
Grab bag:
Failures of uniform convergence

PAC-Bayes
Online learning

CPSC 532D: Modern Statistical Learning Theory

7 Dec 2022

cs.ubc.ca/~dsuth/532D/22w1/

1

https://www.cs.ubc.ca/~dsuth/532D/22w1/

Admin
• Topics that won’t be on the final:

• “Kernels IV”, the stuff about operators / etc

• The last couple lectures:

• Implicit regularization

• Neural tangent kernels

• Universality

• Rademacher complexity of deep nets

• Details of any proof

• Stuff that could:

• Working with basic definitions, etc

• The homework question about monotonicity of VC/Rademacher is a

decent example

2

3

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

3

4

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

(pause)

5

A road to PAC-Bayes
• Bayesians say:
• Start with a prior distribution on choice of hypothesisπ(h)

6

https://arxiv.org/abs/math/0702653
https://link.springer.com/chapter/10.1007/978-3-642-34106-9_16

A road to PAC-Bayes
• Bayesians say:
• Start with a prior distribution on choice of hypothesisπ(h)
• Observe data with likelihood S ℒ(S ∣ h)

6

https://arxiv.org/abs/math/0702653
https://link.springer.com/chapter/10.1007/978-3-642-34106-9_16

A road to PAC-Bayes
• Bayesians say:
• Start with a prior distribution on choice of hypothesisπ(h)
• Observe data with likelihood S ℒ(S ∣ h)
• End up with posterior distribution ρ(h ∣ S) ∝ ℒ(S ∣ h) π(h)

6

https://arxiv.org/abs/math/0702653
https://link.springer.com/chapter/10.1007/978-3-642-34106-9_16

A road to PAC-Bayes
• Bayesians say:
• Start with a prior distribution on choice of hypothesisπ(h)
• Observe data with likelihood S ℒ(S ∣ h)
• End up with posterior distribution ρ(h ∣ S) ∝ ℒ(S ∣ h) π(h)
• Make predictions/decision based on posterior mean/median, MAP, single draw, …

6

https://arxiv.org/abs/math/0702653
https://link.springer.com/chapter/10.1007/978-3-642-34106-9_16

A road to PAC-Bayes
• Bayesians say:
• Start with a prior distribution on choice of hypothesisπ(h)
• Observe data with likelihood S ℒ(S ∣ h)
• End up with posterior distribution ρ(h ∣ S) ∝ ℒ(S ∣ h) π(h)
• Make predictions/decision based on posterior mean/median, MAP, single draw, …

• This is optimal if you believe in your prior + likelihood! !

6

https://arxiv.org/abs/math/0702653
https://link.springer.com/chapter/10.1007/978-3-642-34106-9_16

A road to PAC-Bayes
• Bayesians say:
• Start with a prior distribution on choice of hypothesisπ(h)
• Observe data with likelihood S ℒ(S ∣ h)
• End up with posterior distribution ρ(h ∣ S) ∝ ℒ(S ∣ h) π(h)
• Make predictions/decision based on posterior mean/median, MAP, single draw, …

• This is optimal if you believe in your prior + likelihood! !
• Frequentists say: “but how good is it actually???”

6

https://arxiv.org/abs/math/0702653
https://link.springer.com/chapter/10.1007/978-3-642-34106-9_16

A road to PAC-Bayes
• Bayesians say:
• Start with a prior distribution on choice of hypothesisπ(h)
• Observe data with likelihood S ℒ(S ∣ h)
• End up with posterior distribution ρ(h ∣ S) ∝ ℒ(S ∣ h) π(h)
• Make predictions/decision based on posterior mean/median, MAP, single draw, …

• This is optimal if you believe in your prior + likelihood! !
• Frequentists say: “but how good is it actually???”
• What if your model class / prior / … are wrong?

6

https://arxiv.org/abs/math/0702653
https://link.springer.com/chapter/10.1007/978-3-642-34106-9_16

A road to PAC-Bayes
• Bayesians say:
• Start with a prior distribution on choice of hypothesisπ(h)
• Observe data with likelihood S ℒ(S ∣ h)
• End up with posterior distribution ρ(h ∣ S) ∝ ℒ(S ∣ h) π(h)
• Make predictions/decision based on posterior mean/median, MAP, single draw, …

• This is optimal if you believe in your prior + likelihood! !
• Frequentists say: “but how good is it actually???”
• What if your model class / prior / … are wrong?

• Tempered likelihood (Zhang 06) / SafeBayes (Grünwald 12):

6

https://arxiv.org/abs/math/0702653
https://link.springer.com/chapter/10.1007/978-3-642-34106-9_16

A road to PAC-Bayes
• Bayesians say:
• Start with a prior distribution on choice of hypothesisπ(h)
• Observe data with likelihood S ℒ(S ∣ h)
• End up with posterior distribution ρ(h ∣ S) ∝ ℒ(S ∣ h) π(h)
• Make predictions/decision based on posterior mean/median, MAP, single draw, …

• This is optimal if you believe in your prior + likelihood! !
• Frequentists say: “but how good is it actually???”
• What if your model class / prior / … are wrong?

• Tempered likelihood (Zhang 06) / SafeBayes (Grünwald 12):
• If your model is misspecified, can be provably better to use for ℒλ λ < 1

6

https://arxiv.org/abs/math/0702653
https://link.springer.com/chapter/10.1007/978-3-642-34106-9_16

A road to PAC-Bayes
• Bayesians say:
• Start with a prior distribution on choice of hypothesisπ(h)
• Observe data with likelihood S ℒ(S ∣ h)
• End up with posterior distribution ρ(h ∣ S) ∝ ℒ(S ∣ h) π(h)
• Make predictions/decision based on posterior mean/median, MAP, single draw, …

• This is optimal if you believe in your prior + likelihood! !
• Frequentists say: “but how good is it actually???”
• What if your model class / prior / … are wrong?

• Tempered likelihood (Zhang 06) / SafeBayes (Grünwald 12):
• If your model is misspecified, can be provably better to use for ℒλ λ < 1
• No longer quite Bayesian inference, but turns a prior into a posterior

6

https://arxiv.org/abs/math/0702653
https://link.springer.com/chapter/10.1007/978-3-642-34106-9_16

A road to PAC-Bayes
• Bayesians say:
• Start with a prior distribution on choice of hypothesisπ(h)
• Observe data with likelihood S ℒ(S ∣ h)
• End up with posterior distribution ρ(h ∣ S) ∝ ℒ(S ∣ h) π(h)
• Make predictions/decision based on posterior mean/median, MAP, single draw, …

• This is optimal if you believe in your prior + likelihood! !
• Frequentists say: “but how good is it actually???”
• What if your model class / prior / … are wrong?

