Grab bag:
Failures of uniform convergence
PAC-Bayes
Online learning

CPSC 532D: Modern Statistical Learning Theory
7/ Dec 2022
cs.ubc.ca/~dsuth/532D/22w1/



https://www.cs.ubc.ca/~dsuth/532D/22w1/

Admin

 Topics that won’t be on the final:
o “Kernels IV”, the stuff about operators / etc
 The last couple lectures:
e Implicit regularization
 Neural tangent kernels
* Universality
« Rademacher complexity of deep nets
e Detalls of any proof
o Stuff that could:
* Working with basic definitions, etc

 The homework question about monotonicity of VC/Rademacher is a
decent example
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Belkin/Ma/Mandal, ICML 2018
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I W generalization in deep learning
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A road to PAC-Bayes

 Bayesians say:

o Start with a prior distribution 7z(/) on choice of hypothesis


https://arxiv.org/abs/math/0702653
https://link.springer.com/chapter/10.1007/978-3-642-34106-9_16
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A road to PAC-Bayes

o Start with a prior distribution 7z(/) on choice of hypothesis

» Observe data S with likelihood Z(S | h)

» End up with posterior distribution p(h | S) x Z(S | h) z(h)

 Make predictions/decision based on posterior mean/median, MAP, single draw, ...
* This is optimal if you believe in your prior + likelihood! @&

* Frequentists say: “but how good is it actually???”

 What if your model class / prior / ... are wrong?
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A road to PAC-Bayes

o Start with a prior distribution 7z(/) on choice of hypothesis

» Observe data S with likelihood Z(S | h)

» End up with posterior distribution p(h | S) x Z(S | h) z(h)

 Make predictions/decision based on posterior mean/median, MAP, single draw, ...
* This is optimal if you believe in your prior + likelihood! @&

* Frequentists say: “but how good is it actually???”

 What if your model class / prior / ... are wrong?
 Tempered likelihood (Zhang 06) / SafeBayes (Grunwald 12):
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A road to PAC-Bayes

o Start with a prior distribution 7z(/) on choice of hypothesis

» Observe data S with likelihood Z(S | h)

» End up with posterior distribution p(h | S) x Z(S | h) z(h)

 Make predictions/decision based on posterior mean/median, MAP, single draw, ...
This is optimal if you believe in your prior + likelihood! &

* Frequentists say: “but how good is it actually???”

 What if your model class / prior / ... are wrong?
Tempered likelihood (Zhang 06) / SafeBayes (Grunwald 12):

e If your model is misspecified, can be provably better to use Fror ) < 1

* No longer quite Bayesian inference, but turns a prior into a posterior
PAC-Bayes: analyzes any prior-posterior pair (potentially even totally unrelated)

Bayesians say:

0
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PAC-Bayes: McAllester bound

» We start with some prior 7 (independent of the data S) on hypotheses
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We start with some prior 7 (independent of the data S) on hypotheses
Our learning algorithm sees S and gives us a posterior p

We'll analyze Lo,(p) = [E th[L@(h)] based on L¢(p) = th[LS(h)]
McAllester-style bound (SSBD theorem 31.1):
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We'll analyze Lo,(p) = [E th[L@(h)] based on L¢(p) = th[LS(h)]
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PAC-Bayes: McAllester bound

We start with some prior 7 (independent of the data S) on hypotheses
Our learning algorithm sees S and gives us a posterior p

We'll analyze Lo,(p) = [E th[L@(h)] based on L¢(p) = th[LS(h)]
McAllester-style bound (SSBD theorem 31.1):

e If £(h,z) € [0,1], with probability at least 1 — 6 over § ~ ",

—_—

L) — L) < KL(p||7) + log -
H\P s\P) = \ 2n— 1)
p(h) .
where KL(p||7) = E;,_,log —— (the usual KL divergence)
(h)

 Proved in SSBD chapter 31 (not bad at all)

v
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 What'’s the best learning algorithm, according to this bound?
» Turns out to be the Gibbs posterior: p(h) x exp(—A4 Ly(h)) n(h)
» Same as tempered likelihood / SafeBayes if £ (S | h) = — log L¢(h) + const

» Typical choice (see 340): e.g. squared loss <> Gaussian likelihood

Lo (p) — Lg(p) < \

« But the bound applies to any prior-posterior pair (with 7 independent of 5)
» Forinstance: could learn a & with (S)GD and then add noise to it
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What learning algorithm?

