Grab bag: Failures of uniform convergence PAC-Bayes Online learning CPSC 532D: Modern Statistical Learning Theory 7 Dec 2022 cs.ubc.ca/~dsuth/532D/22w1/

Admin

- Topics that *won't* be on the final:
 - "Kernels IV", the stuff about operators / etc
 - The last couple lectures:
 - Implicit regularization
 - Neural tangent kernels
 - Universality
 - Rademacher complexity of deep nets
 - Details of any proof
- Stuff that could:
 - Working with basic definitions, etc
 - decent example

The homework question about monotonicity of VC/Rademacher is a

 $\lim_{n \to \infty} E S \propto P \left| L_{\mathcal{S}}(h) - L_{\mathcal{S}}(h) \right|^{2} \ge 3\sigma^{2}$ LD(A(S)) > O' Bayes error [and Ls(h)=0] s s s $y = X w^{\pm} + \frac{\varepsilon}{7}$ $X \sim N(0, \mathcal{E}) \in \mathbb{R}^d$ d = w(n)E~N(0,02) $A(s) = X^{\dagger} Y$ $L_{S}(A(S)) = 0$ $L_{S}(\mathcal{A}(\tilde{S}))$ If Z satisfies some conditions, Bartlett, Long, Lugasi, Tsigler (2020) $= \frac{1}{n} \frac{\mathcal{E}}{\mathcal{E}} \left(\frac{w \mathbf{T} \cdot \mathbf{x}_{i} - \mathcal{E}_{i}}{(w \mathbf{T} \cdot \mathbf{x}_{i} - \mathcal{E}_{i})} \right)^{2}$ $L_{\mathcal{D}}(\mathcal{A}(S)) \rightarrow \sigma^{2}$ "Benisn overfitting in ... " LD(A(S))-202 choose e.g. $\mathcal{H} = \{x \mapsto w^* x : \|w\| \leq \mathbb{F}_n^2 \}$ $= \frac{1}{2} \frac{2}{2} \left(2 \frac{2}{2} \frac{1}{2}\right)^2$ smallest possible \mathcal{H} : $\mathcal{H}_n = \left[\mathcal{A}(s) : S \in S_n \right], \frac{\Pr(S \in S_n) \geq 1-S}{S \sim D^n}$ = 4. 12 Er 7402 muss be at least ane pair with SES, SES, Shas X, Y Swith X, $2Xw^{2}-y = 2Xw^{2}-(Xw^{2}+\varepsilon e) = Xw^{2}-\varepsilon e$

(pause)

- Bayesians say:
 - Start with a prior distribution $\pi(h)$ on choice of hypothesis

- Bayesians say:
 - Start with a prior distribution $\pi(h)$ on choice of hypothesis
 - Observe data S with likelihood $\mathscr{L}(S \mid h)$

- Bayesians say:
 - Start with a prior distribution $\pi(h)$ on choice of hypothesis
 - Observe data S with likelihood $\mathscr{L}(S \mid h)$
 - End up with posterior distribution $\rho(h \mid S) \propto \mathscr{L}(S \mid h) \pi(h)$

- Bayesians say:
 - Start with a prior distribution $\pi(h)$ on choice of hypothesis
 - Observe data S with likelihood $\mathscr{L}(S \mid h)$
 - End up with posterior distribution $\rho(h \mid S) \propto \mathscr{L}(S \mid h) \pi(h)$
 - Make predictions/decision based on posterior mean/median, MAP, single draw, ...

- Bayesians say:
 - Start with a prior distribution $\pi(h)$ on choice of hypothesis
 - Observe data S with likelihood $\mathscr{L}(S \mid h)$
 - End up with posterior distribution $\rho(h \mid S) \propto \mathscr{L}(S \mid h) \pi(h)$
- Make predictions/decision based on posterior mean/median, MAP, single draw, ... This is optimal if you believe in your prior + likelihood!

- Bayesians say:
 - Start with a prior distribution $\pi(h)$ on choice of hypothesis
 - Observe data S with likelihood $\mathscr{L}(S \mid h)$
 - End up with posterior distribution $\rho(h \mid S) \propto \mathscr{L}(S \mid h) \pi(h)$
- Make predictions/decision based on posterior mean/median, MAP, single draw, ... This is optimal if you believe in your prior + likelihood!
- Frequentists say: "but how good is it actually???"

- Bayesians say:
 - Start with a prior distribution $\pi(h)$ on choice of hypothesis
 - Observe data S with likelihood $\mathscr{L}(S \mid h)$
 - End up with posterior distribution $\rho(h \mid S) \propto \mathscr{L}(S \mid h) \pi(h)$
- Make predictions/decision based on posterior mean/median, MAP, single draw, ... This is optimal if you believe in your prior + likelihood! Frequentists say: "but how good is it actually???"
- - What if your model class / prior / ... are wrong?

- Bayesians say:
 - Start with a prior distribution $\pi(h)$ on choice of hypothesis
 - Observe data S with likelihood $\mathscr{L}(S \mid h)$
 - End up with posterior distribution $\rho(h \mid S) \propto \mathscr{L}(S \mid h) \pi(h)$
- Make predictions/decision based on posterior mean/median, MAP, single draw, ... This is optimal if you believe in your prior + likelihood!
 - Frequentists say: "but how good is it actually???"
 - What if your model class / prior / ... are wrong?
- Tempered likelihood (<u>Zhang 06</u>) / SafeBayes (<u>Grünwald 12</u>):

- Bayesians say:
 - Start with a prior distribution $\pi(h)$ on choice of hypothesis
 - Observe data S with likelihood $\mathscr{L}(S \mid h)$
 - End up with posterior distribution $\rho(h \mid S) \propto \mathscr{L}(S \mid h) \pi(h)$
- Make predictions/decision based on posterior mean/median, MAP, single draw, ... This is optimal if you believe in your prior + likelihood!
 - Frequentists say: "but how good is it actually???"
 - What if your model class / prior / ... are wrong?
- Tempered likelihood (<u>Zhang 06</u>) / SafeBayes (<u>Grünwald 12</u>):
 - If your model is misspecified, can be provably better to use \mathscr{L}^{λ} for $\lambda < 1$

- Bayesians say:
 - Start with a prior distribution $\pi(h)$ on choice of hypothesis
 - Observe data S with likelihood $\mathscr{L}(S \mid h)$
 - End up with posterior distribution $\rho(h \mid S) \propto \mathscr{L}(S \mid h) \pi(h)$
- Make predictions/decision based on posterior mean/median, MAP, single draw, ... This is optimal if you believe in your prior + likelihood!
 - Frequentists say: "but how good is it actually???"
 - What if your model class / prior / ... are wrong?
- Tempered likelihood (<u>Zhang 06</u>) / SafeBayes (<u>Grünwald 12</u>):
 - If your model is misspecified, can be provably better to use \mathscr{L}^{λ} for $\lambda < 1$
 - No longer quite Bayesian inference, but turns a prior into a posterior

- Bayesians say:
 - Start with a prior distribution $\pi(h)$ on choice of hypothesis
 - Observe data S with likelihood $\mathscr{L}(S \mid h)$
 - End up with posterior distribution $\rho(h \mid S) \propto \mathscr{L}(S \mid h) \pi(h)$
- Make predictions/decision based on posterior mean/median, MAP, single draw, ... This is optimal if you believe in your prior + likelihood!
 - Frequentists say: "but how good is it actually???"
 - What if your model class / prior / ... are wrong?
- Tempered likelihood (<u>Zhang 06</u>) / SafeBayes (<u>Grünwald 12</u>):
 - If your model is misspecified, can be provably better to use \mathscr{L}^{λ} for $\lambda < 1$
 - No longer quite Bayesian inference, but turns a prior into a posterior
- PAC-Bayes: analyzes any prior-posterior pair (potentially even totally unrelated)

- Our learning algorithm sees S and gives us a posterior ρ

- Our learning algorithm sees S and gives us a posterior ρ
- We'll analyze $L_{\mathcal{D}}(\rho) = \mathbb{E}_{h \sim \rho}[L_{\mathcal{D}}(h)]$ based on $L_{S}(\rho) = \mathbb{E}_{h \sim \rho}[L_{S}(h)]$

- Our learning algorithm sees S and gives us a posterior ρ
- We'll analyze $L_{\mathcal{D}}(\rho) = \mathbb{E}_{h\sim\rho}[L_{\mathcal{D}}(h)]$ based on $L_{S}(\rho) = \mathbb{E}_{h\sim\rho}[L_{S}(h)]$
- McAllester-style bound (SSBD theorem 31.1):