• Tempered likelihood (Zhang 06) / SafeBayes (Grünwald 12):
• If your model is misspecified, can be provably better to use for ℒλ λ < 1
• No longer quite Bayesian inference, but turns a prior into a posterior

• PAC-Bayes: analyzes any prior-posterior pair (potentially even totally unrelated)
6

https://arxiv.org/abs/math/0702653
https://link.springer.com/chapter/10.1007/978-3-642-34106-9_16

PAC-Bayes: McAllester bound
• We start with some prior (independent of the data) on hypothesesπ S

7

PAC-Bayes: McAllester bound
• We start with some prior (independent of the data) on hypothesesπ S
• Our learning algorithm sees and gives us a posterior S ρ

7

PAC-Bayes: McAllester bound
• We start with some prior (independent of the data) on hypothesesπ S
• Our learning algorithm sees and gives us a posterior S ρ
• We’ll analyze based on L$(ρ) = %h∼ρ[L$(h)] LS(ρ) = %h∼ρ[LS(h)]

7

PAC-Bayes: McAllester bound
• We start with some prior (independent of the data) on hypothesesπ S
• Our learning algorithm sees and gives us a posterior S ρ
• We’ll analyze based on L$(ρ) = %h∼ρ[L$(h)] LS(ρ) = %h∼ρ[LS(h)]
• McAllester-style bound (SSBD theorem 31.1):

7

PAC-Bayes: McAllester bound
• We start with some prior (independent of the data) on hypothesesπ S
• Our learning algorithm sees and gives us a posterior S ρ
• We’ll analyze based on L$(ρ) = %h∼ρ[L$(h)] LS(ρ) = %h∼ρ[LS(h)]
• McAllester-style bound (SSBD theorem 31.1):
• If , with probability at least over , 

  

where (the usual KL divergence)

ℓ(h, z) ∈ [0,1] 1 − δ S ∼ $n

L$(ρ) − LS(ρ) ≤
KL(ρ∥π) + log n

δ

2(n − 1)
KL(ρ∥π) = %h∼ρ log ρ(h)

π(h)

7

PAC-Bayes: McAllester bound
• We start with some prior (independent of the data) on hypothesesπ S
• Our learning algorithm sees and gives us a posterior S ρ
• We’ll analyze based on L$(ρ) = %h∼ρ[L$(h)] LS(ρ) = %h∼ρ[LS(h)]
• McAllester-style bound (SSBD theorem 31.1):
• If , with probability at least over , 

  

where (the usual KL divergence)

ℓ(h, z) ∈ [0,1] 1 − δ S ∼ $n

L$(ρ) − LS(ρ) ≤
KL(ρ∥π) + log n

δ

2(n − 1)
KL(ρ∥π) = %h∼ρ log ρ(h)

π(h)
• Proved in SSBD chapter 31 (not bad at all)

7

What learning algorithm?

• What’s the best learning algorithm, according to this bound?

8

L$(ρ) − LS(ρ) ≤
KL(ρ∥π) + log n

δ

2(n − 1)

What learning algorithm?

• What’s the best learning algorithm, according to this bound?
• Turns out to be the Gibbs posterior: ρ(h) ∝ exp(−λ LS(h)) π(h)

8

L$(ρ) − LS(ρ) ≤
KL(ρ∥π) + log n

δ

2(n − 1)

What learning algorithm?

• What’s the best learning algorithm, according to this bound?
• Turns out to be the Gibbs posterior: ρ(h) ∝ exp(−λ LS(h)) π(h)
• Same as tempered likelihood / SafeBayes if ℒ(S ∣ h) = − log LS(h) + const

8

L$(ρ) − LS(ρ) ≤
KL(ρ∥π) + log n

δ

2(n − 1)

What learning algorithm?

• What’s the best learning algorithm, according to this bound?
• Turns out to be the Gibbs posterior: ρ(h) ∝ exp(−λ LS(h)) π(h)
• Same as tempered likelihood / SafeBayes if ℒ(S ∣ h) = − log LS(h) + const
• Typical choice (see 340): e.g. squared loss Gaussian likelihood  ↔

8

L$(ρ) − LS(ρ) ≤
KL(ρ∥π) + log n

δ

2(n − 1)

What learning algorithm?

• What’s the best learning algorithm, according to this bound?
• Turns out to be the Gibbs posterior: ρ(h) ∝ exp(−λ LS(h)) π(h)
• Same as tempered likelihood / SafeBayes if ℒ(S ∣ h) = − log LS(h) + const
• Typical choice (see 340): e.g. squared loss Gaussian likelihood  ↔

• But the bound applies to any prior-posterior pair (with independent of)π S

8

L$(ρ) − LS(ρ) ≤
KL(ρ∥π) + log n

δ

2(n − 1)

What learning algorithm?

• What’s the best learning algorithm, according to this bound?
• Turns out to be the Gibbs posterior: ρ(h) ∝ exp(−λ LS(h)) π(h)
• Same as tempered likelihood / SafeBayes if ℒ(S ∣ h) = − log LS(h) + const
• Typical choice (see 340): e.g. squared loss Gaussian likelihood  ↔

• But the bound applies to any prior-posterior pair (with independent of)π S
• For instance: could learn a with (S)GD and then add noise to itĥ

8

L$(ρ) − LS(ρ) ≤
KL(ρ∥π) + log n

δ

2(n − 1)

What learning algorithm?

• What’s the best learning algorithm, according to this bound?
• Turns out to be the Gibbs posterior: ρ(h) ∝ exp(−λ LS(h)) π(h)
• Same as tempered likelihood / SafeBayes if ℒ(S ∣ h) = − log LS(h) + const
• Typical choice (see 340): e.g. squared loss Gaussian likelihood  ↔

• But the bound applies to any prior-posterior pair (with independent of)π S
• For instance: could learn a with (S)GD and then add noise to itĥ
• If is in a flat minimum, then will still be goodĥ ĥ + noise

8

L$(ρ) − LS(ρ) ≤
KL(ρ∥π) + log n

δ

2(n − 1)

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

What learning algorithm?

• What’s the best learning algorithm, according to this bound?
• Turns out to be the Gibbs posterior: ρ(h) ∝ exp(−λ LS(h)) π(h)
• Same as tempered likelihood / SafeBayes if ℒ(S ∣ h) = − log LS(h) + const
• Typical choice (see 340): e.g. squared loss Gaussian likelihood  ↔

• But the bound applies to any prior-posterior pair (with independent of)π S
• For instance: could learn a with (S)GD and then add noise to itĥ
• If is in a flat minimum, then will still be goodĥ ĥ + noise
• But note that if and continuous, ρ → point mass π KL(ρ∥π) → ∞

8

L$(ρ) − LS(ρ) ≤
KL(ρ∥π) + log n

δ

2(n − 1)

What prior?

• What’s the best prior?
• Bound on generalization gap is better if is “closer” to ρ π

9

L$(ρ) − LS(ρ) ≤
KL(ρ∥π) + log n

δ

2(n − 1)

What prior?

• What’s the best prior?
• Bound on generalization gap is better if is “closer” to ρ π
• didn’t make us “change our mind” too much – similar to MDLS

9

L$(ρ) − LS(ρ) ≤
KL(ρ∥π) + log n

δ

2(n − 1)

What prior?

• What’s the best prior?
• Bound on generalization gap is better if is “closer” to ρ π
• didn’t make us “change our mind” too much – similar to MDLS

• But we also want a good , i.e. average training loss should be smallρ LS(ρ)

9

L$(ρ) − LS(ρ) ≤
KL(ρ∥π) + log n

δ

2(n − 1)

What prior?