KL(p||7) + log -
2(n — 1)

 What'’s the best learning algorithm, according to this bound?
» Turns out to be the Gibbs posterior: p(h) x exp(—A4 Ly(h)) n(h)
» Same as tempered likelihood / SafeBayes if £ (S | h) = — log L¢(h) + const

» Typical choice (see 340): e.g. squared loss <> Gaussian likelihood

Lo (p) — Lg(p) < \

« But the bound applies to any prior-posterior pair (with 7 independent of 5)
» Forinstance: could learn a & with (S)GD and then add noise to it
e If hisin a flat minimum, then A + noise will still be good

 But note that if p — point mass and x continuous, KL(p||7) = o0
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What prior?
KL(p||7) + log -
2(n — 1)

Lg(p) — Lg(p) < \

 What'’s the best prior?
 Bound on generalization gap is better if p is “closer” to &
« S didn’t make us “change our mind” too much — similar to MDL
» But we also want a good p, i.e. average training loss L¢(p) should be small
 Notice & only shows up in the bound - nothing to do with the learning algorithm
» We could potentially pick a prior that actually depends on &
e ...as long as we can still bound KL(p||7)
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Other forms of PAC-Bayes bounds

Linear b dL()<1L()+KL(pHﬂ)+lOg%f B e (0,1)
inNear oouna. — -_— 107 an .
' = S T T s B g

+ Catoni bound: for a > 1, ®7'(x) = (1 — exp(—yx))/(1 — exp(—7)),

| . o log(a’l)
Loy(p) <int® | Lg(p) +— |KL(p||nr) —loge +2log ———
I>1 A log a

 Can be much tighter (unfortunately) if KL(p||7)/n is big

* Also variants based on general f-divergences, Wasserstein, ...
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https://arxiv.org/abs/1905.13435

NON-VACUOUS GENERALIZATION BOUNDS AT THE IM-
AGENET SCALE: A PAC-BAYESIAN COMPRESSION

APPROACH
Wenda Zhou Victor Veitch Morgane Austern
Columbia University Columbia University Columbia University
New York, NY New York, NY New York, NY

wz2335@columbia.edu victorveitch@gmail.com ma3293@columbia.edu

Ryan P. Adams Peter Orbanz

Princeton University Columbia University

Princeton, NJ New York, NY
rpal@princeton.edu porbanz@stat.columbia.edu

* Pre-pick a coding scheme to represent networks (e.g. compress the weights)
 Train a network with SGD, sparsify it/etc to £, then add a little noise to weights
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NON-VACUOUS GENERALIZATION BOUNDS AT THE IM-
AGENET SCALE: A PAC-BAYESIAN COMPRESSION

APPROACH
Wenda Zhou Victor Veitch Morgane Austern
Columbia University Columbia University Columbia University
New York, NY New York, NY New York, NY

wz2335@columbia.edu victorveitch@gmail.com ma3293@columbia.edu

Ryan P. Adams Peter Orbanz

Princeton University Columbia University

Princeton, NJ New York, NY
rpal@princeton.edu porbanz@stat.columbia.edu

* Pre-pick a coding scheme to represent networks (e.g. compress the weights)
 Train a network with SGD, sparsify it/etc to £, then add a little noise to weights

Table 1: Summary of bounds obtained from compression

Error Bound
Top 1 Top 5

MNIST 168.4 KiB 8.1 KiB 1.88KiB 6.23KiB <46 % NA
ImageNet 5.93 MiB 452 KiB 102KiB 350KiB < 96.5% <89%

Dataset Orig. size Comp. size Robust. Adj.  Eff. Size

11
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Derandomizing PAC-Bayes

* |n practice, we don’t actually use randomized predictors (usually)

» Possible to “derandomize” to a high-probability bound on Lg,(h) — Ly(h):

