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Admin
• Topics that won’t be on the final:

• “Kernels IV”, the stuff about operators / etc

• The last couple lectures:

• Implicit regularization

• Neural tangent kernels

• Universality

• Rademacher complexity of deep nets


• Details of any proof

• Stuff that could:

• Working with basic definitions, etc

• The homework question about monotonicity of VC/Rademacher is a 

decent example
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• Bayesians say:
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• Observe data  with likelihood S ℒ(S ∣ h)
• End up with posterior distribution ρ(h ∣ S) ∝ ℒ(S ∣ h) π(h)
• Make predictions/decision based on posterior mean/median, MAP, single draw, …

• This is optimal if you believe in your prior + likelihood! !
• Frequentists say: “but how good is it actually???”
• What if your model class / prior / … are wrong?

• Tempered likelihood (Zhang 06) / SafeBayes (Grünwald 12):
• If your model is misspecified, can be provably better to use  for ℒλ λ < 1
• No longer quite Bayesian inference, but turns a prior into a posterior

• PAC-Bayes: analyzes any prior-posterior pair (potentially even totally unrelated)
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• Our learning algorithm sees  and gives us a posterior S ρ
• We’ll analyze  based on L$(ρ) = %h∼ρ[L$(h)] LS(ρ) = %h∼ρ[LS(h)]
• McAllester-style bound (SSBD theorem 31.1):
• If , with probability at least  over , 

                        

where   (the usual KL divergence)

ℓ(h, z) ∈ [0,1] 1 − δ S ∼ $n

L$(ρ) − LS(ρ) ≤
KL(ρ∥π) + log n

δ

2(n − 1)
KL(ρ∥π) = %h∼ρ log ρ(h)

π(h)
• Proved in SSBD chapter 31 (not bad at all)
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What learning algorithm?

• What’s the best learning algorithm, according to this bound?
• Turns out to be the Gibbs posterior:  ρ(h) ∝ exp(−λ LS(h)) π(h)
• Same as tempered likelihood / SafeBayes if ℒ(S ∣ h) = − log LS(h) + const
• Typical choice (see 340): e.g. squared loss  Gaussian likelihood  ↔

• But the bound applies to any prior-posterior pair (with  independent of )π S
• For instance: could learn a  with (S)GD and then add noise to itĥ
• If  is in a flat minimum, then  will still be goodĥ ĥ + noise
• But note that if  and  continuous, ρ → point mass π KL(ρ∥π) → ∞
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What prior?

• What’s the best prior?
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• What’s the best prior?
• Bound on generalization gap is better if  is “closer” to ρ π
•  didn’t make us “change our mind” too much – similar to MDLS

• But we also want a good , i.e. average training loss  should be smallρ LS(ρ)
• Notice  only shows up in the bound – nothing to do with the learning algorithmπ
• We could potentially pick a prior that actually depends on $
• …as long as we can still bound KL(ρ∥π)
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Other forms of PAC-Bayes bounds

• Linear bound:  for any  

• Catoni bound: for , , 




• Can be much tighter (unfortunately) if  is big 

• Also variants based on general f-divergences, Wasserstein, …

L$(ρ) ≤ 1
β

LS(ρ) +
KL(ρ∥π) + log 1

δ

2β(1 − β)n β ∈ (0,1)

α > 1 Φ−1
γ (x) = (1 − exp(−γx))/(1 − exp(−γ))

L$(ρ) ≤ inf
λ>1

Φ−1
λ/n (LS(ρ) + α

λ [KL(ρ∥π) − log ε + 2 log log(α2λ)
log α ])

KL(ρ∥π)/n

10

https://link.springer.com/article/10.1007/s10994-017-5690-0
https://arxiv.org/abs/1905.13435
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Derandomizing PAC-Bayes
• In practice, we don’t actually use randomized predictors (usually)
• Possible to “derandomize” to a high-probability bound on :L$(h) − LS(h)
• Show convergence of  to ,  to , under L$(h) %h∼ρL$(h) LS(h) %h∼ρLS(h) ρ
• Or, use a margin-type loss to show 0-1 error doesn’t change under ρ

• But…these then become “two-sided” bounds
• Subject to the Nagarajan/Kolter failure mode (their Appendix J)

12

https://arxiv.org/abs/1902.04742
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Online learning
• Class so far has been in the (passive) batch setting:
• Observe training set , pick , test on new examples from  S ∼ $n h $
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• If  is finite, consider the algorithm Consistent (basically ERM):ℋ
• Start with the version space V1 = ℋ
• Given , predict  for any arbitrary xt ̂yt = h(xt) h ∈ Vt
• Seeing , update yt Vt+1 = {h ∈ Vt : h(xt) = yt}