- We start with some prior π (independent of the data S) on hypotheses
- Our learning algorithm sees S and gives us a posterior ρ
- We'll analyze $L_{\mathscr{D}}(\rho) = \mathbb{E}_{h\sim\rho}[L_{\mathscr{D}}(h)]$ based on $L_{S}(\rho) = \mathbb{E}_{h\sim\rho}[L_{S}(h)]$ • McAllester-style bound (SSBD theorem 31.1):
- - If $\ell(h, z) \in [0, 1]$, with probability at least 1δ over $S \sim \mathscr{D}^n$, $\leq \sqrt{\frac{\mathrm{KL}(\rho \| \pi) + \log \frac{n}{\delta}}{2(n-1)}}$ $\frac{\rho(h)}{\pi(h)} \text{ (the usual KL divergence)}$

$$L_{\mathcal{D}}(\rho) - L_{S}(\rho) \leq$$

where
$$\operatorname{KL}(\rho \| \pi) = \mathbb{E}_{h \sim \rho} \log \frac{\rho}{\pi}$$

- We start with some prior π (independent of the data S) on hypotheses
- Our learning algorithm sees S and gives us a posterior ρ
- We'll analyze $L_{\mathscr{D}}(\rho) = \mathbb{E}_{h\sim\rho}[L_{\mathscr{D}}(h)]$ based on $L_{S}(\rho) = \mathbb{E}_{h\sim\rho}[L_{S}(h)]$ • McAllester-style bound (SSBD theorem 31.1):
- - If $\ell(h, z) \in [0, 1]$, with probability at least 1δ over $S \sim \mathscr{D}^n$,
 $$\begin{split} L_{\mathscr{D}}(\rho) - L_{\mathcal{S}}(\rho) &\leq \sqrt{\frac{\mathrm{KL}(\rho \| \pi) + \log \frac{n}{\delta}}{2(n-1)}} \\ \text{where } \mathrm{KL}(\rho \| \pi) &= \mathbb{E}_{h \sim \rho} \log \frac{\rho(h)}{\pi(h)} \text{ (the usual KL divergence)} \end{split}$$

$$L_{\mathcal{D}}(\rho) - L_{S}(\rho) \leq$$

 $\mathcal{I}(\mathcal{I})$ Proved in SSBD chapter 31 (not bad at all)

 $L_{\mathcal{D}}(\rho) - L_{S}(\rho) \leq$

• What's the best learning algorithm, according to this bound?

ng algorithm?

$$\int \frac{KL(\rho \| \pi) + \log \frac{n}{\delta}}{2(n-1)}$$

 $L_{\mathcal{D}}(\rho) - L_{\mathcal{S}}(\rho) \leq$

- What's the best learning algorithm, according to this bound?
 - Turns out to be the Gibbs posterior: $\rho(h) \propto \exp(-\lambda L_S(h)) \pi(h)$

ng algorithm?

$$\sqrt{\frac{KL(\rho \parallel \pi) + \log \frac{n}{\delta}}{2(n-1)}}$$

according to this bound? or: $\rho(h) \propto \exp(-\lambda L_S(h)) \pi(h)$

$L_{\mathcal{D}}(\rho) - L_{\mathcal{S}}(\rho) \leq$

- What's the best learning algorithm, according to this bound?
 - Turns out to be the Gibbs posterior: $\rho(h) \propto \exp(-\lambda L_{S}(h)) \pi(h)$

ng algorithm?

$$\sqrt{\frac{KL(\rho \parallel \pi) + \log \frac{n}{\delta}}{2(n-1)}}$$

$L_{O}(\rho) - L_{S}(\rho) \leq$

- What's the best learning algorithm, according to this bound?
 - Turns out to be the Gibbs posterior: $\rho(h) \propto \exp(-\lambda L_S(h)) \pi(h)$

 - Typical choice (see 340): e.g. squared loss \leftrightarrow Gaussian likelihood

ng algorithm?

$$\sqrt{\frac{KL(\rho \parallel \pi) + \log \frac{n}{\delta}}{2(n-1)}}$$

$L_{O}(\rho) - L_{S}(\rho) \leq$

- What's the best learning algorithm, according to this bound?
 - Turns out to be the Gibbs posterior: $\rho(h) \propto \exp(-\lambda L_S(h)) \pi(h)$

 - Typical choice (see 340): e.g. squared loss \leftrightarrow Gaussian likelihood
- But the bound applies to any prior-posterior pair (with π independent of S)

ng algorithm?
$$\sqrt{\frac{KL(\rho \parallel \pi) + \log \frac{n}{\delta}}{2(n-1)}}$$

$L_{O}(\rho) - L_{S}(\rho) \leq$

- What's the best learning algorithm, according to this bound?
 - Turns out to be the Gibbs posterior: $\rho(h) \propto \exp(-\lambda L_S(h)) \pi(h)$

 - Typical choice (see 340): e.g. squared loss \leftrightarrow Gaussian likelihood
- But the bound applies to any prior-posterior pair (with π independent of S)
 - For instance: could learn a \hat{h} with (S)GD and then add noise to it

ng algorithm?

$$\sqrt{\frac{KL(\rho \parallel \pi) + \log \frac{n}{\delta}}{2(n-1)}}$$

$L_{O}(\rho) - L_{S}(\rho) \leq$

- What's the best learning algorithm, according to this bound?
 - Turns out to be the Gibbs posterior: $\rho(h) \propto \exp(-\lambda L_S(h)) \pi(h)$

 - Typical choice (see 340): e.g. squared loss \leftrightarrow Gaussian likelihood
- But the bound applies to any prior-posterior pair (with π independent of S)
 - For instance: could learn a \hat{h} with (S)GD and then add noise to it
 - If h is in a flat minimum, then h + noise will still be good

ng algorithm?
$$\sqrt{\frac{KL(\rho \parallel \pi) + \log \frac{n}{\delta}}{2(n-1)}}$$

$L_{O}(\rho) - L_{S}(\rho) \leq$

- What's the best learning algorithm, according to this bound?
 - Turns out to be the Gibbs posterior: $\rho(h) \propto \exp(-\lambda L_S(h)) \pi(h)$

 - Typical choice (see 340): e.g. squared loss \leftrightarrow Gaussian likelihood
- - For instance: could learn a \hat{h} with (S)GD and then add noise to it
 - If \hat{h} is in a flat minimum, then h + noise will still be good
 - But note that if $\rho \to \text{point mass}$ and π continuous, $\text{KL}(\rho \| \pi) \to \infty$

ng algorithm?

$$\sqrt{\frac{KL(\rho \parallel \pi) + \log \frac{n}{\delta}}{2(n-1)}}$$

• Same as tempered likelihood / SafeBayes if $\mathscr{L}(S \mid h) = -\log L_S(h) + \text{const}$

• But the bound applies to any prior-posterior pair (with π independent of S)

$L_{\mathcal{D}}(\rho) - L_{\mathcal{S}}(\rho) \leq$

- What's the best prior?
 - Bound on generalization gap is better if ρ is "closer" to π

t prior?

$$\sqrt{\frac{KL(\rho \| \pi) + \log \frac{n}{\delta}}{2(n-1)}}$$

$L_{\mathcal{D}}(\rho) - L_{\mathcal{S}}(\rho) \leq$

- What's the best prior?
 - Bound on generalization gap is better if ρ is "closer" to π • S didn't make us "change our mind" too much – similar to MDL

t prior?

$$\sqrt{\frac{KL(\rho \parallel \pi) + \log \frac{n}{\delta}}{2(n-1)}}$$

$L_{\mathcal{D}}(\rho) - L_{S}(\rho) \leq$

- What's the best prior?
 - Bound on generalization gap is better if ρ is "closer" to π
 - S didn't make us "change our mind" too much similar to MDL
 - But we also want a good ρ , i.e. average training loss $L_{\rm S}(\rho)$ should be small

t prior?

$$\sqrt{KL(\rho \| \pi) + \log \frac{n}{\delta}}$$

$$\frac{1}{2(n-1)}$$

$L_{\mathcal{D}}(\rho) - L_{\mathcal{S}}(\rho) \leq$

- What's the best prior?
 - Bound on generalization gap is better if ρ is "closer" to π
 - S didn't make us "change our mind" too much similar to MDL
 - But we also want a good ρ , i.e. average training loss $L_{S}(\rho)$ should be small
- Notice π only shows up in the bound nothing to do with the learning algorithm

t prior?