 Show convergence of Lg(h) to

S

Lg,(h), Lg(h) to

S

L(h), under p

* Or, use a margin-type loss to show 0-1 error doesn’t change under p

But...these then become “two-sided” bounds
e Subject to the Nagarajan/Kolter failure mode (their Appendix J)

Uniform convergence may be unable to explain
generalization in deep learning

Vaishnavh Nagarajan
Department of Computer Science
Carnegie Mellon University

Pittsburgh, PA
vaishnavh@cs.cmu.edu

B

12

J. Zico Kolter
Department of Computer Science
Carnegie Mellon University &
osch Center for Artificial Intelligence
Pittsburgh, PA
zkolter@cs.cmu.edu


https://arxiv.org/abs/1902.04742
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Online learning

e (Class so far has been in the (passive) batch setting:
» Observe training set S ~ Y", pick h, test on new examples from &

* Joday: the online setting

» See an x,, make a prediction y,, see true label y,, repeat
 We learn how to predict as we go
* Focusing on binary classification to start

« Usual analysis does not assume a fixed distribution &
| abels can even be chosen adversarially

Hello Danica,

| am incredibly sorry about this! It looks like the earlier CMT emails went to my
spam folder. | can do this review within the next 12 hours (i.e. by midnight
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Realizable online setting

» Realizable setting: labels y, have to be consistent with some h* € Z

ABSURDLE by gntm R 2

ou guessed successfully in 8 guesses!
new game

copy replay to clipboard

undo last guess buy my book!
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Mistake bounds

Take a sequence S = ((xl, n*(xy)), ..., (X7, h*(xT)))
M ,(S) is the number of mistakes the algorithm A makes on §

M ,(A) is the worst-case number of mistakes for any S with labels in #Z
Z is online learnable if there’s an A with M ,(#) < oo

If # is finite, consider the algorithm Consistent (basically ERM):
» Start with the version space V, = #

. Given x,, predict y, = h(x,) for any arbitrary h € V,
» Seeingy,update V., =theV,: hix) =y}
Have mistake bound My i qrent(#Z) < |Z | — 1
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A smarter algorithm for finite, realizable #

» If Consistent made a mistake, we might only remove one / from V,

o Better algorithm can always either (a) be right or (b) make lots of progress
* Halving:

» Start with the version space V;, = #
. Given x,, predict y, € argmax,( 1 ‘ {h eV :hx)= r} ‘

» Seeingy, update V.., ={heV,: hx) =y}
« If we were wrong, we removed at least half of V,
o My.14ing(#) < log,|# | — way better bound
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Online learnability

 Think about the game tree for the learner and the adversary

» Put points x, € X into a full binary tree
o Start at the root, move left if learner predicts O, right if it predicts
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Online learnability

Think about the game tree for the learner and the adversary

» Put points x, € X into a full binary tree
o Start at the root, move left if learner predicts O, right if it predicts

# shatters a tree if everywhere in the tree is reached by some h € #

The Littlestone dimension Ldim(#) is the max depth of any tree # shatters
Any algorithm A must have M,(#) > Ldim(A)

If # can shatter a set, it can shatter any tree from that set

e VCAIM(#) < Ldim(#)
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» If Z is finite, can’t shatter a full tree deeper than log,|# |
e f X =[d], £ ={x— l(x=1):i€|d]}, have LAim(#) = 1
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Littlestone dimension examples

» If Z is finite, can’t shatter a full tree deeper than log,|# |
e f X =[d], £ ={x— l(x=1):i€|d]}, have LAim(#) = 1
e If X =10,1land Z = {x— l(x <a):a € [0,1]}, have LdAIm(#") = oo (!)

