \rangle$
• Weighted-Majority algorithm:
 • Start with $\tilde{w}_1 = (1, \ldots, 1)$; $\eta = \sqrt{2 \log(d) / T}$
 • For $t = 1, 2, \ldots$
 • Follow with probabilities $w_t = \tilde{w}_t / \|w_t\|_1$
 • Update based on costs v_t as $\tilde{w}_{t+1} = \tilde{w}_t \exp(-\eta v_t)$ (exp is elementwise)
• **Theorem** (SSBD 21.11): $\sum_{t=1}^{T} \langle w_t, v_t \rangle - \min_{i \in [d]} \sum_{t=1}^{T} (v_t)_i \leq \sqrt{2 \log(d) T}$ if $T > 2 \log d$
• Can avoid knowing T by *doubling trick*: run for $T = 1, T = 2, T = 4, \ldots$ sequentially
Learning from expert advice

- There are \(d \) available experts who make predictions
- At time \(t \), learner chooses to follow expert \(i \) with probability \((w_t)_i \)
- Sees potential costs \(v_t \in \mathbb{R}^d \); pays expectation \(\langle w_t, v_t \rangle \)
- Weighted-Majority algorithm:
 - Start with \(\tilde{w}_1 = (1, \ldots, 1) \); \(\eta = \sqrt{2 \log(d) / T} \)
 - For \(t = 1, 2, \ldots \)
 - Follow with probabilities \(w_t = \tilde{w}_t / \| w_t \|_1 \)
 - Update based on costs \(v_t \) as \(\tilde{w}_{t+1} = \tilde{w}_t \exp(-\eta v_t) \) (exp is elementwise)
- **Theorem** (SSBD 21.11): \(\sum_{t=1}^{T} \langle w_t, v_t \rangle - \min_{i \in [d]} \sum_{t=1}^{T} (v_t)_i \leq \sqrt{2 \log(d) T} \) if \(T > 2 \log d \)
- Can avoid knowing \(T \) by *doubling trick*: run for \(T = 1, T = 2, T = 4, \ldots \) sequentially
- Only blows up regret by \(< 3.5x\) (SSBD exercise 21.4)
Low regret for online classification

- For finite \mathcal{H}, we can just run Weighted-Majority with each $h \in \mathcal{H}$
Low regret for online classification

- For finite \mathcal{H}, we can just run Weighted-Majority with each $h \in \mathcal{H}$
- Plugging in previous theorem, $\text{Regret}_{\text{WM}}(\mathcal{H}, T) \leq \sqrt{2 \log |\mathcal{H}| T}$
Low regret for online classification

- For finite \mathcal{H}, we can just run Weighted-Majority with each $h \in \mathcal{H}$
- Plugging in previous theorem, $\text{Regret}_{\text{WM}}(\mathcal{H}, T) \leq \sqrt{2 \log |\mathcal{H}| T}$
- For infinite \mathcal{H}, we need a not-too-big set of experts where one is still good
Low regret for online classification

- For finite \(\mathcal{H} \), we can just run Weighted-Majority with each \(h \in \mathcal{H} \)
- Plugging in previous theorem, \(\text{Regret}_{\text{WM}}(\mathcal{H}, T) \leq \sqrt{2 \log |\mathcal{H}| T} \)
- For infinite \(\mathcal{H} \), we need a not-too-big set of experts where one is still good
 - Expert\((i_1, i_2, \ldots, i_L)\) runs SOA on \(x_1, \ldots, x_T \),
 but takes choice with smaller Ldim on indices \(i_1, i_2, \ldots, i_L \)
Low regret for online classification

• For finite \mathcal{H}, we can just run Weighted-Majority with each $h \in \mathcal{H}$

 • Plugging in previous theorem, $\text{Regret}_{WM}(\mathcal{H}, T) \leq \sqrt{2 \log |\mathcal{H}| \cdot T}$

• For infinite \mathcal{H}, we need a not-too-big set of experts where one is still good

 • Expert(i_1, i_2, \ldots, i_L) runs SOA on x_1, \ldots, x_T, but takes choice with smaller Ldim on indices i_1, i_2, \ldots, i_L