$$\sqrt{\frac{KL(\rho \parallel \pi) + \log \frac{n}{\delta}}{2(n-1)}}$$

$L_{\mathcal{D}}(\rho) - L_{\mathcal{S}}(\rho) \leq$

- What's the best prior?
 - Bound on generalization gap is better if ρ is "closer" to π
 - S didn't make us "change our mind" too much similar to MDL
 - But we also want a good ρ , i.e. average training loss $L_{S}(\rho)$ should be small
- Notice π only shows up in the bound nothing to do with the learning algorithm • We could potentially pick a prior that actually depends on \mathscr{D}

t prior?

$$\sqrt{\frac{KL(\rho \parallel \pi) + \log \frac{n}{\delta}}{2(n-1)}}$$

What

$L_{\mathcal{D}}(\rho) - L_{\mathcal{S}}(\rho) \leq$

- What's the best prior?
 - Bound on generalization gap is better if ρ is "closer" to π
 - S didn't make us "change our mind" too much similar to MDL
 - But we also want a good ρ , i.e. average training loss $L_{S}(\rho)$ should be small
- Notice π only shows up in the bound nothing to do with the learning algorithm • We could potentially pick a prior that actually depends on \mathscr{D}
- ...as long as we can still bound $KL(\rho \| \pi)$

t prior?

$$\sqrt{\frac{KL(\rho \parallel \pi) + \log \frac{n}{\delta}}{2(n-1)}}$$

Other forms of PAC-Bayes bounds

• Linear bound:
$$L_{\mathscr{D}}(\rho) \leq \frac{1}{\beta}L_{S}(\rho)$$
 -

- - Can be much tighter (unfortunately) if $KL(\rho \| \pi)/n$ is big
- Also variants based on general f-divergences, Wasserstein, …

 $+ \frac{\mathrm{KL}(\rho \| \pi) + \log \frac{1}{\delta}}{2\beta(1-\beta)n} \text{ for any } \beta \in (0,1)$

• Catoni bound: for $\alpha > 1$, $\Phi_{\gamma}^{-1}(x) = (1 - \exp(-\gamma x))/(1 - \exp(-\gamma))$, $L_{\mathcal{D}}(\rho) \le \inf_{\lambda > 1} \Phi_{\lambda/n}^{-1} \left(L_{S}(\rho) + \frac{\alpha}{\lambda} \left[\operatorname{KL}(\rho \| \pi) - \log \varepsilon + 2\log \frac{\log(\alpha^{2}\lambda)}{\log \alpha} \right] \right)$

NON-VACUOUS GENERALIZATION BOUNDS AT THE IM-AGENET SCALE: A PAC-BAYESIAN COMPRESSION APPROACH

Wenda Zhou Columbia University New York, NY

Victor Veitch Columbia University New York, NY wz2335@columbia.edu victorveitch@gmail.com

Ryan P. Adams Princeton University Princeton, NJ rpa@princeton.edu

Morgane Austern **Columbia University** New York, NY ma3293@columbia.edu

Peter Orbanz Columbia University New York, NY porbanz@stat.columbia.edu

• Pre-pick a coding scheme to represent networks (e.g. compress the weights) • Train a network with SGD, sparsify it/etc to \hat{h} , then add a little noise to weights

NON-VACUOUS GENERALIZATION BOUNDS AT THE IM-AGENET SCALE: A PAC-BAYESIAN COMPRESSION APPROACH

Wenda Zhou Columbia University New York, NY

Victor Veitch Columbia University New York, NY wz2335@columbia.edu victorveitch@gmail.com

Ryan P. Adams Princeton University Princeton, NJ rpa@princeton.edu

Table 1: Summary of bounds obtained from compression

Dataset	Orig. size	Comp. size	Robust. Adj.	Eff. Size	Error Bound	
					Top 1	Top 5
MNIST	$168.4{ m KiB}$	$8.1{ m KiB}$	$1.88\mathrm{KiB}$	$6.23{ m KiB}$	< 46 %	NA
ImageNet	$5.93{ m MiB}$	$452{ m KiB}$	$102{ m KiB}$	$350{ m KiB}$	<96.5%	< 89%

Morgane Austern **Columbia University** New York, NY ma3293@columbia.edu

Peter Orbanz Columbia University New York, NY porbanz@stat.columbia.edu

• Pre-pick a coding scheme to represent networks (e.g. compress the weights) • Train a network with SGD, sparsify it/etc to \hat{h} , then add a little noise to weights

• In practice, we don't actually use randomized predictors (usually)

- In practice, we don't actually use randomized predictors (usually)

• Possible to "derandomize" to a high-probability bound on $L_{\Im}(h) - L_{S}(h)$:

- In practice, we don't actually use randomized predictors (usually)

• Possible to "derandomize" to a high-probability bound on $L_{O}(h) - L_{S}(h)$:

• Show convergence of $L_{\mathscr{D}}(h)$ to $\mathbb{E}_{h\sim\rho}L_{\mathscr{D}}(h)$, $L_{S}(h)$ to $\mathbb{E}_{h\sim\rho}L_{S}(h)$, under ρ

- In practice, we don't actually use randomized predictors (usually)
- - Show convergence of $L_{\mathcal{D}}(h)$ to \mathbb{E}

• Possible to "derandomize" to a high-probability bound on $L_{O}(h) - L_{S}(h)$:

$$\mathbb{E}_{h\sim\rho}L_{\mathscr{D}}(h), L_{S}(h)$$
 to $\mathbb{E}_{h\sim\rho}L_{S}(h)$, under ρ

• Or, use a margin-type loss to show 0-1 error doesn't change under ρ

- In practice, we don't actually use randomized predictors (usually)
- Possible to "derandomize" to a high-probability bound on $L_{\Im}(h) L_{S}(h)$:
 - Show convergence of $L_{\mathcal{D}}(h)$ to \mathbb{E}
- Or, use a margin-type loss to show 0-1 error doesn't change under ρ But...these then become "two-sided" bounds

$$\mathbb{E}_{h\sim\rho}L_{\mathscr{D}}(h), L_{S}(h)$$
 to $\mathbb{E}_{h\sim\rho}L_{S}(h)$, under ρ

- In practice, we don't actually use randomized predictors (usually)
- Possible to "derandomize" to a high-probability bound on $L_{\Im}(h) L_{S}(h)$:
 - Show convergence of $L_{\mathcal{O}}(h)$ to \mathbb{E}
- Or, use a margin-type loss to show 0-1 error doesn't change under ρ But...these then become "two-sided" bounds
 - Subject to the <u>Nagarajan/Kolter</u> failure mode (their Appendix J)

Uniform convergence may be unable to explain generalization in deep learning

12

Vaishnavh Nagarajan Department of Computer Science Carnegie Mellon University Pittsburgh, PA vaishnavh@cs.cmu.edu

$$\mathbb{E}_{h\sim\rho}L_{\mathscr{D}}(h), L_{S}(h)$$
 to $\mathbb{E}_{h\sim\rho}L_{S}(h)$, under ρ

J. Zico Kolter Department of Computer Science Carnegie Mellon University & Bosch Center for Artificial Intelligence Pittsburgh, PA zkolter@cs.cmu.edu

(pause)

- Class so far has been in the (passive) batch setting:

- Class so far has been in the (passive) batch setting:
- Today: the **online** setting

- Class so far has been in the (passive) batch setting:
- Today: the online setting
 - See an x_t , make a prediction \hat{y}_t , see true label y_t , repeat

- Class so far has been in the (passive) batch setting:
- Today: the online setting
 - See an x_t , make a prediction \hat{y}_t , see true label y_t , repeat
 - We learn how to predict as we go

- Class so far has been in the (passive) batch setting:
- Today: the **online** setting
 - See an x_t , make a prediction \hat{y}_t , see true label y_t , repeat
 - We learn how to predict as we go
 - Focusing on binary classification to start

- Class so far has been in the (passive) batch setting:
- Today: the **online** setting
 - See an x_t , make a prediction \hat{y}_t , see true label y_t , repeat
 - We learn how to predict as we go
 - Focusing on binary classification to start
 - Usual analysis does *not* assume a fixed distribution \mathscr{D}

- Class so far has been in the (passive) batch setting:
- Today: the online setting
 - See an x_t , make a prediction \hat{y}_t , see true label y_t , repeat
 - We learn how to predict as we go
 - Focusing on binary classification to start
 - Usual analysis does *not* assume a fixed distribution \mathscr{D} Labels can even be chosen adversarially

- Class so far has been in the (passive) batch setting:
- Today: the online setting
 - See an x_t , make a prediction \hat{y}_t , see true label y_t , repeat
 - We learn how to predict as we go
 - Focusing on binary classification to start
 - Usual analysis does *not* assume a fixed distribution \mathscr{D} Labels can even be chosen adversarially