9942 0

— 1
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Standard Optimal Algorithm

* Like Halving, but tries to reduce Littlestone dimension instead of cardinality:
» Start with the version space V;, = #

. Given x,, predict y, € argmax, , Ldim ({h eV, :hx)= r})
» Seeingy, update V.., ={heV,: hx) =y}
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Standard Optimal Algorithm

Like Halving, but tries to reduce Littlestone dimension instead of cardinality:
» Start with the version space V;, = #

. Given x,, predict y, € argmax, , Ldim ({h eV, :hx)= r})

» Seeingy, update V.., ={heV,: hx) =y}

Whenever we make a mistake, Ldim(V,, ;) < Ldim(V,) — 1:

. Ifnot, Ldim ({h € V,: h(x) = 0}) = Ldim(V,) = Ldim ({h € V, : h(x) = 1})
» Then combine shattered trees into one shattered tree of depth Ldim(V)) + 1

» But then Ldim(V,) = Ldim(V)) + 1...contradiction

Thus Mo (#) = Ldim(F), the best possible mistake bound
But SOA is not necessarily easy to compute!
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Unrealizable online learning

* In the batch setting:
e Realizable PAC assumes labels come from h* € #

» Agnostic PAC just has us compete with best h* € #
* In the online setting:

e Realizable assumes labels come from h* € #
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Unrealizable online learning

* In the batch setting:
e Realizable PAC assumes labels come from h* € #

» Agnostic PAC just has us compete with best h* € #
* In the online setting:

e Realizable assumes labels come from h* € #
» Unrealizable has us compete with best h* € #

T T
Regret,(h,T) =  sup D 19 =yl = ) lh(x) =y
(YD Omyr) | =1 =1
Regret, (&, T) = sup Regret,(h, T)
her

T— o0

« Ideally, we want sublinear regret: % Regret (#£,T) — O
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Regret: Impossible to avoid

» Regret: “how much better it would have been to just play /(x,) every time”
e« Consider Z = {xm— 0, x— 1}
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» Regret: “how much better it would have been to just play /(x,) every time”
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» Regret: “how much better it would have been to just play /(x,) every time”
e ConsiderZ ={x—~ 0,x— 1}
» Adversary could always just say “no, you’re wrong” and get 1 mistakes
. For any sequence of true y,, either x = QO orx = 1 has < — mistakes

2
« So regret would be at least T—% = %
* To avoid this: S IVITINIY MV
» Learner has random prediction, Pr(y, = 1) = p, | ; .
 Adversary commits to y, without knowing the roll /g - e, 7/ »
 Measure expected loss Pr(y, #y,) = |p, — y,| J "
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Low regret for online classification

» For every #Z, there’s an algorithm with
Regret,(#,T) < 4/2min (log\%\, (1 +1logT) Ldim(?/)) T

. Also a lower bound of £2 ( Ldim(#) T)

 Based on Weighted-Majority algorithm for learning with expert advice
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At time ¢, learner chooses to follow expert 1 with probability (wt)l-
d

Sees potential costs v, € R¢; pays expectation (w,, v,)
Weighted-Majority algorithm:
o Start withw,; = (1,...,1); n =+/2log(d)/T
e Fort=1,2,...
» Follow with probabilities w, = w,/ ||w/||,
» Update based on costs v,as w,, | = w,exp(—#nv,) (exp is elementwise)
Theorem (SSBD 21.11): Y, _ (W, v,) — minyg g Y, (v); < 1/210g(@) T #7 > 210gd

Can avoid knowing 71 by doubling trick:runfor T =1, T =2, T = 4, ... sequentially
« Only blows up regret by < 3.5x (SSBD exercise 21.4)
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Low regret for online classification

» For finite #, we can just run Weighted-Majority witheach h € #
« Plugging in previous theorem, Regret (A, T) < y/2log|Z| T
 For infinite Z, we need a not-too-big set of experts where one is still good
« Expert(i, 1», ..., 1;) runs SOA on x, ..., X,
but takes choice with smaller Ldim on indices 1y, 1, ..., I;

» Can show (21.13-14) that one expert is as good as the best h € #Z,
and there aren’t too many of them,

giving Regret,(#,T) <+/2(1 +logT) Ldim(#Z) T
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Online convex optimization

 Online convex optimization is
« Convex hypothesis class #
» At each step: learner picks w, € #Z, environment picks convex loss £ ,(w,)
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» At each step: learner picks w, € #Z, environment picks convex loss £ ,(w,)

T T
- Regret(w*,T) = Z C(w,) — 2 (w*), Regret(#Z,T)= sup Regret(w™,T)

=1 =1 wreH
* Online gradient descent (exactly like SGD) has:
lw*]|*
217 =1
. Regret(w*,T) < % (Hw*ll2 +p2) ﬁ if £, are p-Lipschitz, n = l/ﬁ
. Regret(iw™, T) < Bpﬁ if £, are p-Lipschitz, Z is B-bounded, n = B/ (pﬁ)
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Online Perceptron

You learned about Batch Perceptron in HW3

liIne

iS on
, jus

| algorithm
lally ident

Origina

t only update on mistake

Corresponds to online gradient descent on hinge loss

Get same (R/y)?