• What’s the best prior?
• Bound on generalization gap is better if is “closer” to ρ π
• didn’t make us “change our mind” too much – similar to MDLS

• But we also want a good , i.e. average training loss should be smallρ LS(ρ)
• Notice only shows up in the bound – nothing to do with the learning algorithmπ

9

L$(ρ) − LS(ρ) ≤
KL(ρ∥π) + log n

δ

2(n − 1)

What prior?

• What’s the best prior?
• Bound on generalization gap is better if is “closer” to ρ π
• didn’t make us “change our mind” too much – similar to MDLS

• But we also want a good , i.e. average training loss should be smallρ LS(ρ)
• Notice only shows up in the bound – nothing to do with the learning algorithmπ
• We could potentially pick a prior that actually depends on $

9

L$(ρ) − LS(ρ) ≤
KL(ρ∥π) + log n

δ

2(n − 1)

What prior?

• What’s the best prior?
• Bound on generalization gap is better if is “closer” to ρ π
• didn’t make us “change our mind” too much – similar to MDLS

• But we also want a good , i.e. average training loss should be smallρ LS(ρ)
• Notice only shows up in the bound – nothing to do with the learning algorithmπ
• We could potentially pick a prior that actually depends on $
• …as long as we can still bound KL(ρ∥π)

9

L$(ρ) − LS(ρ) ≤
KL(ρ∥π) + log n

δ

2(n − 1)

Other forms of PAC-Bayes bounds

• Linear bound: for any  

• Catoni bound: for , ,

• Can be much tighter (unfortunately) if is big 

• Also variants based on general f-divergences, Wasserstein, …

L$(ρ) ≤ 1
β

LS(ρ) +
KL(ρ∥π) + log 1

δ

2β(1 − β)n β ∈ (0,1)

α > 1 Φ−1
γ (x) = (1 − exp(−γx))/(1 − exp(−γ))

L$(ρ) ≤ inf
λ>1

Φ−1
λ/n (LS(ρ) + α

λ [KL(ρ∥π) − log ε + 2 log log(α2λ)
log α])

KL(ρ∥π)/n

10

https://link.springer.com/article/10.1007/s10994-017-5690-0
https://arxiv.org/abs/1905.13435

• Pre-pick a coding scheme to represent networks (e.g. compress the weights)

• Train a network with SGD, sparsify it/etc to , then add a little noise to weightsĥ

11

• Pre-pick a coding scheme to represent networks (e.g. compress the weights)

• Train a network with SGD, sparsify it/etc to , then add a little noise to weightsĥ

11

Derandomizing PAC-Bayes
• In practice, we don’t actually use randomized predictors (usually)

12

https://arxiv.org/abs/1902.04742

Derandomizing PAC-Bayes
• In practice, we don’t actually use randomized predictors (usually)
• Possible to “derandomize” to a high-probability bound on :L$(h) − LS(h)

12

https://arxiv.org/abs/1902.04742

Derandomizing PAC-Bayes
• In practice, we don’t actually use randomized predictors (usually)
• Possible to “derandomize” to a high-probability bound on :L$(h) − LS(h)
• Show convergence of to , to , under L$(h) %h∼ρL$(h) LS(h) %h∼ρLS(h) ρ

12

https://arxiv.org/abs/1902.04742

Derandomizing PAC-Bayes
• In practice, we don’t actually use randomized predictors (usually)
• Possible to “derandomize” to a high-probability bound on :L$(h) − LS(h)
• Show convergence of to , to , under L$(h) %h∼ρL$(h) LS(h) %h∼ρLS(h) ρ
• Or, use a margin-type loss to show 0-1 error doesn’t change under ρ

12

https://arxiv.org/abs/1902.04742

Derandomizing PAC-Bayes
• In practice, we don’t actually use randomized predictors (usually)
• Possible to “derandomize” to a high-probability bound on :L$(h) − LS(h)
• Show convergence of to , to , under L$(h) %h∼ρL$(h) LS(h) %h∼ρLS(h) ρ
• Or, use a margin-type loss to show 0-1 error doesn’t change under ρ

• But…these then become “two-sided” bounds

12

https://arxiv.org/abs/1902.04742

Derandomizing PAC-Bayes
• In practice, we don’t actually use randomized predictors (usually)
• Possible to “derandomize” to a high-probability bound on :L$(h) − LS(h)
• Show convergence of to , to , under L$(h) %h∼ρL$(h) LS(h) %h∼ρLS(h) ρ
• Or, use a margin-type loss to show 0-1 error doesn’t change under ρ

• But…these then become “two-sided” bounds
• Subject to the Nagarajan/Kolter failure mode (their Appendix J)

12

https://arxiv.org/abs/1902.04742

(pause)

13

Online learning
• Class so far has been in the (passive) batch setting:
• Observe training set , pick , test on new examples from  S ∼ $n h $

14

Online learning
• Class so far has been in the (passive) batch setting:
• Observe training set , pick , test on new examples from  S ∼ $n h $

• Today: the online setting

14

Online learning
• Class so far has been in the (passive) batch setting:
• Observe training set , pick , test on new examples from  S ∼ $n h $

• Today: the online setting
• See an , make a prediction , see true label , repeatxt ̂yt yt

14

Online learning
• Class so far has been in the (passive) batch setting:
• Observe training set , pick , test on new examples from  S ∼ $n h $

• Today: the online setting
• See an , make a prediction , see true label , repeatxt ̂yt yt
• We learn how to predict as we go

14

Online learning
• Class so far has been in the (passive) batch setting:
• Observe training set , pick , test on new examples from  S ∼ $n h $

• Today: the online setting
• See an , make a prediction , see true label , repeatxt ̂yt yt
• We learn how to predict as we go
• Focusing on binary classification to start

14

Online learning
• Class so far has been in the (passive) batch setting:
• Observe training set , pick , test on new examples from  S ∼ $n h $

• Today: the online setting
• See an , make a prediction , see true label , repeatxt ̂yt yt
• We learn how to predict as we go
• Focusing on binary classification to start
• Usual analysis does not assume a fixed distribution $

14

Online learning
• Class so far has been in the (passive) batch setting:
• Observe training set , pick , test on new examples from  S ∼ $n h $

• Today: the online setting
• See an , make a prediction , see true label , repeatxt ̂yt yt
• We learn how to predict as we go
• Focusing on binary classification to start
• Usual analysis does not assume a fixed distribution $
• Labels can even be chosen adversarially

14

Online learning
• Class so far has been in the (passive) batch setting:
• Observe training set , pick , test on new examples from  S ∼ $n h $

• Today: the online setting
• See an , make a prediction , see true label , repeatxt ̂yt yt
• We learn how to predict as we go
• Focusing on binary classification to start
• Usual analysis does not assume a fixed distribution $
• Labels can even be chosen adversarially

14

Realizable online setting
• Realizable setting: labels have to be consistent with some yt h* ∈ ℋ

15

Realizable online setting
• Realizable setting: labels have to be consistent with some yt h* ∈ ℋ

15

Realizable online setting
• Realizable setting: labels have to be consistent with some yt h* ∈ ℋ

15

Mistake bounds
• Take a sequence S = ((x1, h*(x1)), …, (xT, h*(xT)))