• Have mistake bound M1234546736(ℋ) ≤ |ℋ| − 1
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• Better algorithm can always either (a) be right or (b) make lots of progress
• Halving:

• Start with the version space 


• Given , predict 


• Seeing , update 

V1 = ℋ
xt ̂yt ∈ argmaxr∈{0,1} {h ∈ Vt : h(xt) = r}
yt Vt+1 = {h ∈ Vt : h(xt) = yt}

• If we were wrong, we removed at least half of Vt

•  – way better boundM89:;53<(ℋ) ≤ log2|ℋ|
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Online learnability
• Think about the game tree for the learner and the adversary
• Put points  into a full binary treext ∈ =
• Start at the root, move left if learner predicts 0, right if it predicts 1
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• The Littlestone dimension  is the max depth of any tree  shattersLdim(ℋ) ℋ
• Any algorithm  must have A MA(ℋ) ≥ Ldim(ℋ)
• If  can shatter a set, it can shatter any tree from that setℋ
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Littlestone dimension examples
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19



Littlestone dimension examples
• If  is finite, can’t shatter a full tree deeper than ℋ log2|ℋ|
• If , , have = = [d] ℋ = {x ↦ @(x = i) : i ∈ [d]} Ldim(ℋ) = 1

19



Littlestone dimension examples
• If  is finite, can’t shatter a full tree deeper than ℋ log2|ℋ|
• If , , have = = [d] ℋ = {x ↦ @(x = i) : i ∈ [d]} Ldim(ℋ) = 1
• If  and , have  (!)= = [0,1] ℋ = {x ↦ @(x ≤ a) : a ∈ [0,1]} Ldim(ℋ) = ∞
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Standard Optimal Algorithm
• Like Halving, but tries to reduce Littlestone dimension instead of cardinality:
• Start with the version space V1 = ℋ
• Given , predict xt ̂yt ∈ argmaxr∈{0,1} Ldim ({h ∈ Vt : h(xt) = r})
• Seeing , update yt Vt+1 = {h ∈ Vt : h(xt) = yt}
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Standard Optimal Algorithm
• Like Halving, but tries to reduce Littlestone dimension instead of cardinality:
• Start with the version space V1 = ℋ
• Given , predict xt ̂yt ∈ argmaxr∈{0,1} Ldim ({h ∈ Vt : h(xt) = r})
• Seeing , update yt Vt+1 = {h ∈ Vt : h(xt) = yt}

• Whenever we make a mistake, :Ldim(Vt+1) ≤ Ldim(Vt) − 1
• If not, Ldim ({h ∈ Vt : h(xt) = 0}) = Ldim(Vt) = Ldim ({h ∈ Vt : h(xt) = 1})
• Then combine shattered trees into one shattered tree of depth Ldim(Vt) + 1
• But then …contradictionLdim(Vt) = Ldim(Vt) + 1

• Thus , the best possible mistake boundMABC(ℋ) = Ldim(ℋ)
• But SOA is not necessarily easy to compute!
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Unrealizable online learning
• In the batch setting:
• Realizable PAC assumes labels come from h* ∈ ℋ
• Agnostic PAC just has us compete with best h* ∈ ℋ

• In the online setting:
• Realizable assumes labels come from h* ∈ ℋ
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Unrealizable online learning
• In the batch setting:
• Realizable PAC assumes labels come from h* ∈ ℋ
• Agnostic PAC just has us compete with best h* ∈ ℋ

• In the online setting:
• Realizable assumes labels come from h* ∈ ℋ
• Unrealizable has us compete with best h* ∈ ℋ

RegretA(h, T) = sup
(x1,y1),…,(xT,yT) [

T

∑
t=1

| ̂yt − yt| −
T

∑
t=1

|h(xt) − yt|]
RegretA(ℋ, T) = sup

h∈ℋ
RegretA(h, T)

• Ideally, we want sublinear regret: 1
T RegretA(ℋ, T) T→∞ 0
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• Consider ℋ = {x ↦ 0, x ↦ 1}
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• Adversary could always just say “no, you’re wrong” and get  mistakesT
• For any sequence of true , either  or  has  mistakesyt x ↦ 0 x ↦ 1 ≤ T

2
• So regret would be at least T− T

2 = T
2

• To avoid this:
• Learner has random prediction, Pr( ̂yt = 1) = pt
• Adversary commits to  without knowing the rollyt
• Measure expected loss Pr( ̂yt ≠ yt) = |pt − yt|
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Low regret for online classification