ICa

Essent

margin-based mistake bound

ition

d

IN CON

Ldim = oo without the marg
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Online-to-batch conversion

* |f we have a good online algorithm, we have a good batch algorithm:
just run it on the batch
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Online-to-batch conversion

* |f we have a good online algorithm, we have a good batch algorithm:
just run it on the batch

. MRT Lemma 8.14: If S ~ @' gives hy, ..., hpfor 0 < £(h, (x,y)) < M,

1 « l « 2
— 2 Lolh) <= ) £(h(x),y) + My [ —log 5
=1 =1

 MRT Theorem 8.15:if £( - , ) is also convex,

T heH 1 T

=1

| , 1 2.
L —2 .| < int Lg(h) +—=Regret (#Z,T) + 2M —logg
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Differential privacy

Randomized learning algorithm A(S) is called (g, 0) differentially private if
» for all §;, S, that differ on a single element (i.e. one person’s data),

. forall subsets H C #Z, Pr(A(S,) € H) < exp(e) Pr(A(S,) € H) + 0
Called pure DP if 0 = (0

Used in practice (US Census, Apple, ...), tons of work on algorithms
 Mijung Park and Mathias Lecuyer both work on this,

teach courses (532P next fall, 538L now [but not next year])

Can be thought of as a particular form of stability
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DP and online learni

* Feldman and Xiao 2014:
Pure private PAC learning takes

Q(Ldim(#")) samples

* Related to communication complexity

finite ved

e

finite littlestone

approximate dp

pure dp/finite repd

proper
pure dp

.....
-----

R ——————
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DP and online learni

 Feldman and Xiao 2014;
Pure private PAC learning takes
Q(Ldim(#)) samples
* Related to communication complexity
 Alon, Livni, Malliaris, Moran 2019:
Approximate private PAC learning takes |

Q(log*(Ldim(#"))) samples
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log* = iterated logarithm —

log*(number of atoms in the universe) =~ 4 —
32 https://differentialprivacy.org/private-pac/



https://differentialprivacy.org/private-pac/

finite ved

DP and online learni

 Feldman and Xiao 2014;
Pure private PAC learning takes
Q(Ldim(#")) samples
* Related to communication complexity
 Alon, Livni, Malliaris, Moran 2019:
Approximate private PAC learning takes |
Q(log*(Ldim(#"))) samples
e Bun, Livni, Moran 2020:

Approximate private PAC learning in
ROLAIM(A)) samples

» analysis via “global stability”

finite littlestone

approximate dp

pure dp/finite repd

proper
pure dp

log* = iterated logarithm —

log*(number of atoms in the universe) =~ 4 —
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DP and online learning

* (Can learn differentially privately iff can learn online
* Close connections via stability

 But huge gap in sample and time complexity

* |ndications (Bun 2020) that converting one to the other isn’t possible
with polynomial time + sample complexity

o Sitill a lot to understand here

33


https://arxiv.org/abs/2007.05665

Some of the stuff we didn’t cover

 Multiclass learning: can use same techniques, need right loss
 Ranking: which search results are most relevant?
 Boosting: combine “weak learners” to a strong one (kind of like A3 Q3 b)

» Transfer learning / out-of-domain generalization / ...: train on &, test on Y’
Do ImageNet Classifiers Generalize to ImageNet? / The Ladder mechanism
 Robustness: what if we have some adversarially-corrupted training data?

 Unsupervised learning (just the PCA question on A1)
“How well can we ‘understand’ a data distribution?”

e Semi-supervised learning (just the algorithm from A4)

 Active learning: if xs are available but labeling them is expensive,
can we choose which to label?

 Multi-armed bandits: which action should | take?
 Reinforcement learning: interacting with an environment with hidden state
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