
Universality / approximation
error

CPSC 532D: Modern Statistical Learning Theory

5 December 2022

cs.ubc.ca/~dsuth/532D/22w1/

1

https://www.cs.ubc.ca/~dsuth/532D/22w1/
Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Deep learning
• Mostly assuming fully-connected, feedforward nets (“multilayer perceptrons”):

2

https://arxiv.org/abs/2011.13550
Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Deep learning
• Mostly assuming fully-connected, feedforward nets (“multilayer perceptrons”):
•  f (0)(x) = x f (ℓ)(x) = σℓ(Wℓ f (ℓ−1)(x) + bℓ) f(x) = f (L)(x)

2

https://arxiv.org/abs/2011.13550

Deep learning
• Mostly assuming fully-connected, feedforward nets (“multilayer perceptrons”):
•  f (0)(x) = x f (ℓ)(x) = σℓ(Wℓ f (ℓ−1)(x) + bℓ) f(x) = f (L)(x)

• (usually) Wℓ ∈ ℝdℓ×dℓ−1 bℓ ∈ ℝd′ ℓ σℓ : ℝd′ ℓ → ℝdℓ d′ ℓ = dℓ

2

https://arxiv.org/abs/2011.13550

Deep learning
• Mostly assuming fully-connected, feedforward nets (“multilayer perceptrons”):
•  f (0)(x) = x f (ℓ)(x) = σℓ(Wℓ f (ℓ−1)(x) + bℓ) f(x) = f (L)(x)

• (usually) Wℓ ∈ ℝdℓ×dℓ−1 bℓ ∈ ℝd′ ℓ σℓ : ℝd′ ℓ → ℝdℓ d′ ℓ = dℓ

• Can think of this as a directed, acyclic computation graph, organized in layers

2

https://arxiv.org/abs/2011.13550

Deep learning
• Mostly assuming fully-connected, feedforward nets (“multilayer perceptrons”):
•  f (0)(x) = x f (ℓ)(x) = σℓ(Wℓ f (ℓ−1)(x) + bℓ) f(x) = f (L)(x)

• (usually) Wℓ ∈ ℝdℓ×dℓ−1 bℓ ∈ ℝd′ ℓ σℓ : ℝd′ ℓ → ℝdℓ d′ ℓ = dℓ

• Can think of this as a directed, acyclic computation graph, organized in layers
• Usually ; intermediate layers called hidden layersσL(x) = x

2

https://arxiv.org/abs/2011.13550

Deep learning
• Mostly assuming fully-connected, feedforward nets (“multilayer perceptrons”):
•  f (0)(x) = x f (ℓ)(x) = σℓ(Wℓ f (ℓ−1)(x) + bℓ) f(x) = f (L)(x)

• (usually) Wℓ ∈ ℝdℓ×dℓ−1 bℓ ∈ ℝd′ ℓ σℓ : ℝd′ ℓ → ℝdℓ d′ ℓ = dℓ

• Can think of this as a directed, acyclic computation graph, organized in layers
• Usually ; intermediate layers called hidden layersσL(x) = x
• Common choices for activations :σ

2

https://arxiv.org/abs/2011.13550

Deep learning
• Mostly assuming fully-connected, feedforward nets (“multilayer perceptrons”):
•  f (0)(x) = x f (ℓ)(x) = σℓ(Wℓ f (ℓ−1)(x) + bℓ) f(x) = f (L)(x)

• (usually) Wℓ ∈ ℝdℓ×dℓ−1 bℓ ∈ ℝd′ ℓ σℓ : ℝd′ ℓ → ℝdℓ d′ ℓ = dℓ

• Can think of this as a directed, acyclic computation graph, organized in layers
• Usually ; intermediate layers called hidden layersσL(x) = x
• Common choices for activations :σ
• Componentwise: ,ReLU(z) = max{z,0} sigmoid(z) = 1/(1 + exp(−z))

2

https://arxiv.org/abs/2011.13550

Deep learning
• Mostly assuming fully-connected, feedforward nets (“multilayer perceptrons”):
•  f (0)(x) = x f (ℓ)(x) = σℓ(Wℓ f (ℓ−1)(x) + bℓ) f(x) = f (L)(x)

• (usually) Wℓ ∈ ℝdℓ×dℓ−1 bℓ ∈ ℝd′ ℓ σℓ : ℝd′ ℓ → ℝdℓ d′ ℓ = dℓ

• Can think of this as a directed, acyclic computation graph, organized in layers
• Usually ; intermediate layers called hidden layersσL(x) = x
• Common choices for activations :σ
• Componentwise: ,ReLU(z) = max{z,0} sigmoid(z) = 1/(1 + exp(−z))

• , max pooling, attention, …softmax(z)i = exp(zi)/∑
j

exp(zj)

2

https://arxiv.org/abs/2011.13550

Deep learning
• Mostly assuming fully-connected, feedforward nets (“multilayer perceptrons”):
•  f (0)(x) = x f (ℓ)(x) = σℓ(Wℓ f (ℓ−1)(x) + bℓ) f(x) = f (L)(x)