• For every , there’s an algorithm with  
 

• Also a lower bound of  

• Based on Weighted-Majority algorithm for learning with expert advice

ℋ
RegretA(ℋ, T) ≤ 2 min (log|ℋ|, (1 + log T) Ldim(ℋ)) T

Ω ( Ldim(ℋ) T)
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• Sees potential costs ; pays expectation vt ∈ ℝd ⟨wt, vt⟩
• Weighted-Majority algorithm:
• Start with ;  w̃1 = (1,…,1) η = 2 log(d) / T
• For t = 1,2,…
• Follow with probabilities wt = w̃t / ∥wt∥1
• Update based on costs  as      (exp is elementwise)vt w̃t+1 = w̃t exp(−ηvt)

• Theorem (SSBD 21.11):    if ∑T
t=1 ⟨wt, vt⟩ − mini∈[d] ∑T

t=1 (vt)i ≤ 2 log(d) T T > 2 log d

• Can avoid knowing  by doubling trick: run for , , , … sequentiallyT T = 1 T = 2 T = 4
• Only blows up regret by x (SSBD exercise 21.4)< 3.5
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• For finite , we can just run Weighted-Majority with each ℋ h ∈ ℋ
• Plugging in previous theorem, Regret./(ℋ, T) ≤ 2 log|ℋ| T

• For infinite , we need a not-too-big set of experts where one is still goodℋ
• Expert( ) runs SOA on , 

but takes choice with smaller Ldim on indices 
i1, i2, …, iL x1, …, xT

i1, i2, …, iL
• Can show (21.13-14) that one expert is as good as the best , 

and there aren’t too many of them,  
giving 

h ∈ ℋ

RegretA(ℋ, T) ≤ 2(1 + log T) Ldim(ℋ) T
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∥vt∥2 vt ∈ ∂ℓt(wt)

•    if  are -Lipschitz, Regret(w*, T) ≤ 1
2 (∥w*∥2 + ρ2) T ℓt ρ η = 1/ T

•    if  are -Lipschitz,  is -bounded, Regret(w*, T) ≤ Bρ T ℓt ρ ℋ B η = B/(ρ T)
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Online Perceptron

• You learned about Batch Perceptron in HW3

• Original algorithm is online

• Essentially identical, just only update on mistake

• Corresponds to online gradient descent on hinge loss

• Get same  margin-based mistake bound

• Ldim =  without the margin condition

(R/γ)2

∞
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• If we have a good online algorithm, we have a good batch algorithm:  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just run it on the batch
• MRT Lemma 8.14: If  gives  for , 

              

S ∼ 3T h1, …, hT 0 ≤ ℓ(h, (x, y)) ≤ M
1
T

T

∑
t=1

L3(ht) ≤ 1
T

T

∑
t=1

ℓ(ht(xt), yt) + M
2
T

log 1
δ

• MRT Theorem 8.15: if  is also convex, 
              

ℓ( ⋅ , z)

L3 ( 1
T

T

∑
t=1

ht) ≤ inf
h∈ℋ

L3(h) + 1
T

RegretA(ℋ, T) + 2M
2
T

log 2
δ
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(pause)
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Differential privacy
• Randomized learning algorithm  is called ( , ) differentially private ifA(S) ε δ
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teach courses (532P next fall, 538L now [but not next year])  

• Can be thought of as a particular form of stability
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DP and online learning
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• Alon, Livni, Malliaris, Moran 2019:  
Approximate private PAC learning takes  

 samplesΩ(log*(Ldim(ℋ)))
• Bun, Livni, Moran 2020:  

Approximate private PAC learning in  
 samples


• analysis via “global stability”
27(Ldim(ℋ))
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DP and online learning

• Can learn differentially privately iff can learn online

• Close connections via stability

• But huge gap in sample and time complexity

• Indications (Bun 2020) that converting one to the other isn’t possible 

with polynomial time + sample complexity

• Still a lot to understand here
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Some of the stuff we didn’t cover
• Multiclass learning: can use same techniques, need right loss

• Ranking: which search results are most relevant? 
• Boosting: combine “weak learners” to a strong one (kind of like A3 Q3 b)

• Transfer learning / out-of-domain generalization / …: train on , test on 

• Do ImageNet Classifiers Generalize to ImageNet? / The Ladder mechanism

• Robustness: what if we have some adversarially-corrupted training data?

• Unsupervised learning (just the PCA question on A1) 

  “How well can we ‘understand’ a data distribution?”

• Semi-supervised learning (just the algorithm from A4)

• Active learning: if s are available but labeling them is expensive,  

                            can we choose which to label?

• Multi-armed bandits: which action should I take?

• Reinforcement learning: interacting with an environment with hidden state

• …

3 3′ 

x
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