Hello Danica,

I am incredibly sorry about this! It looks like the earlier CMT emails went to my spam folder. I can do this review within the next 12 hours (i.e. by midnight

Online learning

Realizable online setting

• **Realizable** setting: labels y_t have to be consistent with some $h^* \in \mathcal{H}$

Realizable online setting

• **Realizable** setting: labels y_t have to be consistent with some $h^* \in \mathcal{H}$

Realizable online setting

• **Realizable** setting: labels y_t have to be consistent with some $h^* \in \mathcal{H}$

ABSURDLE by <u>gntm</u>

R	А	I	S	E
Р	0	U	Т	Y
W	0	0	L	Y
F	0	L	L	Y
J	0	L	L	Y
н	0	L	L	Y
D	0	L	L	Y
G	0	L	L	Y

You guessed successfully in 8 guesses!

new game

copy replay to clipboard

buy my book!

undo last guess

• Take a sequence $S = ((x_1, h^*(x_1)), \dots, (x_T, h^*(x_T)))$

- Take a sequence $S = ((x_1, h^*(x_1)), \dots, (x_T, h^*(x_T)))$
- $M_A(S)$ is the number of **mistakes** the algorithm A makes on S

- Take a sequence $S = ((x_1, h^*(x_1)), \dots, (x_T, h^*(x_T)))$
- $M_A(S)$ is the number of **mistakes** the algorithm A makes on S
- $M_A(\mathscr{H})$ is the worst-case number of mistakes for any S with labels in \mathscr{H}

- Take a sequence $S = ((x_1, h^*(x_1)$
- $M_A(S)$ is the number of **mistakes** the algorithm A makes on S
- \mathcal{H} is online learnable if there's an A with $M_A(\mathcal{H}) < \infty$

)), ...,
$$(x_T, h^*(x_T)))$$

• $M_A(\mathscr{H})$ is the worst-case number of mistakes for any S with labels in \mathscr{H}

- Take a sequence $S = ((x_1, h^*(x_1)))$
- $M_A(S)$ is the number of **mistakes** the algorithm A makes on S
- $M_A(\mathscr{H})$ is the worst-case number of mistakes for any S with labels in \mathscr{H}
- \mathscr{H} is online learnable if there's an A with $M_A(\mathscr{H}) < \infty$
- If \mathscr{H} is finite, consider the algorithm <code>Consistent</code> (basically ERM):

)), ...,
$$(x_T, h^*(x_T)))$$

- Take a sequence $S = ((x_1, h^*(x_1)))$
- $M_A(S)$ is the number of mistakes the algorithm A makes on S
- $M_A(\mathscr{H})$ is the worst-case number of mistakes for any S with labels in \mathscr{H}
- \mathcal{H} is online learnable if there's an A with $M_A(\mathcal{H}) < \infty$
- If \mathcal{H} is finite, consider the algorithm Consistent (basically ERM):
 - Start with the version space $V_1 = \mathcal{H}$

)), ...,
$$(x_T, h^*(x_T)))$$

- Take a sequence $S = ((x_1, h^*(x_1)))$
- $M_A(S)$ is the number of **mistakes** the algorithm A makes on S
- $M_A(\mathscr{H})$ is the worst-case number of mistakes for any S with labels in \mathscr{H} • \mathcal{H} is online learnable if there's an A with $M_A(\mathcal{H}) < \infty$
- If \mathcal{H} is finite, consider the algorithm Consistent (basically ERM):
- Start with the version space $V_1 = \mathcal{H}$
 - Given x_t , predict $\hat{y}_t = h(x_t)$ for any arbitrary $h \in V_t$

)), ...,
$$(x_T, h^*(x_T)))$$

- Take a sequence $S = ((x_1, h^*(x_1)))$
- $M_A(S)$ is the number of **mistakes** the algorithm A makes on S
- $M_A(\mathcal{H})$ is the worst-case number of mistakes for any S with labels in \mathcal{H} • \mathcal{H} is online learnable if there's an A with $M_A(\mathcal{H}) < \infty$
- If \mathcal{H} is finite, consider the algorithm Consistent (basically ERM):
 - Start with the version space $V_1 = \mathcal{H}$
 - Given x_t , predict $\hat{y}_t = h(x_t)$ for any arbitrary $h \in V_t$
 - Seeing y_t , update $V_{t+1} = \{h \in$

)), ...,
$$(x_T, h^*(x_T)))$$

$$V_t: h(x_t) = y_t\}$$

- Take a sequence $S = ((x_1, h^*(x_1)))$
- $M_A(S)$ is the number of mistakes the algorithm A makes on S
- \mathcal{H} is online learnable if there's an A with $M_A(\mathcal{H}) < \infty$
- If \mathscr{H} is finite, consider the algorithm Consistent (basically ERM):
 - Start with the version space $V_1 = \mathcal{H}$
 - Given x_t , predict $\hat{y}_t = h(x_t)$ for any arbitrary $h \in V_t$
 - Seeing y_t , update $V_{t+1} = \{h \in$
- Have mistake bound $M_{\mathrm{Consistent}}(\mathcal{H}) \leq |\mathcal{H}| 1$

)), ...,
$$(x_T, h^*(x_T)))$$

• $M_A(\mathcal{H})$ is the worst-case number of mistakes for any S with labels in \mathcal{H}

$$V_t: h(x_t) = y_t\}$$

A smarter algorithm for finite, realizable \mathscr{H}

- If Consistent made a mistake, we might only remove one h from V_t

Better algorithm can always either (a) be right or (b) make lots of progress

A smarter algorithm for finite, realizable \mathcal{H}

- If Consistent made a mistake, we might only remove one h from V_t
- Halving:
 - Start with the version space V_1
 - Given x_t , predict $\hat{y}_t \in \operatorname{argmax}_{r \in t}$
 - Seeing y_t , update $V_{t+1} = \{h \in$

• Better algorithm can always either (a) be right or (b) make lots of progress

$$= \mathcal{H}$$

$$\in \{0,1\} \mid \left\{ h \in V_t : h(x_t) = r \right\}$$

$$V_t : h(x_t) = y_t \}$$

A smarter algorithm for finite, realizable \mathcal{H}

- If Consistent made a mistake, we might only remove one h from V_t
- Halving:
 - Start with the version space V_1
 - Given x_t , predict $\hat{y}_t \in \operatorname{argmax}_{r \in t}$
 - Seeing y_t , update $V_{t+1} = \{h \in$
- If we were wrong, we removed at

• Better algorithm can always either (a) be right or (b) make lots of progress

$$= \mathscr{H}$$

$$\in \{0,1\} \mid \left\{ h \in V_t : h(x_t) = r \right\}$$

$$V_t : h(x_t) = y_t \}$$

least half of V_t

A smarter algorithm for finite, realizable \mathcal{H}

- If Consistent made a mistake, we might only remove one h from V_{t}
- Halving:
 - Start with the version space V_1
 - Given x_t , predict $\hat{y}_t \in \operatorname{argmax}_{r \in t}$
 - Seeing y_t , update $V_{t+1} = \{h \in$
- If we were wrong, we removed at
- $M_{\text{Halving}}(\mathscr{H}) \leq \log_2|\mathscr{H}| way$ better bound

• Better algorithm can always either (a) be right or (b) make lots of progress

$$= \mathscr{H}$$

$$\in \{0,1\} \mid \left\{ h \in V_t : h(x_t) = r \right\}$$

$$V_t : h(x_t) = y_t \}$$

least half of V_t

Online learnability

- Think about the game tree for the learner and the adversary
 - Put points $x_t \in \mathcal{X}$ into a full binary tree
 - Start at the root, move left if learner predicts 0, right if it predicts 1

- Think about the game tree for the learner and the adversary
 - Put points $x_t \in \mathcal{X}$ into a full binary tree
 - Start at the root, move left if learner predicts 0, right if it predicts 1
- ${\mathscr H}$ shatters a tree if everywhere in the tree is reached by some $h\in {\mathscr H}$

- Think about the game tree for the learner and the adversary
 - Put points $x_t \in \mathcal{X}$ into a full binary tree
 - Start at the root, move left if learner predicts 0, right if it predicts 1
- ${\mathscr H}$ shatters a tree if everywhere in the tree is reached by some $h\in {\mathscr H}$
- The Littlestone dimension $\operatorname{Ldim}(\mathscr{H})$ is the max depth of any tree \mathscr{H} shatters