16

Mistake bounds
• Take a sequence S = ((x1, h*(x1)), …, (xT, h*(xT)))
• is the number of mistakes the algorithm makes on MA(S) A S

16

Mistake bounds
• Take a sequence S = ((x1, h*(x1)), …, (xT, h*(xT)))
• is the number of mistakes the algorithm makes on MA(S) A S
• is the worst-case number of mistakes for any with labels in MA(ℋ) S ℋ

16

Mistake bounds
• Take a sequence S = ((x1, h*(x1)), …, (xT, h*(xT)))
• is the number of mistakes the algorithm makes on MA(S) A S
• is the worst-case number of mistakes for any with labels in MA(ℋ) S ℋ
• is online learnable if there’s an with  ℋ A MA(ℋ) < ∞

16

Mistake bounds
• Take a sequence S = ((x1, h*(x1)), …, (xT, h*(xT)))
• is the number of mistakes the algorithm makes on MA(S) A S
• is the worst-case number of mistakes for any with labels in MA(ℋ) S ℋ
• is online learnable if there’s an with  ℋ A MA(ℋ) < ∞

• If is finite, consider the algorithm Consistent (basically ERM):ℋ

16

Mistake bounds
• Take a sequence S = ((x1, h*(x1)), …, (xT, h*(xT)))
• is the number of mistakes the algorithm makes on MA(S) A S
• is the worst-case number of mistakes for any with labels in MA(ℋ) S ℋ
• is online learnable if there’s an with  ℋ A MA(ℋ) < ∞

• If is finite, consider the algorithm Consistent (basically ERM):ℋ
• Start with the version space V1 = ℋ

16

Mistake bounds
• Take a sequence S = ((x1, h*(x1)), …, (xT, h*(xT)))
• is the number of mistakes the algorithm makes on MA(S) A S
• is the worst-case number of mistakes for any with labels in MA(ℋ) S ℋ
• is online learnable if there’s an with  ℋ A MA(ℋ) < ∞

• If is finite, consider the algorithm Consistent (basically ERM):ℋ
• Start with the version space V1 = ℋ
• Given , predict for any arbitrary xt ̂yt = h(xt) h ∈ Vt

16

Mistake bounds
• Take a sequence S = ((x1, h*(x1)), …, (xT, h*(xT)))
• is the number of mistakes the algorithm makes on MA(S) A S
• is the worst-case number of mistakes for any with labels in MA(ℋ) S ℋ
• is online learnable if there’s an with  ℋ A MA(ℋ) < ∞

• If is finite, consider the algorithm Consistent (basically ERM):ℋ
• Start with the version space V1 = ℋ
• Given , predict for any arbitrary xt ̂yt = h(xt) h ∈ Vt
• Seeing , update yt Vt+1 = {h ∈ Vt : h(xt) = yt}

16

Mistake bounds
• Take a sequence S = ((x1, h*(x1)), …, (xT, h*(xT)))
• is the number of mistakes the algorithm makes on MA(S) A S
• is the worst-case number of mistakes for any with labels in MA(ℋ) S ℋ
• is online learnable if there’s an with  ℋ A MA(ℋ) < ∞

• If is finite, consider the algorithm Consistent (basically ERM):ℋ
• Start with the version space V1 = ℋ
• Given , predict for any arbitrary xt ̂yt = h(xt) h ∈ Vt
• Seeing , update yt Vt+1 = {h ∈ Vt : h(xt) = yt}

• Have mistake bound M1234546736(ℋ) ≤ |ℋ| − 1

16

A smarter algorithm for finite, realizable ℋ
• If Consistent made a mistake, we might only remove one from h Vt
• Better algorithm can always either (a) be right or (b) make lots of progress

17

A smarter algorithm for finite, realizable ℋ
• If Consistent made a mistake, we might only remove one from h Vt
• Better algorithm can always either (a) be right or (b) make lots of progress
• Halving:

• Start with the version space

• Given , predict

• Seeing , update

V1 = ℋ
xt ̂yt ∈ argmaxr∈{0,1} {h ∈ Vt : h(xt) = r}
yt Vt+1 = {h ∈ Vt : h(xt) = yt}

17

A smarter algorithm for finite, realizable ℋ
• If Consistent made a mistake, we might only remove one from h Vt
• Better algorithm can always either (a) be right or (b) make lots of progress
• Halving:

• Start with the version space

• Given , predict

• Seeing , update

V1 = ℋ
xt ̂yt ∈ argmaxr∈{0,1} {h ∈ Vt : h(xt) = r}
yt Vt+1 = {h ∈ Vt : h(xt) = yt}

• If we were wrong, we removed at least half of Vt

17

A smarter algorithm for finite, realizable ℋ
• If Consistent made a mistake, we might only remove one from h Vt
• Better algorithm can always either (a) be right or (b) make lots of progress
• Halving:

• Start with the version space

• Given , predict

• Seeing , update

V1 = ℋ
xt ̂yt ∈ argmaxr∈{0,1} {h ∈ Vt : h(xt) = r}
yt Vt+1 = {h ∈ Vt : h(xt) = yt}

• If we were wrong, we removed at least half of Vt

• – way better boundM89:;53<(ℋ) ≤ log2|ℋ|

17

Online learnability
• Think about the game tree for the learner and the adversary
• Put points into a full binary treext ∈ =
• Start at the root, move left if learner predicts 0, right if it predicts 1

18

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Online learnability
• Think about the game tree for the learner and the adversary
• Put points into a full binary treext ∈ =
• Start at the root, move left if learner predicts 0, right if it predicts 1

• shatters a tree if everywhere in the tree is reached by some ℋ h ∈ ℋ

18

Online learnability
• Think about the game tree for the learner and the adversary
• Put points into a full binary treext ∈ =
• Start at the root, move left if learner predicts 0, right if it predicts 1

• shatters a tree if everywhere in the tree is reached by some ℋ h ∈ ℋ
• The Littlestone dimension is the max depth of any tree shattersLdim(ℋ) ℋ

18

Online learnability
• Think about the game tree for the learner and the adversary
• Put points into a full binary treext ∈ =
• Start at the root, move left if learner predicts 0, right if it predicts 1

• shatters a tree if everywhere in the tree is reached by some ℋ h ∈ ℋ
• The Littlestone dimension is the max depth of any tree shattersLdim(ℋ) ℋ
• Any algorithm must have A MA(ℋ) ≥ Ldim(ℋ)

18

Online learnability
• Think about the game tree for the learner and the adversary
• Put points into a full binary treext ∈ =
• Start at the root, move left if learner predicts 0, right if it predicts 1

• shatters a tree if everywhere in the tree is reached by some ℋ h ∈ ℋ
• The Littlestone dimension is the max depth of any tree shattersLdim(ℋ) ℋ
• Any algorithm must have A MA(ℋ) ≥ Ldim(ℋ)
• If can shatter a set, it can shatter any tree from that setℋ

18

Online learnability
• Think about the game tree for the learner and the adversary
• Put points into a full binary treext ∈ =
• Start at the root, move left if learner predicts 0, right if it predicts 1