• (usually) Wℓ ∈ ℝdℓ×dℓ−1 bℓ ∈ ℝd′ ℓ σℓ : ℝd′ ℓ → ℝdℓ d′ ℓ = dℓ

• Can think of this as a directed, acyclic computation graph, organized in layers
• Usually ; intermediate layers called hidden layersσL(x) = x
• Common choices for activations :σ
• Componentwise: ,ReLU(z) = max{z,0} sigmoid(z) = 1/(1 + exp(−z))

• , max pooling, attention, …softmax(z)i = exp(zi)/∑
j

exp(zj)

• Usually train via SGD, but it’s non-convex: in general, possibility of local minima

2

https://arxiv.org/abs/2011.13550

Deep learning
• Mostly assuming fully-connected, feedforward nets (“multilayer perceptrons”):
•  f (0)(x) = x f (ℓ)(x) = σℓ(Wℓ f (ℓ−1)(x) + bℓ) f(x) = f (L)(x)

• (usually) Wℓ ∈ ℝdℓ×dℓ−1 bℓ ∈ ℝd′ ℓ σℓ : ℝd′ ℓ → ℝdℓ d′ ℓ = dℓ

• Can think of this as a directed, acyclic computation graph, organized in layers
• Usually ; intermediate layers called hidden layersσL(x) = x
• Common choices for activations :σ
• Componentwise: ,ReLU(z) = max{z,0} sigmoid(z) = 1/(1 + exp(−z))

• , max pooling, attention, …softmax(z)i = exp(zi)/∑
j

exp(zj)

• Usually train via SGD, but it’s non-convex: in general, possibility of local minima
• ERM is NP-hard, even with 1 ReLU, even for square loss (Goel et al. ITCS 2021)

2

https://arxiv.org/abs/2011.13550

Universal approximation in ℝ
Theorem: Let be -Lipschitz. For any , there is a two-layer network
 with hidden nodes, , with .

g : ℝ → ℝ ρ ε > 0
f m := ⌈ ρ

ε ⌉ σ1(z) =)(z ≥ 0) sup
x∈[0,1]

|f(x) − g(x)| ≤ ε

3

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Universal approximation in ℝ
Theorem: Let be -Lipschitz. For any , there is a two-layer network
 with hidden nodes, , with .

g : ℝ → ℝ ρ ε > 0
f m := ⌈ ρ

ε ⌉ σ1(z) =)(z ≥ 0) sup
x∈[0,1]

|f(x) − g(x)| ≤ ε

3

bi = iε
ρ a0 = g(0) ai = g(bi) − g(bi−1) f(x) =

m−1

∑
i=0

ai)(xi ≥ bi)

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Universal approximation in ℝ
Theorem: Let be -Lipschitz. For any , there is a two-layer network
 with hidden nodes, , with .

g : ℝ → ℝ ρ ε > 0
f m := ⌈ ρ

ε ⌉ σ1(z) =)(z ≥ 0) sup
x∈[0,1]

|f(x) − g(x)| ≤ ε

3

bi = iε
ρ a0 = g(0) ai = g(bi) − g(bi−1) f(x) =

m−1

∑
i=0

ai)(xi ≥ bi)

|g(x) − f(x) |

Universal approximation in ℝ
Theorem: Let be -Lipschitz. For any , there is a two-layer network
 with hidden nodes, , with .

g : ℝ → ℝ ρ ε > 0
f m := ⌈ ρ

ε ⌉ σ1(z) =)(z ≥ 0) sup
x∈[0,1]

|f(x) − g(x)| ≤ ε

3

bi = iε
ρ a0 = g(0) ai = g(bi) − g(bi−1) f(x) =

m−1

∑
i=0

ai)(xi ≥ bi)

|g(x) − f(x) | ≤ |g(x) − g(bk) | + |g(bk) − f(bk) | + | f(bk) − f(x) |
k = max{k : bk ≤ x}

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Universal approximation in ℝ
Theorem: Let be -Lipschitz. For any , there is a two-layer network
 with hidden nodes, , with .

g : ℝ → ℝ ρ ε > 0
f m := ⌈ ρ

ε ⌉ σ1(z) =)(z ≥ 0) sup
x∈[0,1]

|f(x) − g(x)| ≤ ε

3

bi = iε
ρ a0 = g(0) ai = g(bi) − g(bi−1) f(x) =

m−1

∑
i=0

ai)(xi ≥ bi)

|g(x) − f(x) | ≤ |g(x) − g(bk) | + |g(bk) − f(bk) | + | f(bk) − f(x) |
k = max{k : bk ≤ x}

≤ ρ |x − bk |

Universal approximation in ℝ
Theorem: Let be -Lipschitz. For any , there is a two-layer network
 with hidden nodes, , with .