- Think about the game tree for the learner and the adversary
 - Put points $x_r \in \mathcal{X}$ into a full binary tree
 - Start at the root, move left if learner predicts 0, right if it predicts 1
- \mathcal{H} shatters a tree if everywhere in the tree is reached by some $h \in \mathcal{H}$
- The Littlestone dimension $Ldim(\mathcal{H})$ is the max depth of any tree \mathcal{H} shatters • Any algorithm A must have $M_A(\mathcal{H}) \geq \text{Ldim}(\mathcal{H})$

- Think about the game tree for the learner and the adversary
 - Put points $x_t \in \mathcal{X}$ into a full binary tree
 - Start at the root, move left if learner predicts 0, right if it predicts 1
- \mathcal{H} shatters a tree if everywhere in the tree is reached by some $h \in \mathcal{H}$
- The Littlestone dimension $Ldim(\mathcal{H})$ is the max depth of any tree \mathcal{H} shatters • Any algorithm A must have $M_A(\mathcal{H}) \geq \text{Ldim}(\mathcal{H})$
- If \mathscr{H} can shatter a set, it can shatter any tree from that set

- Think about the game tree for the learner and the adversary
 - Put points $x_t \in \mathcal{X}$ into a full binary tree
 - Start at the root, move left if learner predicts 0, right if it predicts 1
- \mathcal{H} shatters a tree if everywhere in the tree is reached by some $h \in \mathcal{H}$
- The Littlestone dimension $Ldim(\mathcal{H})$ is the max depth of any tree \mathcal{H} shatters • Any algorithm A must have $M_A(\mathcal{H}) \geq \text{Ldim}(\mathcal{H})$
- If \mathcal{H} can shatter a set, it can shatter any tree from that set
 - $\operatorname{VCdim}(\mathcal{H}) \leq \operatorname{Ldim}(\mathcal{H})$

Littlestone dimension examples

• If \mathcal{H} is finite, can't shatter a full tree deeper than $\log_2|\mathcal{H}|$

Littlestone dimension examples

- If \mathscr{H} is finite, can't shatter a full tree deeper than $\log_2|\mathscr{H}|$
- If $\mathscr{X} = [d], \mathscr{H} = \{x \mapsto \mathbb{I}(x = i) : i \in [d]\}$, have $\operatorname{Ldim}(\mathscr{H}) = 1$

deeper than $\log_2|\mathcal{H}| \in [d]$, have $\operatorname{Ldim}(\mathcal{H}) = 1$

Littlestone dimension examples

- If \mathscr{H} is finite, can't shatter a full tree deeper than $\log_2 |\mathscr{H}|$
- If $\mathscr{X} = [d], \mathscr{H} = \{x \mapsto \mathbb{I}(x = i) : i \in [d]\}$, have $\operatorname{Ldim}(\mathscr{H}) = 1$
- If $\mathscr{X} = [0,1]$ and $\mathscr{H} = \{x \mapsto \mathbb{I}(x \leq a) : a \in [0,1]\}$, have $\operatorname{Ldim}(\mathscr{H}) = \infty$ (!)

- Like Halving, but tries to reduce Littlestone dimension instead of cardinality:
 - Start with the version space $V_1 = \mathcal{H}$
 - Given x_t , predict $\hat{y}_t \in \operatorname{argmax}_{r \in \{0,1\}}$
 - Seeing y_t , update $V_{t+1} = \{h \in V_t :$

$$\operatorname{Ldim} \left(\left\{ h \in V_t : h(x_t) = r \right\} \right)$$
$$h(x_t) = y_t \}$$

- Like Halving, but tries to reduce Littlestone dimension instead of cardinality:
 - Start with the version space $V_1 = \mathcal{H}$
 - Given x_t , predict $\hat{y}_t \in \operatorname{argmax}_{r \in \{0,1\}}$
 - Seeing y_t , update $V_{t+1} = \{h \in V_t :$
- Whenever we make a mistake, Ldim()

$$L\dim\left(\left\{h \in V_t : h(x_t) = r\right\}\right)$$

$$h(x_t) = y_t$$

$$V_{t+1}) \leq L\dim(V_t) - 1:$$

- Like Halving, but tries to reduce Littlestone dimension instead of cardinality:
 - Start with the version space $V_1 = \mathcal{H}$
 - Given x_t , predict $\hat{y}_t \in \operatorname{argmax}_{r \in \{0,1\}}$
 - Seeing y_t , update $V_{t+1} = \{h \in V_t :$
- Whenever we make a mistake, Ldim(
 - If not, $Ldim(\{h \in V_t : h(x_t) = 0\})$

$$L\dim\left(\left\{h \in V_t : h(x_t) = r\right\}\right)$$

$$h(x_t) = y_t$$

$$V_{t+1}) \leq L\dim(V_t) - 1:$$

$$= L\dim(V_t) = L\dim\left(\left\{h \in V_t : h(x_t)\right\}$$

- Like Halving, but tries to reduce Littlestone dimension instead of cardinality:
 - Start with the version space $V_1 = \mathcal{H}$
 - Given x_t , predict $\hat{y}_t \in \operatorname{argmax}_{r \in \{0,1\}}$
 - Seeing y_t , update $V_{t+1} = \{h \in V_t :$
- Whenever we make a mistake, $Ldim(V_{t+1}) \leq Ldim(V_t) 1$:
 - If not, $Ldim(\{h \in V_t : h(x_t) = 0\}) = Ldim(V_t) = Ldim(\{h \in V_t : h(x_t) = 1\})$

$$\operatorname{Ldim} \left\{ \left\{ h \in V_t : h(x_t) = r \right\} \right\}$$
$$h(x_t) = y_t \}$$

- Like Halving, but tries to reduce Littlestone dimension instead of cardinality:
 - Start with the version space $V_1 = \mathcal{H}$
 - Given x_t , predict $\hat{y}_t \in \operatorname{argmax}_{r \in \{0,1\}}$
 - Seeing y_t , update $V_{t+1} = \{h \in V_t :$
- Whenever we make a mistake, $Ldim(V_{t+1}) \leq Ldim(V_t) 1$:
 - If not, $Ldim(\{h \in V_t : h(x_t) = 0\}) = Ldim(V_t) = Ldim(\{h \in V_t : h(x_t) = 1\})$

 - But then $Ldim(V_t) = Ldim(V_t) + 1...contradiction$

$$L\dim\left(\left\{h \in V_t : h(x_t) = r\right\}\right)$$
$$h(x_t) = y_t \}$$

- Like Halving, but tries to reduce Littlestone dimension instead of cardinality:
 - Start with the version space $V_1 = \mathcal{H}$
 - Given x_t , predict $\hat{y}_t \in \operatorname{argmax}_{r \in \{0,1\}}$
 - Seeing y_t , update $V_{t+1} = \{h \in V_t :$
- Whenever we make a mistake, $Ldim(V_{t+1}) \leq Ldim(V_t) 1$:
 - If not, $Ldim(\{h \in V_t : h(x_t) = 0\}) = Ldim(V_t) = Ldim(\{h \in V_t : h(x_t) = 1\})$

 - But then $Ldim(V_t) = Ldim(V_t) + 1$...contradiction
- Thus $M_{SDA}(\mathcal{H}) = Ldim(\mathcal{H})$, the best possible mistake bound

$$\operatorname{Ldim} \left(\left\{ h \in V_t : h(x_t) = r \right\} \right)$$
$$h(x_t) = y_t \}$$

- Like Halving, but tries to reduce Littlestone dimension instead of cardinality:
 - Start with the version space $V_1 = \mathcal{H}$
 - Given x_t , predict $\hat{y}_t \in \operatorname{argmax}_{r \in \{0,1\}}$
 - Seeing y_t , update $V_{t+1} = \{h \in V_t :$
- Whenever we make a mistake, $Ldim(V_{t+1}) \leq Ldim(V_t) 1$:
 - If not, $Ldim(\{h \in V_t : h(x_t) = 0\}) = Ldim(V_t) = Ldim(\{h \in V_t : h(x_t) = 1\})$

 - But then $Ldim(V_t) = Ldim(V_t) + 1$...contradiction

• Thus $M_{SOA}(\mathscr{H}) = Ldim(\mathscr{H})$, the best possible mistake bound • But SOA is not necessarily easy to compute!

$$L\dim\left(\left\{h \in V_t : h(x_t) = r\right\}\right)$$
$$h(x_t) = y_t \}$$

(pause)

- Realizable PAC assumes labels come from $h^* \in \mathcal{H}$ • Agnostic PAC just has us compete with best $h^* \in \mathcal{H}$
- In the online setting:
 - Realizable assumes labels come from $h^* \in \mathcal{H}$