• shatters a tree if everywhere in the tree is reached by some ℋ h ∈ ℋ
• The Littlestone dimension is the max depth of any tree shattersLdim(ℋ) ℋ
• Any algorithm must have A MA(ℋ) ≥ Ldim(ℋ)
• If can shatter a set, it can shatter any tree from that setℋ
• VCdim(ℋ) ≤ Ldim(ℋ)

18

Littlestone dimension examples
• If is finite, can’t shatter a full tree deeper than ℋ log2|ℋ|

19

Littlestone dimension examples
• If is finite, can’t shatter a full tree deeper than ℋ log2|ℋ|
• If , , have = = [d] ℋ = {x ↦ @(x = i) : i ∈ [d]} Ldim(ℋ) = 1

19

Littlestone dimension examples
• If is finite, can’t shatter a full tree deeper than ℋ log2|ℋ|
• If , , have = = [d] ℋ = {x ↦ @(x = i) : i ∈ [d]} Ldim(ℋ) = 1
• If and , have (!)= = [0,1] ℋ = {x ↦ @(x ≤ a) : a ∈ [0,1]} Ldim(ℋ) = ∞

19

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Standard Optimal Algorithm
• Like Halving, but tries to reduce Littlestone dimension instead of cardinality:
• Start with the version space V1 = ℋ
• Given , predict xt ̂yt ∈ argmaxr∈{0,1} Ldim ({h ∈ Vt : h(xt) = r})
• Seeing , update yt Vt+1 = {h ∈ Vt : h(xt) = yt}

20

Standard Optimal Algorithm
• Like Halving, but tries to reduce Littlestone dimension instead of cardinality:
• Start with the version space V1 = ℋ
• Given , predict xt ̂yt ∈ argmaxr∈{0,1} Ldim ({h ∈ Vt : h(xt) = r})
• Seeing , update yt Vt+1 = {h ∈ Vt : h(xt) = yt}

• Whenever we make a mistake, :Ldim(Vt+1) ≤ Ldim(Vt) − 1

20

Standard Optimal Algorithm
• Like Halving, but tries to reduce Littlestone dimension instead of cardinality:
• Start with the version space V1 = ℋ
• Given , predict xt ̂yt ∈ argmaxr∈{0,1} Ldim ({h ∈ Vt : h(xt) = r})
• Seeing , update yt Vt+1 = {h ∈ Vt : h(xt) = yt}

• Whenever we make a mistake, :Ldim(Vt+1) ≤ Ldim(Vt) − 1
• If not, Ldim ({h ∈ Vt : h(xt) = 0}) = Ldim(Vt) = Ldim ({h ∈ Vt : h(xt) = 1})

20

Standard Optimal Algorithm
• Like Halving, but tries to reduce Littlestone dimension instead of cardinality:
• Start with the version space V1 = ℋ
• Given , predict xt ̂yt ∈ argmaxr∈{0,1} Ldim ({h ∈ Vt : h(xt) = r})
• Seeing , update yt Vt+1 = {h ∈ Vt : h(xt) = yt}

• Whenever we make a mistake, :Ldim(Vt+1) ≤ Ldim(Vt) − 1
• If not, Ldim ({h ∈ Vt : h(xt) = 0}) = Ldim(Vt) = Ldim ({h ∈ Vt : h(xt) = 1})
• Then combine shattered trees into one shattered tree of depth Ldim(Vt) + 1

20

Standard Optimal Algorithm
• Like Halving, but tries to reduce Littlestone dimension instead of cardinality:
• Start with the version space V1 = ℋ
• Given , predict xt ̂yt ∈ argmaxr∈{0,1} Ldim ({h ∈ Vt : h(xt) = r})
• Seeing , update yt Vt+1 = {h ∈ Vt : h(xt) = yt}

• Whenever we make a mistake, :Ldim(Vt+1) ≤ Ldim(Vt) − 1
• If not, Ldim ({h ∈ Vt : h(xt) = 0}) = Ldim(Vt) = Ldim ({h ∈ Vt : h(xt) = 1})
• Then combine shattered trees into one shattered tree of depth Ldim(Vt) + 1
• But then …contradictionLdim(Vt) = Ldim(Vt) + 1

20

Standard Optimal Algorithm
• Like Halving, but tries to reduce Littlestone dimension instead of cardinality:
• Start with the version space V1 = ℋ
• Given , predict xt ̂yt ∈ argmaxr∈{0,1} Ldim ({h ∈ Vt : h(xt) = r})
• Seeing , update yt Vt+1 = {h ∈ Vt : h(xt) = yt}

• Whenever we make a mistake, :Ldim(Vt+1) ≤ Ldim(Vt) − 1
• If not, Ldim ({h ∈ Vt : h(xt) = 0}) = Ldim(Vt) = Ldim ({h ∈ Vt : h(xt) = 1})
• Then combine shattered trees into one shattered tree of depth Ldim(Vt) + 1
• But then …contradictionLdim(Vt) = Ldim(Vt) + 1

• Thus , the best possible mistake boundMABC(ℋ) = Ldim(ℋ)

20

Standard Optimal Algorithm
• Like Halving, but tries to reduce Littlestone dimension instead of cardinality:
• Start with the version space V1 = ℋ
• Given , predict xt ̂yt ∈ argmaxr∈{0,1} Ldim ({h ∈ Vt : h(xt) = r})
• Seeing , update yt Vt+1 = {h ∈ Vt : h(xt) = yt}

• Whenever we make a mistake, :Ldim(Vt+1) ≤ Ldim(Vt) − 1
• If not, Ldim ({h ∈ Vt : h(xt) = 0}) = Ldim(Vt) = Ldim ({h ∈ Vt : h(xt) = 1})
• Then combine shattered trees into one shattered tree of depth Ldim(Vt) + 1
• But then …contradictionLdim(Vt) = Ldim(Vt) + 1

• Thus , the best possible mistake boundMABC(ℋ) = Ldim(ℋ)
• But SOA is not necessarily easy to compute!

20

(pause)

21

Unrealizable online learning
• In the batch setting:
• Realizable PAC assumes labels come from h* ∈ ℋ
• Agnostic PAC just has us compete with best h* ∈ ℋ

• In the online setting:
• Realizable assumes labels come from h* ∈ ℋ

22

Unrealizable online learning
• In the batch setting:
• Realizable PAC assumes labels come from h* ∈ ℋ
• Agnostic PAC just has us compete with best h* ∈ ℋ

• In the online setting:
• Realizable assumes labels come from h* ∈ ℋ
• Unrealizable has us compete with best h* ∈ ℋ

22

Unrealizable online learning
• In the batch setting:
• Realizable PAC assumes labels come from h* ∈ ℋ
• Agnostic PAC just has us compete with best h* ∈ ℋ

• In the online setting:
• Realizable assumes labels come from h* ∈ ℋ
• Unrealizable has us compete with best h* ∈ ℋ

RegretA(h, T) = sup
(x1,y1),…,(xT,yT) [

T

∑
t=1

| ̂yt − yt| −
T

∑
t=1

|h(xt) − yt|]

22

Unrealizable online learning
• In the batch setting:
• Realizable PAC assumes labels come from h* ∈ ℋ
• Agnostic PAC just has us compete with best h* ∈ ℋ