 • Can show (21.13-14) that one expert is as good as the best $h \in \mathcal{H}$, and there aren’t too many of them, giving

 $\text{Regret}_A(\mathcal{H}, T) \leq \sqrt{2(1 + \log T) \cdot \text{Ldim}(\mathcal{H}) \cdot T}$
Online convex optimization

- **Online convex optimization** is
- Convex hypothesis class \mathcal{H}
- At each step: learner picks $w_t \in \mathcal{H}$, environment picks convex loss $\ell_t(w_t)$
Online convex optimization

- **Online convex optimization** is
- Convex hypothesis class \mathcal{H}
- At each step: learner picks $w_t \in \mathcal{H}$, environment picks convex loss $\ell_t(w_t)$

$$\text{Regret}(w^*, T) = \sum_{t=1}^{T} \ell_t(w_t) - \sum_{t=1}^{T} \ell_t(w^*), \quad \text{Regret}(\mathcal{H}, T) = \sup_{w^* \in \mathcal{H}} \text{Regret}(w^*, T)$$
Online convex optimization

- **Online convex optimization** is
- Convex hypothesis class \mathcal{H}
- At each step: learner picks $w_t \in \mathcal{H}$, environment picks convex loss $\ell_t(w_t)$

\[
\text{Regret}(w^*, T) = \sum_{t=1}^{T} \ell_t(w_t) - \sum_{t=1}^{T} \ell_t(w^*), \quad \text{Regret}(\mathcal{H}, T) = \sup_{w^* \in \mathcal{H}} \text{Regret}(w^*, T)
\]

- **Online gradient descent** (exactly like SGD) has:
Online convex optimization

• **Online convex optimization** is
 • Convex hypothesis class \mathcal{H}
 • At each step: learner picks $w_t \in \mathcal{H}$, environment picks convex loss $\ell_t(w_t)$

 \[
 \text{Regret}(w^*, T) = \sum_{t=1}^{T} \ell_t(w_t) - \sum_{t=1}^{T} \ell_t(w^*),
 \text{Regret}(\mathcal{H}, T) = \sup_{w^* \in \mathcal{H}} \text{Regret}(w^*, T)
 \]

• **Online gradient descent** (exactly like SGD) has:
 • \[
 \text{Regret}(w^*, T) \leq \frac{\|w^*\|^2}{2\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \|v_t\|^2
 \]
 where $v_t \in \partial \ell_t(w_t)$ are step directions
Online convex optimization

- **Online convex optimization** is
 - Convex hypothesis class \mathcal{H}
 - At each step: learner picks $w_t \in \mathcal{H}$, environment picks convex loss $\ell_t(w_t)$

$$
\text{Regret}(w^*, T) = \sum_{t=1}^{T} \ell_t(w_t) - \sum_{t=1}^{T} \ell_t(w^*), \quad \text{Regret}(\mathcal{H}, T) = \sup_{w^* \in \mathcal{H}} \text{Regret}(w^*, T)
$$

- **Online gradient descent** (exactly like SGD) has:
 - $\text{Regret}(w^*, T) \leq \frac{\|w^*\|^2}{2\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \|v_t\|^2$ where $v_t \in \partial\ell_t(w_t)$ are step directions
 - $\text{Regret}(w^*, T) \leq \frac{1}{2} \left(\|w^*\|^2 + \rho^2 \right) \sqrt{T}$ if ℓ_t are ρ-Lipschitz, $\eta = 1/\sqrt{T}$
Online convex optimization

- **Online convex optimization** is
 - Convex hypothesis class \(\mathcal{H} \)
 - At each step: learner picks \(w_t \in \mathcal{H} \), environment picks convex loss \(\ell_t(w_t) \)

\[
\text{Regret}(w^*, T) = \sum_{t=1}^{T} \ell_t(w_t) - \sum_{t=1}^{T} \ell_t(w^*)
\]

\[
\text{Regret}(\mathcal{H}, T) = \sup_{w^* \in \mathcal{H}} \text{Regret}(w^*, T)
\]