- Realizable PAC assumes labels come from $h^* \in \mathcal{H}$ • Agnostic PAC just has us compete with best $h^* \in \mathcal{H}$
- In the online setting:
 - Realizable assumes labels come from $h^* \in \mathcal{H}$ • Unrealizable has us compete with best $h^* \in \mathcal{H}$

- Realizable PAC assumes labels come from $h^* \in \mathcal{H}$ • Agnostic PAC just has us compete with best $h^* \in \mathcal{H}$
- In the online setting:
 - Regret_A(h, T) = sup _{(x₁,y₁),...,(x_T,y_T)} $\left[\sum_{t=1}^{T} |\hat{y}_t y_t| \sum_{t=1}^{T} |h(x_t) y_t|\right]$
 - Realizable assumes labels come from $h^* \in \mathcal{H}$ • Unrealizable has us compete with best $h^* \in \mathcal{H}$

- Realizable PAC assumes labels come from $h^* \in \mathcal{H}$ • Agnostic PAC just has us compete with best $h^* \in \mathcal{H}$
- In the online setting:
 - Regret_A(h, T) = sup_{(x₁,y₁),...,(x_T,y_T) $\left[\sum_{t=1}^{T} |\hat{y}_t y_t| \sum_{t=1}^{T} |h(x_t) y_t|\right]$} $\operatorname{Regret}_{A}(\mathscr{H}, T) = \sup \operatorname{Regret}_{A}(h, T)$
 - Realizable assumes labels come from $h^* \in \mathcal{H}$ • Unrealizable has us compete with best $h^* \in \mathcal{H}$

 $h \in \mathcal{H}$

- Realizable PAC assumes labels come from $h^* \in \mathcal{H}$ • Agnostic PAC just has us compete with best $h^* \in \mathcal{H}$
- In the online setting:
 - Regret_A(h, T) = sup_{(x₁,y₁),...,(x_T,y_T) $\left[\sum_{t=1}^{T} |\hat{y}_t y_t| \sum_{t=1}^{T} |h(x_t) y_t|\right]$} $\operatorname{Regret}_{A}(\mathcal{H}, T) = \sup \operatorname{Regret}_{A}(h, T)$ $h \in \mathcal{H}$ • Ideally, we want sublinear regret: $\frac{1}{T} \operatorname{Regret}_A(\mathscr{H}, T) \xrightarrow{T \to \infty} 0$
 - Realizable assumes labels come from $h^* \in \mathcal{H}$ • Unrealizable has us compete with best $h^* \in \mathcal{H}$

- Regret: "how much better it would have been to just play $h(x_t)$ every time"
- Consider $\mathscr{H} = \{x \mapsto 0, x \mapsto 1\}$

- Regret: "how much better it would have been to just play $h(x_t)$ every time"
- Consider $\mathscr{H} = \{x \mapsto 0, x \mapsto 1\}$
 - Adversary could always just say "no, you're wrong" and get T mistakes

- Regret: "how much better it would have been to just play $h(x_t)$ every time"
- Consider $\mathscr{H} = \{x \mapsto 0, x \mapsto 1\}$
 - Adversary could always just say "no, you're wrong" and get T mistakes

- Regret: "how much better it would have been to just play $h(x_t)$ every time"
- Consider $\mathscr{H} = \{x \mapsto 0, x \mapsto 1\}$
 - Adversary could always just say "no, you're wrong" and get T mistakes

- Regret: "how much better it would have been to just play $h(x_t)$ every time"
- Consider $\mathscr{H} = \{x \mapsto 0, x \mapsto 1\}$
 - Adversary could always just say "no, you're wrong" and get T mistakes

 - So regret would be at least $T \frac{T}{2} = \frac{T}{2}$

- Regret: "how much better it would have been to just play $h(x_t)$ every time"
- Consider $\mathscr{H} = \{x \mapsto 0, x \mapsto 1\}$
 - Adversary could always just say "no, you're wrong" and get T mistakes

 - So regret would be at least $T \frac{T}{2} = \frac{T}{2}$
- To avoid this:

- Regret: "how much better it would have been to just play $h(x_t)$ every time"
- Consider $\mathscr{H} = \{x \mapsto 0, x \mapsto 1\}$
 - Adversary could always just say "no, you're wrong" and get T mistakes

 - So regret would be at least $T \frac{T}{2} = \frac{T}{2}$
- To avoid this:
 - Learner has random prediction, $Pr(\hat{y}_t = 1) = p_t$

- Regret: "how much better it would have been to just play $h(x_t)$ every time"
- Consider $\mathscr{H} = \{x \mapsto 0, x \mapsto 1\}$
 - Adversary could always just say "no, you're wrong" and get T mistakes

 - So regret would be at least $T \frac{T}{2} = \frac{T}{2}$
- To avoid this:
 - Learner has random prediction, $Pr(\hat{y}_t = 1) = p_t$
 - Adversary commits to y_t without knowing the roll

- Regret: "how much better it would have been to just play $h(x_t)$ every time"
- Consider $\mathscr{H} = \{x \mapsto 0, x \mapsto 1\}$
 - Adversary could always just say "no, you're wrong" and get T mistakes

 - So regret would be at least $T \frac{T}{2} = \frac{T}{2}$
- To avoid this:
 - Learner has random prediction, $Pr(\hat{y}_t = 1) = p_t$
 - Adversary commits to y_t without knowing the roll

- Regret: "how much better it would have been to just play $h(x_t)$ every time"
- Consider $\mathscr{H} = \{x \mapsto 0, x \mapsto 1\}$
 - Adversary could always just say "no, you're wrong" and get T mistakes

 - So regret would be at least $T \frac{T}{2} = \frac{T}{2}$
- To avoid this:
 - Learner has random prediction, $Pr(\hat{y}_t = 1) = p_t$
 - Adversary commits to y_t without knowing the roll
 - Measure **expected** loss $Pr(\hat{y}_t \neq y_t) = |p_t y_t|$

Low regret for online classification

- For every \mathcal{H} , there's an algorithm with $\operatorname{Regret}_{A}(\mathcal{H}, T) \leq \sqrt{2 \min\left(\log |\mathcal{H}|, (1 + \log T) \operatorname{Ldim}(\mathcal{H})\right) T}$
- Also a lower bound of $\Omega\left(\sqrt{\mathrm{Ldin}}\right)$

$$\operatorname{m}(\mathcal{H}) T$$

Based on Weighted-Majority algorithm for learning with expert advice

Learning from expert advice • There are d available experts who make predictions wunderground.com bbc.com weather.com

Learning from expert advice

- There are d available experts who make predictions
- At time t, learner chooses to follow expert i with probability $(w_t)_i$

wunderground.com

bbc.com

weather.com

Learning from expert advice

- There are d available experts who make predictions
- At time t, learner chooses to follow expert i with probability $(w_t)_i$
- Sees potential costs $v_t \in \mathbb{R}^d$; pays expectation $\langle w_t, v_t \rangle$

wunderground.com

bbc.com

weather.com

Learning from expert advice

- There are d available experts who make predictions
- At time t, learner chooses to follow expert i with probability $(w_t)_i$
- Sees potential costs $v_t \in \mathbb{R}^d$; pays expectation $\langle w_t, v_t \rangle$
- Weighted-Majority algorithm:

wunderground.com

bbc.com

weather.com

- There are d available experts who make predictions
- At time t, learner chooses to follow expert i with probability $(w_t)_i$
- Sees potential costs $v_t \in \mathbb{R}^d$; pays expectation $\langle w_t, v_t \rangle$
- Weighted-Majority algorithm:
 - Start with $\tilde{w}_1 = (1, \dots, 1); \ \eta = \sqrt{2\log(d)/T}$

wunderground.com

bbc.com

- There are d available experts who make predictions
- At time t, learner chooses to follow expert i with probability $(w_t)_i$
- Sees potential costs $v_t \in \mathbb{R}^d$; pays expectation $\langle w_t, v_t \rangle$
- Weighted-Majority algorithm:
 - Start with $\tilde{w}_1 = (1, \dots, 1); \ \eta = \sqrt{2\log(d)/T}$
 - For t = 1, 2, ...