• In the online setting:
• Realizable assumes labels come from h* ∈ ℋ
• Unrealizable has us compete with best h* ∈ ℋ

RegretA(h, T) = sup
(x1,y1),…,(xT,yT) [

T

∑
t=1

| ̂yt − yt| −
T

∑
t=1

|h(xt) − yt|]
RegretA(ℋ, T) = sup

h∈ℋ
RegretA(h, T)

22

Unrealizable online learning
• In the batch setting:
• Realizable PAC assumes labels come from h* ∈ ℋ
• Agnostic PAC just has us compete with best h* ∈ ℋ

• In the online setting:
• Realizable assumes labels come from h* ∈ ℋ
• Unrealizable has us compete with best h* ∈ ℋ

RegretA(h, T) = sup
(x1,y1),…,(xT,yT) [

T

∑
t=1

| ̂yt − yt| −
T

∑
t=1

|h(xt) − yt|]
RegretA(ℋ, T) = sup

h∈ℋ
RegretA(h, T)

• Ideally, we want sublinear regret: 1
T RegretA(ℋ, T) T→∞ 0

22

Regret: impossible to avoid
• Regret: “how much better it would have been to just play every time”h(xt)
• Consider ℋ = {x ↦ 0, x ↦ 1}

23

Regret: impossible to avoid
• Regret: “how much better it would have been to just play every time”h(xt)
• Consider ℋ = {x ↦ 0, x ↦ 1}
• Adversary could always just say “no, you’re wrong” and get mistakesT

23

Regret: impossible to avoid
• Regret: “how much better it would have been to just play every time”h(xt)
• Consider ℋ = {x ↦ 0, x ↦ 1}
• Adversary could always just say “no, you’re wrong” and get mistakesT

23

Regret: impossible to avoid
• Regret: “how much better it would have been to just play every time”h(xt)
• Consider ℋ = {x ↦ 0, x ↦ 1}
• Adversary could always just say “no, you’re wrong” and get mistakesT
• For any sequence of true , either or has mistakesyt x ↦ 0 x ↦ 1 ≤ T

2

23

Regret: impossible to avoid
• Regret: “how much better it would have been to just play every time”h(xt)
• Consider ℋ = {x ↦ 0, x ↦ 1}
• Adversary could always just say “no, you’re wrong” and get mistakesT
• For any sequence of true , either or has mistakesyt x ↦ 0 x ↦ 1 ≤ T

2
• So regret would be at least T− T

2 = T
2

23

Regret: impossible to avoid
• Regret: “how much better it would have been to just play every time”h(xt)
• Consider ℋ = {x ↦ 0, x ↦ 1}
• Adversary could always just say “no, you’re wrong” and get mistakesT
• For any sequence of true , either or has mistakesyt x ↦ 0 x ↦ 1 ≤ T

2
• So regret would be at least T− T

2 = T
2

• To avoid this:

23

Regret: impossible to avoid
• Regret: “how much better it would have been to just play every time”h(xt)
• Consider ℋ = {x ↦ 0, x ↦ 1}
• Adversary could always just say “no, you’re wrong” and get mistakesT
• For any sequence of true , either or has mistakesyt x ↦ 0 x ↦ 1 ≤ T

2
• So regret would be at least T− T

2 = T
2

• To avoid this:
• Learner has random prediction, Pr(̂yt = 1) = pt

23

Regret: impossible to avoid
• Regret: “how much better it would have been to just play every time”h(xt)
• Consider ℋ = {x ↦ 0, x ↦ 1}
• Adversary could always just say “no, you’re wrong” and get mistakesT
• For any sequence of true , either or has mistakesyt x ↦ 0 x ↦ 1 ≤ T

2
• So regret would be at least T− T

2 = T
2

• To avoid this:
• Learner has random prediction, Pr(̂yt = 1) = pt
• Adversary commits to without knowing the rollyt

23

Regret: impossible to avoid
• Regret: “how much better it would have been to just play every time”h(xt)
• Consider ℋ = {x ↦ 0, x ↦ 1}
• Adversary could always just say “no, you’re wrong” and get mistakesT
• For any sequence of true , either or has mistakesyt x ↦ 0 x ↦ 1 ≤ T

2
• So regret would be at least T− T

2 = T
2

• To avoid this:
• Learner has random prediction, Pr(̂yt = 1) = pt
• Adversary commits to without knowing the rollyt

23

Regret: impossible to avoid
• Regret: “how much better it would have been to just play every time”h(xt)
• Consider ℋ = {x ↦ 0, x ↦ 1}
• Adversary could always just say “no, you’re wrong” and get mistakesT
• For any sequence of true , either or has mistakesyt x ↦ 0 x ↦ 1 ≤ T

2
• So regret would be at least T− T

2 = T
2

• To avoid this:
• Learner has random prediction, Pr(̂yt = 1) = pt
• Adversary commits to without knowing the rollyt
• Measure expected loss Pr(̂yt ≠ yt) = |pt − yt|

23

Low regret for online classification

• For every , there’s an algorithm with  
 

• Also a lower bound of  

• Based on Weighted-Majority algorithm for learning with expert advice

ℋ
RegretA(ℋ, T) ≤ 2 min (log|ℋ|, (1 + log T) Ldim(ℋ)) T

Ω (Ldim(ℋ) T)

24

Learning from expert advice
• There are available experts who make predictionsd

25

Learning from expert advice
• There are available experts who make predictionsd
• At time , learner chooses to follow expert with probability t i (wt)i

25

Learning from expert advice
• There are available experts who make predictionsd
• At time , learner chooses to follow expert with probability t i (wt)i
• Sees potential costs ; pays expectation vt ∈ ℝd ⟨wt, vt⟩

25

Learning from expert advice
• There are available experts who make predictionsd
• At time , learner chooses to follow expert with probability t i (wt)i
• Sees potential costs ; pays expectation vt ∈ ℝd ⟨wt, vt⟩
• Weighted-Majority algorithm:

25

Learning from expert advice
• There are available experts who make predictionsd
• At time , learner chooses to follow expert with probability t i (wt)i
• Sees potential costs ; pays expectation vt ∈ ℝd ⟨wt, vt⟩
• Weighted-Majority algorithm:
• Start with ; w̃1 = (1,…,1) η = 2 log(d) / T

25

Learning from expert advice
• There are available experts who make predictionsd
• At time , learner chooses to follow expert with probability t i (wt)i
• Sees potential costs ; pays expectation vt ∈ ℝd ⟨wt, vt⟩
• Weighted-Majority algorithm:
• Start with ; w̃1 = (1,…,1) η = 2 log(d) / T
• For t = 1,2,…

25

Learning from expert advice
• There are available experts who make predictionsd
• At time , learner chooses to follow expert with probability t i (wt)i
• Sees potential costs ; pays expectation vt ∈ ℝd ⟨wt, vt⟩
• Weighted-Majority algorithm:
• Start with ; w̃1 = (1,…,1) η = 2 log(d) / T
• For t = 1,2,…
• Follow with probabilities wt = w̃t / ∥wt∥1