- **Online gradient descent** (exactly like SGD) has:
 - \[
 \text{Regret}(w^*, T) \leq \frac{\|w^*\|^2}{2\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \|v_t\|^2 \quad \text{where } v_t \in \partial \ell_t(w_t) \text{ are step directions}
 \]
 - \[
 \text{Regret}(w^*, T) \leq \frac{1}{2} \left(\|w^*\|^2 + \rho^2 \right) \sqrt{T} \quad \text{if } \ell_t \text{ are } \rho\text{-Lipschitz}, \eta = 1/\sqrt{T}
 \]
 - \[
 \text{Regret}(w^*, T) \leq B\rho \sqrt{T} \quad \text{if } \ell_t \text{ are } \rho\text{-Lipschitz}, \mathcal{H} \text{ is } B\text{-bounded}, \eta = B/(\rho \sqrt{T})
 \]
Online Perceptron

- You learned about Batch Perceptron in HW3
- Original algorithm is online
- Essentially identical, just only update on mistake
- Corresponds to online gradient descent on hinge loss
- Get same \((R/\gamma)^2\) margin-based mistake bound
 - \(\text{Ldim} = \infty\) without the margin condition
Online-to-batch conversion

• If we have a good online algorithm, we have a good batch algorithm: just run it on the batch
Online-to-batch conversion

• If we have a good online algorithm, we have a good batch algorithm: just run it on the batch

• MRT Lemma 8.14: If $S \sim D^T$ gives h_1, \ldots, h_T for $0 \leq \ell(h, (x, y)) \leq M$,

\[
\frac{1}{T} \sum_{t=1}^{T} L_D(h_t) \leq \frac{1}{T} \sum_{t=1}^{T} \ell(h_t(x_t), y_t) + M \sqrt{\frac{2}{T} \log \frac{1}{\delta}}
\]
Online-to-batch conversion

- If we have a good online algorithm, we have a good batch algorithm: just run it on the batch
- MRT Lemma 8.14: If $S \sim \mathcal{D}^T$ gives h_1, \ldots, h_T for $0 \leq \ell(h, (x, y)) \leq M$,
 \[
 \frac{1}{T} \sum_{t=1}^{T} L_{\mathcal{D}}(h_t) \leq \frac{1}{T} \sum_{t=1}^{T} \ell(h_t(x_t), y_t) + M \sqrt{\frac{2}{T} \log \frac{1}{\delta}}
 \]
- MRT Theorem 8.15: if $\ell(\cdot, z)$ is also convex,
 \[
 L_{\mathcal{D}}\left(\frac{1}{T} \sum_{t=1}^{T} h_t\right) \leq \inf_{h \in \mathcal{H}} L_{\mathcal{D}}(h) + \frac{1}{T} \text{Regret}_A(\mathcal{H}, T) + 2M \sqrt{\frac{2}{T} \log \frac{2}{\delta}}
 \]
(pause)
Differential privacy

• Randomized learning algorithm $A(S)$ is called (ε, δ) differentially private if
Differential privacy

• Randomized learning algorithm $A(S)$ is called (ϵ, δ) differentially private if
 • for all S_1, S_2 that differ on a single element (i.e. one person’s data),
Differential privacy

- Randomized learning algorithm $A(S)$ is called (ϵ, δ) differentially private if
 - for all S_1, S_2 that differ on a single element (i.e. one person’s data),
 - for all subsets $H \subseteq \mathcal{H}$, $\Pr(A(S_1) \in H) \leq \exp(\epsilon) \Pr(A(S_2) \in H) + \delta$
Differential privacy

• Randomized learning algorithm $A(S)$ is called \((\epsilon, \delta)\) differentially private if
 • for all S_1, S_2 that differ on a single element (i.e. one person’s data),
 • for all subsets $H \subseteq \mathcal{H}$, $\Pr(A(S_1) \in H) \leq \exp(\epsilon) \Pr(A(S_2) \in H) + \delta$
• Called pure DP if $\delta = 0$
Differential privacy