wunderground.com

bbc.com

- There are d available experts who make predictions
- At time t, learner chooses to follow expert i with probability $(w_t)_i$
- Sees potential costs $v_t \in \mathbb{R}^d$; pays expectation $\langle w_t, v_t \rangle$
- Weighted-Majority algorithm:
 - Start with $\tilde{w}_1 = (1, \dots, 1); \ \eta = \sqrt{2\log(d)/T}$
 - For t = 1, 2, ...
 - Follow with probabilities $w_t = \tilde{w}_t / ||w_t||_1$

wunderground.com

bbc.com

- There are d available experts who make predictions
- At time t, learner chooses to follow expert i with probability $(w_t)_i$
- Sees potential costs $v_t \in \mathbb{R}^d$; pays expectation $\langle w_t, v_t \rangle$
- Weighted-Majority algorithm:
 - Start with $\tilde{w}_1 = (1, \dots, 1); \ \eta = \sqrt{2\log(d)/T}$
 - For t = 1, 2, ...
 - Follow with probabilities $w_t = \tilde{w}_t / ||w_t||_1$
 - Update based on costs v_t as $\tilde{w}_{t+1} = \tilde{w}_t \exp(-\eta v_t)$

wunderground.com

bbc.com

weather.com

 $\|w_t\|_1 = \tilde{w}_t \exp(-\eta v_t) \quad \text{(exp is elementwise)}$

- There are d available experts who make predictions
- At time t, learner chooses to follow expert i with probability $(w_t)_i$
- Sees potential costs $v_t \in \mathbb{R}^d$; pays expectation $\langle w_t, v_t \rangle$
- Weighted-Majority algorithm:
 - Start with $\tilde{w}_1 = (1, \dots, 1); \ \eta = \sqrt{2 \log(d) / T}$
 - For t = 1, 2, ...
 - Follow with probabilities $w_t = \tilde{w}_t / ||w_t||_1$
- Update based on costs v_t as $\tilde{w}_{t+1} = \tilde{w}_t \exp(-\eta v_t)$ (exp is elementwise) • Theorem (SSBD 21.11): $\sum_{t=1}^{T} \langle w_t, v_t \rangle - \min_{i \in [d]} \sum_{t=1}^{T} (v_t)_i \le \sqrt{2 \log(d) T}$ if $T > 2 \log d$

wunderground.com

bbc.com

- There are d available experts who make predictions
- At time t, learner chooses to follow expert i with probability $(w_t)_i$
- Sees potential costs $v_t \in \mathbb{R}^d$; pays expectation $\langle w_t, v_t \rangle$
- Weighted-Majority algorithm:
 - Start with $\tilde{w}_1 = (1, \dots, 1); \ \eta = \sqrt{2 \log(d) / T}$
 - For t = 1, 2, ...
- Follow with probabilities $w_t = \tilde{w}_t / \|w_t\|_1$ • Update based on costs v_t as $\tilde{w}_{t+1} = \tilde{w}_t \exp(-\eta v_t)$ (exp is elementwise)
- Theorem (SSBD 21.11): $\sum_{t=1}^{T} \langle w_t, v_t \rangle \min_{i \in [d]} \sum_{t=1}^{T} (v_t)_i \le \sqrt{2 \log(d) T}$ if $T > 2 \log d$ • Can avoid knowing T by doubling trick: run for T = 1, T = 2, T = 4, ... sequentially

wunderground.com

bbc.com

- There are d available experts who make predictions
- At time t, learner chooses to follow expert i with probability $(w_t)_i$
- Sees potential costs $v_t \in \mathbb{R}^d$; pays expectation $\langle w_t, v_t \rangle$
- Weighted-Majority algorithm:
 - Start with $\tilde{w}_1 = (1, \dots, 1); \ \eta = \sqrt{2 \log(d) / T}$
 - For t = 1, 2, ...
- Follow with probabilities $w_t = \tilde{w}_t / \|w_t\|_1$ • Update based on costs v_t as $\tilde{w}_{t+1} = \tilde{w}_t \exp(-\eta v_t)$ (exp is elementwise) • Theorem (SSBD 21.11): $\sum_{t=1}^{T} \langle w_t, v_t \rangle - \min_{i \in [d]} \sum_{t=1}^{T} (v_t)_i \le \sqrt{2 \log(d) T}$ if $T > 2 \log d$ • Can avoid knowing T by doubling trick: run for T = 1, T = 2, T = 4, ... sequentially
- Only blows up regret by < 3.5x (SSBD exercise 21.4)

wunderground.com

bbc.com

• For finite \mathcal{H} , we can just run Weighted-Majority with each $h \in \mathcal{H}$

- For finite \mathcal{H} , we can just run Weighted-Majority with each $h \in \mathcal{H}$

• Plugging in previous theorem, $\operatorname{Regret}_{WM}(\mathcal{H}, T) \leq \sqrt{2\log|\mathcal{H}|T}$

- For finite \mathcal{H} , we can just run Weighted-Majority with each $h \in \mathcal{H}$ • Plugging in previous theorem, $\operatorname{Regret}_{WM}(\mathcal{H}, T) \leq \sqrt{2\log|\mathcal{H}|} T$
- For infinite \mathscr{H} , we need a not-too-big set of experts where one is still good

- For finite \mathcal{H} , we can just run Weighted-Majority with each $h \in \mathcal{H}$ • Plugging in previous theorem, $\operatorname{Regret}_{WM}(\mathcal{H}, T) \leq \sqrt{2\log|\mathcal{H}|} T$
- For infinite \mathscr{H} , we need a not-too-big set of experts where one is still good
 - Expert $(i_1, i_2, ..., i_I)$ runs SOA on $x_1, ..., x_T$, but takes choice with smaller Ldim on indices i_1, i_2, \ldots, i_L

- For finite \mathcal{H} , we can just run Weighted-Majority with each $h \in \mathcal{H}$ • Plugging in previous theorem, $\operatorname{Regret}_{WM}(\mathcal{H}, T) \leq \sqrt{2\log|\mathcal{H}|} T$
- For infinite \mathscr{H} , we need a not-too-big set of experts where one is still good
 - Expert $(i_1, i_2, ..., i_I)$ runs SOA on $x_1, ..., x_T$, but takes choice with smaller Ldim on indices i_1, i_2, \ldots, i_L
 - Can show (21.13-14) that one expert is as good as the best $h \in \mathcal{H}$, and there aren't too many of them, giving $\operatorname{Regret}_{A}(\mathcal{H}, T) \leq \sqrt{2(1 + \log T)} \operatorname{Ldim}(\mathcal{H}) T$

- Online convex optimization is
 - Convex hypothesis class \mathcal{H}
 - At each step: learner picks $w_t \in \mathcal{H}$, environment picks convex loss $\ell_t(w_t)$

- Online convex optimization is
 - Convex hypothesis class ${\mathscr H}$
 - At each step: learner picks $w_t \in \mathcal{H}$, environment picks convex loss $\ell_t(w_t)$

Regret $(w^*, T) = \sum \ell_t(w_t) - \sum \ell_t(w^*)$, Regret $(\mathcal{H}, T) = \sup \operatorname{Regret}(w^*, T)$ t=1t = 1

 $w^* \in \mathscr{H}$

- Online convex optimization is
 - Convex hypothesis class ${\mathscr H}$
 - At each step: learner picks $w_t \in \mathcal{H}$, environment picks convex loss $\ell_t(w_t)$

$$= \sum_{t=1}^{l} \ell_t(t)$$

• Online gradient descent (exactly like SGD) has:

 $\operatorname{Regret}(w^*, T) = \sum_{w^* \in \mathcal{H}}^T \ell_t(w_t) - \sum_{w^* \in \mathcal{H}}^T \ell_t(w^*), \quad \operatorname{Regret}(\mathcal{H}, T) = \sup_{w^* \in \mathcal{H}} \operatorname{Regret}(w^*, T)$

t=1

- Online convex optimization is
 - Convex hypothesis class ${\mathscr H}$
 - At each step: learner picks $w_t \in \mathcal{H}$, environment picks convex loss $\ell_t(w_t)$

- Online gradient descent (exactly like SGD) has: $\operatorname{Regret}(w^*, T) \leq \frac{\|w^*\|^2}{2\eta} + \frac{\eta}{2} \sum_{t=1}^T \|v_t\|^2 \text{ where } v_t \in \partial \ell_t(w_t) \text{ are step directions}$
- Regret $(w^*, T) = \sum_{t=1}^{i} \ell_t(w_t) \sum_{t=1}^{i} \ell_t(w^*)$, Regret $(\mathcal{H}, T) = \sup_{w^* \in \mathcal{H}} \operatorname{Regret}(w^*, T)$

- Online convex optimization is
 - Convex hypothesis class ${\mathscr H}$
 - At each step: learner picks $w_t \in \mathcal{H}$, environment picks convex loss $\ell_t(w_t)$