25

Learning from expert advice
• There are available experts who make predictionsd
• At time , learner chooses to follow expert with probability t i (wt)i
• Sees potential costs ; pays expectation vt ∈ ℝd ⟨wt, vt⟩
• Weighted-Majority algorithm:
• Start with ; w̃1 = (1,…,1) η = 2 log(d) / T
• For t = 1,2,…
• Follow with probabilities wt = w̃t / ∥wt∥1
• Update based on costs as (exp is elementwise)vt w̃t+1 = w̃t exp(−ηvt)

25

Learning from expert advice
• There are available experts who make predictionsd
• At time , learner chooses to follow expert with probability t i (wt)i
• Sees potential costs ; pays expectation vt ∈ ℝd ⟨wt, vt⟩
• Weighted-Majority algorithm:
• Start with ; w̃1 = (1,…,1) η = 2 log(d) / T
• For t = 1,2,…
• Follow with probabilities wt = w̃t / ∥wt∥1
• Update based on costs as (exp is elementwise)vt w̃t+1 = w̃t exp(−ηvt)

• Theorem (SSBD 21.11): if ∑T
t=1 ⟨wt, vt⟩ − mini∈[d] ∑T

t=1 (vt)i ≤ 2 log(d) T T > 2 log d

25

Learning from expert advice
• There are available experts who make predictionsd
• At time , learner chooses to follow expert with probability t i (wt)i
• Sees potential costs ; pays expectation vt ∈ ℝd ⟨wt, vt⟩
• Weighted-Majority algorithm:
• Start with ; w̃1 = (1,…,1) η = 2 log(d) / T
• For t = 1,2,…
• Follow with probabilities wt = w̃t / ∥wt∥1
• Update based on costs as (exp is elementwise)vt w̃t+1 = w̃t exp(−ηvt)

• Theorem (SSBD 21.11): if ∑T
t=1 ⟨wt, vt⟩ − mini∈[d] ∑T

t=1 (vt)i ≤ 2 log(d) T T > 2 log d

• Can avoid knowing by doubling trick: run for , , , … sequentiallyT T = 1 T = 2 T = 4

25

Learning from expert advice
• There are available experts who make predictionsd
• At time , learner chooses to follow expert with probability t i (wt)i
• Sees potential costs ; pays expectation vt ∈ ℝd ⟨wt, vt⟩
• Weighted-Majority algorithm:
• Start with ; w̃1 = (1,…,1) η = 2 log(d) / T
• For t = 1,2,…
• Follow with probabilities wt = w̃t / ∥wt∥1
• Update based on costs as (exp is elementwise)vt w̃t+1 = w̃t exp(−ηvt)

• Theorem (SSBD 21.11): if ∑T
t=1 ⟨wt, vt⟩ − mini∈[d] ∑T

t=1 (vt)i ≤ 2 log(d) T T > 2 log d

• Can avoid knowing by doubling trick: run for , , , … sequentiallyT T = 1 T = 2 T = 4
• Only blows up regret by x (SSBD exercise 21.4)< 3.5

25

Low regret for online classification

• For finite , we can just run Weighted-Majority with each ℋ h ∈ ℋ

26

Low regret for online classification

• For finite , we can just run Weighted-Majority with each ℋ h ∈ ℋ
• Plugging in previous theorem, Regret./(ℋ, T) ≤ 2 log|ℋ| T

26

Low regret for online classification

• For finite , we can just run Weighted-Majority with each ℋ h ∈ ℋ
• Plugging in previous theorem, Regret./(ℋ, T) ≤ 2 log|ℋ| T

• For infinite , we need a not-too-big set of experts where one is still goodℋ

26

Low regret for online classification

• For finite , we can just run Weighted-Majority with each ℋ h ∈ ℋ
• Plugging in previous theorem, Regret./(ℋ, T) ≤ 2 log|ℋ| T

• For infinite , we need a not-too-big set of experts where one is still goodℋ
• Expert() runs SOA on , 

but takes choice with smaller Ldim on indices
i1, i2, …, iL x1, …, xT

i1, i2, …, iL

26

Low regret for online classification

• For finite , we can just run Weighted-Majority with each ℋ h ∈ ℋ
• Plugging in previous theorem, Regret./(ℋ, T) ≤ 2 log|ℋ| T

• For infinite , we need a not-too-big set of experts where one is still goodℋ
• Expert() runs SOA on , 

but takes choice with smaller Ldim on indices
i1, i2, …, iL x1, …, xT

i1, i2, …, iL
• Can show (21.13-14) that one expert is as good as the best , 

and there aren’t too many of them,  
giving

h ∈ ℋ

RegretA(ℋ, T) ≤ 2(1 + log T) Ldim(ℋ) T

26

Online convex optimization
• Online convex optimization is
• Convex hypothesis class ℋ
• At each step: learner picks , environment picks convex loss wt ∈ ℋ ℓt(wt)

27

Online convex optimization
• Online convex optimization is
• Convex hypothesis class ℋ
• At each step: learner picks , environment picks convex loss wt ∈ ℋ ℓt(wt)

• , Regret(w*, T) =
T

∑
t=1

ℓt(wt) −
T

∑
t=1

ℓt(w*) Regret(ℋ, T) = sup
w*∈ℋ

Regret(w*, T)

27

Online convex optimization
• Online convex optimization is
• Convex hypothesis class ℋ
• At each step: learner picks , environment picks convex loss wt ∈ ℋ ℓt(wt)

• , Regret(w*, T) =
T

∑
t=1

ℓt(wt) −
T

∑
t=1

ℓt(w*) Regret(ℋ, T) = sup
w*∈ℋ

Regret(w*, T)

• Online gradient descent (exactly like SGD) has:

27

Online convex optimization
• Online convex optimization is
• Convex hypothesis class ℋ
• At each step: learner picks , environment picks convex loss wt ∈ ℋ ℓt(wt)

• , Regret(w*, T) =
T

∑
t=1

ℓt(wt) −
T

∑
t=1

ℓt(w*) Regret(ℋ, T) = sup
w*∈ℋ

Regret(w*, T)

• Online gradient descent (exactly like SGD) has:

• where are step directionsRegret(w*, T) ≤ ∥w*∥2

2η
+ η

2
T

∑
t=1

∥vt∥2 vt ∈ ∂ℓt(wt)

27

Online convex optimization
• Online convex optimization is
• Convex hypothesis class ℋ
• At each step: learner picks , environment picks convex loss wt ∈ ℋ ℓt(wt)

• , Regret(w*, T) =
T

∑
t=1

ℓt(wt) −
T

∑
t=1

ℓt(w*) Regret(ℋ, T) = sup
w*∈ℋ

Regret(w*, T)

• Online gradient descent (exactly like SGD) has:

• where are step directionsRegret(w*, T) ≤ ∥w*∥2

2η
+ η

2
T

∑
t=1

∥vt∥2 vt ∈ ∂ℓt(wt)

• if are -Lipschitz, Regret(w*, T) ≤ 1
2 (∥w*∥2 + ρ2) T ℓt ρ η = 1/ T

27

Online convex optimization
• Online convex optimization is
• Convex hypothesis class ℋ
• At each step: learner picks , environment picks convex loss wt ∈ ℋ ℓt(wt)

• , Regret(w*, T) =
T

∑
t=1

ℓt(wt) −
T

∑
t=1

ℓt(w*) Regret(ℋ, T) = sup
w*∈ℋ

Regret(w*, T)