- Randomized learning algorithm $A(S)$ is called (ε, δ) differentially private if
 - for all S_1, S_2 that differ on a single element (i.e. one person’s data),
 - for all subsets $H \subseteq \mathcal{H}$, $\Pr(A(S_1) \in H) \leq \exp(\varepsilon) \Pr(A(S_2) \in H) + \delta$
- Called pure DP if $\delta = 0$

- Used in practice (US Census, Apple, ...), tons of work on algorithms
Differential privacy

- Randomized learning algorithm $A(S)$ is called (ϵ, δ) **differentially private** if
 - for all S_1, S_2 that differ on a single element (i.e. one person’s data),
 - for all subsets $H \subseteq \mathcal{H}$, $\Pr(A(S_1) \in H) \leq \exp(\epsilon) \Pr(A(S_2) \in H) + \delta$
- Called **pure** DP if $\delta = 0$

- Used in practice (US Census, Apple, …), tons of work on algorithms
 - Mijung Park and Mathias Lecuyer both work on this, teach courses (532P next fall, 538L now [but not next year])
Differential privacy

- Randomized learning algorithm $A(S)$ is called (ϵ, δ) differentially private if
 - for all S_1, S_2 that differ on a single element (i.e. one person’s data),
 - for all subsets $H \subseteq \mathcal{H}$, $\Pr(A(S_1) \in H) \leq \exp(\epsilon) \Pr(A(S_2) \in H) + \delta$
- Called pure DP if $\delta = 0$

- Used in practice (US Census, Apple, …), tons of work on algorithms
 - Mijung Park and Mathias Lecuyer both work on this, teach courses (532P next fall, 538L now [but not next year])

- Can be thought of as a particular form of stability
DP and online learning

- Feldman and Xiao 2014:
 Pure private PAC learning takes $\Omega(L\text{dim}(\mathcal{H}))$ samples
- Related to communication complexity

[Diagram showing various layers related to differential privacy and communication complexity]

https://differentialprivacy.org/private-pac/
DP and online learning

- Feldman and Xiao 2014: Pure private PAC learning takes $\Omega(\text{Ldim}(\mathcal{H}))$ samples
- Related to communication complexity
- Alon, Livni, Malliaris, Moran 2019: Approximate private PAC learning takes $\Omega(\log^*(\text{Ldim}(\mathcal{H})))$ samples

$\log^* = \text{iterated logarithm}$

$\log^*(\text{number of atoms in the universe}) \approx 4$

https://differentialprivacy.org/private-pac/
DP and online learning

- Feldman and Xiao 2014: Pure private PAC learning takes $\Omega(L\dim(H))$ samples
 - Related to communication complexity
- Alon, Livni, Malliaris, Moran 2019: Approximate private PAC learning takes $\Omega(\log^*(L\dim(H)))$ samples
- Bun, Livni, Moran 2020: Approximate private PAC learning in $2^{O(L\dim(H))}$ samples
 - Analysis via “global stability”

$log^* = \text{iterated logarithm}$
$log^*(\text{number of atoms in the universe}) \approx 4$

https://differentialprivacy.org/private-pac/
DP and online learning

• Can learn differentially privately iff can learn online
 • Close connections via stability
 • But huge gap in sample and time complexity
 • Indications (Bun 2020) that converting one to the other isn’t possible with polynomial time + sample complexity
 • Still a lot to understand here
Some of the stuff we didn’t cover

- **Multiclass learning**: can use same techniques, need right loss
- **Ranking**: which search results are most relevant?
- **Boosting**: combine “weak learners” to a strong one (kind of like A3 Q3 b)
- **Transfer learning** / **out-of-domain generalization** / …: train on \mathcal{D}, test on \mathcal{D}'
- Do ImageNet Classifiers Generalize to ImageNet? / The Ladder mechanism
- **Robustness**: what if we have some adversarially-corrupted training data?
- **Unsupervised learning** (just the PCA question on A1)
 “How well can we ‘understand’ a data distribution?”
- **Semi-supervised learning** (just the algorithm from A4)
- **Active learning**: if xs are available but labeling them is expensive,
 can we choose which to label?
- **Multi-armed bandits**: which action should I take?
- **Reinforcement learning**: interacting with an environment with hidden state
- …