- t=1 t=1• Online gradient descent (exactly like SGD) has: $\operatorname{Regret}(w^*, T) \leq \frac{\|w^*\|^2}{2\eta} + \frac{\eta}{2} \sum_{t=1}^T \|v_t\|^2 \text{ where } v_t \in \partial \mathcal{E}_t(w_t) \text{ are step directions}$
 - Regret $(w^*, T) \le \frac{1}{2} \left(\|w^*\|^2 + \rho^2 \right) \sqrt{T}$ if ℓ_t are ρ -Lipschitz, $\eta = 1/\sqrt{T}$

• Regret(w^*, T) = $\sum \ell_t(w_t) - \sum \ell_t(w^*)$, Regret(\mathcal{H}, T) = sup Regret(w^*, T) $w^* \in \mathscr{H}$

- Online convex optimization is
 - Convex hypothesis class ${\mathscr H}$
 - At each step: learner picks $w_t \in \mathcal{H}$, environment picks convex loss $\ell_t(w_t)$

- t=1 t=1• Online gradient descent (exactly like SGD) has: $\operatorname{Regret}(w^*, T) \leq \frac{\|w^*\|^2}{2\eta} + \frac{\eta}{2} \sum_{t=1}^T \|v_t\|^2 \text{ where } v_t \in \partial \mathcal{E}_t(w_t) \text{ are step directions}$
 - Regret $(w^*, T) \le \frac{1}{2} \left(\|w^*\|^2 + \rho^2 \right) \sqrt{T}$ if ℓ_t are ρ -Lipschitz, $\eta = 1/\sqrt{T}$
 - Regret(w^*, T) $\leq B\rho\sqrt{T}$ if ℓ_t are ρ -Lipschitz, \mathcal{H} is B-bounded, $\eta = B/(\rho\sqrt{T})$

• Regret(w^*, T) = $\sum \ell_t(w_t) - \sum \ell_t(w^*)$, Regret(\mathcal{H}, T) = sup Regret(w^*, T) $w^* \in \mathscr{H}$

Online Perceptron

- You learned about Batch Perceptron in HW3
- Original algorithm is online
- Essentially identical, just only update on mistake
- Corresponds to online gradient descent on hinge loss
- Get same $(R/\gamma)^2$ margin-based mistake bound
 - Ldim = ∞ without the margin condition

Online-to-batch conversion

• If we have a good online algorithm, we have a good batch algorithm: just run it on the batch

Online-to-batch conversion

- If we have a good online algorithm, we have a good batch algorithm: just run it on the batch
- MRT Lemma 8.14: If $S \sim \mathscr{D}^T$ give $\frac{1}{T}\sum_{t=1}^{T}L_{\mathcal{D}}(h_t) \leq \frac{1}{T}\sum_{t=1}^{T}\ell(t)$

es
$$h_1, \dots, h_T$$
 for $0 \le \ell(h, (x, y)) \le M$,
 $(h_t(x_t), y_t) + M\sqrt{\frac{2}{T}\log\frac{1}{\delta}}$

Online-to-batch conversion

- If we have a good online algorithm, we have a good batch algorithm: just run it on the batch
- MRT Lemma 8.14: If $S \sim \mathscr{D}^T$ give $\frac{1}{T}\sum_{t=1}^{T}L_{\mathcal{D}}(h_t) \leq \frac{1}{T}\sum_{t=1}^{T}\ell($
- MRT Theorem 8.15: if $\ell(\cdot, z)$ is also convex,

$$L_{\mathscr{D}}\left(\frac{1}{T}\sum_{t=1}^{T}h_{t}\right) \leq \inf_{h \in \mathscr{H}}L_{\mathscr{D}}(h) + \frac{1}{T}\operatorname{Regret}_{A}(\mathscr{H}, T) + 2M\sqrt{\frac{2}{T}\log\frac{2}{\delta}}$$

es
$$h_1, \dots, h_T$$
 for $0 \le \ell(h, (x, y)) \le M$,
 $(h_t(x_t), y_t) + M\sqrt{\frac{2}{T}\log\frac{1}{\delta}}$

(pause)

• Randomized learning algorithm A(S) is called (ε , δ) differentially private if

- - for all S_1, S_2 that differ on a single element (i.e. one person's data),

• Randomized learning algorithm A(S) is called (ε , δ) differentially private if

- Randomized learning algorithm A(S) is called (ε , δ) differentially private if • for all S_1, S_2 that differ on a single element (i.e. one person's data),

 - for all subsets $H \subseteq \mathscr{H}$, $\Pr(A(S_1) \in H) \leq \exp(\varepsilon) \Pr(A(S_2) \in H) + \delta$

- Randomized learning algorithm A(S) is called (ε , δ) differentially private if • for all S_1, S_2 that differ on a single element (i.e. one person's data),

 - for all subsets $H \subseteq \mathscr{H}$, $\Pr(A(S_1) \in H) \leq \exp(\varepsilon) \Pr(A(S_2) \in H) + \delta$
- Called pure DP if $\delta = 0$

- Randomized learning algorithm A(S) is called (ε , δ) differentially private if • for all S_1, S_2 that differ on a single element (i.e. one person's data),
- - for all subsets $H \subseteq \mathcal{H}$, $\Pr(A(S_1) \in H) \leq \exp(\varepsilon) \Pr(A(S_2) \in H) + \delta$
- Called pure DP if $\delta = 0$
- Used in practice (US Census, Apple, ...), tons of work on algorithms

- Randomized learning algorithm A(S) is called (ε , δ) differentially private if • for all S_1, S_2 that differ on a single element (i.e. one person's data),
- for all subsets $H \subseteq \mathcal{H}$, $\Pr(A(S_1) \in H) \leq \exp(\varepsilon) \Pr(A(S_2) \in H) + \delta$
- Called pure DP if $\delta = 0$
- Used in practice (US Census, Apple, ...), tons of work on algorithms Mijung Park and Mathias Lecuyer both work on this, teach courses (532P next fall, 538L now [but not next year])

- Randomized learning algorithm A(S) is called (ε , δ) differentially private if • for all S_1, S_2 that differ on a single element (i.e. one person's data),
- for all subsets $H \subseteq \mathcal{H}$, $\Pr(A(S_1) \in H) \leq \exp(\varepsilon) \Pr(A(S_2) \in H) + \delta$
- Called pure DP if $\delta = 0$
- Used in practice (US Census, Apple, ...), tons of work on algorithms Mijung Park and Mathias Lecuyer both work on this, teach courses (532P next fall, 538L now [but not next year])
- Can be thought of as a particular form of stability

- Feldman and Xiao 2014: Pure private PAC learning takes $\Omega(\text{Ldim}(\mathcal{H}))$ samples
 - Related to communication complexity

- Feldman and Xiao 2014: Pure private PAC learning takes $\Omega(Ldim(\mathscr{H}))$ samples
 - Related to communication complexity
- Alon, Livni, Malliaris, Moran 2019: Approximate private PAC learning takes $\Omega(\log^*(Ldim(\mathscr{H})))$ samples

 $log^* = iterated logarithm$

- Feldman and Xiao 2014: Pure private PAC learning takes $\Omega(\text{Ldim}(\mathcal{H}))$ samples
 - Related to communication complexity
- Alon, Livni, Malliaris, Moran 2019: Approximate private PAC learning takes $\Omega(\log^*(Ldim(\mathcal{H})))$ samples
- Bun, Livni, Moran 2020: Approximate private PAC learning in $2^{O(Ldim(\mathcal{H}))}$ samples
 - analysis via "global stability"

 $log^* = iterated logarithm$

- Can learn differentially privately iff can learn online
 - Close connections via stability
 - But huge gap in sample and time complexity
 - with polynomial time + sample complexity
 - Still a lot to understand here

Indications (Bun 2020) that converting one to the other isn't possible

Some of the stuff we didn't cover

- Multiclass learning: can use same techniques, need right loss
- Ranking: which search results are most relevant?
- **Boosting**: combine "weak learners" to a strong one (kind of like A3 Q3 b)
- Transfer learning / out-of-domain generalization / ...: train on \mathscr{D} , test on \mathscr{D}'
- <u>Do ImageNet Classifiers Generalize to ImageNet?</u> / <u>The Ladder mechanism</u>
- Robustness: what if we have some adversarially-corrupted training data?
- **Unsupervised learning** (just the PCA question on A1) "How well can we 'understand' a data distribution?"
- Semi-supervised learning (just the algorithm from A4)
- Active learning: if *x*s are available but labeling them is expensive, can we choose which to label?
- Multi-armed bandits: which action should I take?

. . .

• Reinforcement learning: interacting with an environment with hidden state