• Online gradient descent (exactly like SGD) has:

• where are step directionsRegret(w*, T) ≤ ∥w*∥2

2η
+ η

2
T

∑
t=1

∥vt∥2 vt ∈ ∂ℓt(wt)

• if are -Lipschitz, Regret(w*, T) ≤ 1
2 (∥w*∥2 + ρ2) T ℓt ρ η = 1/ T

• if are -Lipschitz, is -bounded, Regret(w*, T) ≤ Bρ T ℓt ρ ℋ B η = B/(ρ T)
27

Online Perceptron

• You learned about Batch Perceptron in HW3

• Original algorithm is online

• Essentially identical, just only update on mistake

• Corresponds to online gradient descent on hinge loss

• Get same margin-based mistake bound

• Ldim = without the margin condition

(R/γ)2

∞

28

Online-to-batch conversion
• If we have a good online algorithm, we have a good batch algorithm:  

just run it on the batch

29

Online-to-batch conversion
• If we have a good online algorithm, we have a good batch algorithm:  

just run it on the batch
• MRT Lemma 8.14: If gives for , 

S ∼ 3T h1, …, hT 0 ≤ ℓ(h, (x, y)) ≤ M
1
T

T

∑
t=1

L3(ht) ≤ 1
T

T

∑
t=1

ℓ(ht(xt), yt) + M
2
T

log 1
δ

29

Online-to-batch conversion
• If we have a good online algorithm, we have a good batch algorithm:  

just run it on the batch
• MRT Lemma 8.14: If gives for , 

S ∼ 3T h1, …, hT 0 ≤ ℓ(h, (x, y)) ≤ M
1
T

T

∑
t=1

L3(ht) ≤ 1
T

T

∑
t=1

ℓ(ht(xt), yt) + M
2
T

log 1
δ

• MRT Theorem 8.15: if is also convex, 

ℓ(⋅ , z)

L3 (1
T

T

∑
t=1

ht) ≤ inf
h∈ℋ

L3(h) + 1
T

RegretA(ℋ, T) + 2M
2
T

log 2
δ

29

(pause)

30

Differential privacy
• Randomized learning algorithm is called (,) differentially private ifA(S) ε δ

31

Differential privacy
• Randomized learning algorithm is called (,) differentially private ifA(S) ε δ
• for all that differ on a single element (i.e. one person’s data),S1, S2

31

Differential privacy
• Randomized learning algorithm is called (,) differentially private ifA(S) ε δ
• for all that differ on a single element (i.e. one person’s data),S1, S2
• for all subsets , H ⊆ ℋ Pr(A(S1) ∈ H) ≤ exp(ε) Pr(A(S2) ∈ H) + δ

31

Differential privacy
• Randomized learning algorithm is called (,) differentially private ifA(S) ε δ
• for all that differ on a single element (i.e. one person’s data),S1, S2
• for all subsets , H ⊆ ℋ Pr(A(S1) ∈ H) ≤ exp(ε) Pr(A(S2) ∈ H) + δ

• Called pure DP if  δ = 0

31

Differential privacy
• Randomized learning algorithm is called (,) differentially private ifA(S) ε δ
• for all that differ on a single element (i.e. one person’s data),S1, S2
• for all subsets , H ⊆ ℋ Pr(A(S1) ∈ H) ≤ exp(ε) Pr(A(S2) ∈ H) + δ

• Called pure DP if  δ = 0

• Used in practice (US Census, Apple, …), tons of work on algorithms

31

Differential privacy
• Randomized learning algorithm is called (,) differentially private ifA(S) ε δ
• for all that differ on a single element (i.e. one person’s data),S1, S2
• for all subsets , H ⊆ ℋ Pr(A(S1) ∈ H) ≤ exp(ε) Pr(A(S2) ∈ H) + δ

• Called pure DP if  δ = 0

• Used in practice (US Census, Apple, …), tons of work on algorithms
• Mijung Park and Mathias Lecuyer both work on this, 

teach courses (532P next fall, 538L now [but not next year])  

31

Differential privacy
• Randomized learning algorithm is called (,) differentially private ifA(S) ε δ
• for all that differ on a single element (i.e. one person’s data),S1, S2
• for all subsets , H ⊆ ℋ Pr(A(S1) ∈ H) ≤ exp(ε) Pr(A(S2) ∈ H) + δ

• Called pure DP if  δ = 0

• Used in practice (US Census, Apple, …), tons of work on algorithms
• Mijung Park and Mathias Lecuyer both work on this, 

teach courses (532P next fall, 538L now [but not next year])  

• Can be thought of as a particular form of stability

31

DP and online learning
• Feldman and Xiao 2014:  

Pure private PAC learning takes
 samples

• Related to communication complexity
Ω(Ldim(ℋ))

32 https://differentialprivacy.org/private-pac/

https://differentialprivacy.org/private-pac/

DP and online learning
• Feldman and Xiao 2014:  

Pure private PAC learning takes
 samples

• Related to communication complexity
Ω(Ldim(ℋ))

• Alon, Livni, Malliaris, Moran 2019:  
Approximate private PAC learning takes  

 samplesΩ(log*(Ldim(ℋ)))

32 https://differentialprivacy.org/private-pac/

 = iterated logarithm 
(number of atoms in the universe)

log*
log* ≈ 4

https://differentialprivacy.org/private-pac/

DP and online learning
• Feldman and Xiao 2014:  

Pure private PAC learning takes
 samples

• Related to communication complexity
Ω(Ldim(ℋ))

• Alon, Livni, Malliaris, Moran 2019:  
Approximate private PAC learning takes  

 samplesΩ(log*(Ldim(ℋ)))
• Bun, Livni, Moran 2020:  

Approximate private PAC learning in  
 samples

• analysis via “global stability”
27(Ldim(ℋ))

32 https://differentialprivacy.org/private-pac/

 = iterated logarithm 
(number of atoms in the universe)

log*
log* ≈ 4

https://differentialprivacy.org/private-pac/

DP and online learning

• Can learn differentially privately iff can learn online

• Close connections via stability

• But huge gap in sample and time complexity

• Indications (Bun 2020) that converting one to the other isn’t possible

with polynomial time + sample complexity

• Still a lot to understand here

33

https://arxiv.org/abs/2007.05665

Some of the stuff we didn’t cover
• Multiclass learning: can use same techniques, need right loss

• Ranking: which search results are most relevant?
• Boosting: combine “weak learners” to a strong one (kind of like A3 Q3 b)

• Transfer learning / out-of-domain generalization / …: train on , test on

• Do ImageNet Classifiers Generalize to ImageNet? / The Ladder mechanism

• Robustness: what if we have some adversarially-corrupted training data?

• Unsupervised learning (just the PCA question on A1) 

 “How well can we ‘understand’ a data distribution?”

• Semi-supervised learning (just the algorithm from A4)

• Active learning: if s are available but labeling them is expensive,  

 can we choose which to label?

• Multi-armed bandits: which action should I take?

• Reinforcement learning: interacting with an environment with hidden state

• …

3 3′

x

34

https://arxiv.org/abs/1902.10811
https://arxiv.org/abs/1502.04585