g : ℝ → ℝ ρ ε > 0
f m := ⌈ ρ

ε ⌉ σ1(z) =)(z ≥ 0) sup
x∈[0,1]

|f(x) − g(x)| ≤ ε

3

bi = iε
ρ a0 = g(0) ai = g(bi) − g(bi−1) f(x) =

m−1

∑
i=0

ai)(xi ≥ bi)

|g(x) − f(x) | ≤ |g(x) − g(bk) | + |g(bk) − f(bk) | + | f(bk) − f(x) |
k = max{k : bk ≤ x}

≤ ρ |x − bk |

≤ ρ
ε
ρ

= ε

Universal approximation in ℝ
Theorem: Let be -Lipschitz. For any , there is a two-layer network
 with hidden nodes, , with .

g : ℝ → ℝ ρ ε > 0
f m := ⌈ ρ

ε ⌉ σ1(z) =)(z ≥ 0) sup
x∈[0,1]

|f(x) − g(x)| ≤ ε

3

bi = iε
ρ a0 = g(0) ai = g(bi) − g(bi−1) f(x) =

m−1

∑
i=0

ai)(xi ≥ bi)

|g(x) − f(x) | ≤ |g(x) − g(bk) | + |g(bk) − f(bk) | + | f(bk) − f(x) |
k = max{k : bk ≤ x}

≤ ρ |x − bk |

≤ ρ
ε
ρ

= ε Can do better by depending on total variation of g

Universal approximation in ℝd
Theorem: Let be continuous. For any , choose so that

 implies . Then there is a three-layer ReLU network

with nodes satisfying .

g : ℝd → ℝ ε > 0 δ > 0
∥x − x′ ∥∞ ≤ δ |g(x) − g(x′)| ≤ ε f

Ω (1
δd) ∫[0,1]d

|f(x) − g(x)|dx ≤ 2ε

4

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Universal approximation in ℝd
Theorem: Let be continuous. For any , choose so that

 implies . Then there is a three-layer ReLU network

with nodes satisfying .

g : ℝd → ℝ ε > 0 δ > 0
∥x − x′ ∥∞ ≤ δ |g(x) − g(x′)| ≤ ε f

Ω (1
δd) ∫[0,1]d

|f(x) − g(x)|dx ≤ 2ε

4

Proof approximates continuous by piecewise-constant , 
then uses a two-layer ReLU net to check if is in each piece, roughly like in 1d.

(Telgarsky’s Theorem 2.1.)

g h
x

https://mjt.cs.illinois.edu/dlt/#theorem:mv_bumps
Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Universal approximation in , one hidden layerℝd

Stone-Weierstrass Theorem: Let be a set of functions such that

1. Each is continuous.

2. For each , there is at least one with .

3. Separates points: for each , there is at least one with .

4. is an algebra: for , and .

ℱ
f ∈ ℱ

x f ∈ ℱ f(x) ≠ 0
x ≠ x′ f ∈ ℱ f(x) ≠ f(x′)

ℱ f, g ∈ ℱ αf + g ∈ ℱ fg = (x ↦ f(x)g(x)) ∈ ℱ

5

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Universal approximation in , one hidden layerℝd

Stone-Weierstrass Theorem: Let be a set of functions such that

1. Each is continuous.

2. For each , there is at least one with .

3. Separates points: for each , there is at least one with .

4. is an algebra: for , and .

ℱ
f ∈ ℱ

x f ∈ ℱ f(x) ≠ 0
x ≠ x′ f ∈ ℱ f(x) ≠ f(x′)

ℱ f, g ∈ ℱ αf + g ∈ ℱ fg = (x ↦ f(x)g(x)) ∈ ℱ

5

Conditions hold for , , so that σ1 = exp σ2 = Id ℱexp = {x ↦
m

∑
i=1

ai exp(w⊤
i x)}

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Universal approximation in , one hidden layerℝd

Stone-Weierstrass Theorem: Let be a set of functions such that

1. Each is continuous.

2. For each , there is at least one with .

3. Separates points: for each , there is at least one with .

4. is an algebra: for , and .

ℱ
f ∈ ℱ

x f ∈ ℱ f(x) ≠ 0
x ≠ x′ f ∈ ℱ f(x) ≠ f(x′)

ℱ f, g ∈ ℱ αf + g ∈ ℱ fg = (x ↦ f(x)g(x)) ∈ ℱ

5

If is continuous, , , works too:

Approximate by with error, and replace each with a 1d -based net

σ : ℝ → ℝ lim
z→−∞

σ(z) = 0 lim
z→−∞

σ(z) = 1
g h ∈ ℱexp

ε
2 exp σ

Conditions hold for , , so that σ1 = exp σ2 = Id ℱexp = {x ↦
m

∑
i=1

ai exp(w⊤
i x)}

Universal approximation in , one hidden layerℝd

Stone-Weierstrass Theorem: Let be a set of functions such that

1. Each is continuous.

2. For each , there is at least one with .

3. Separates points: for each , there is at least one with .

4. is an algebra: for , and .

ℱ
f ∈ ℱ

x f ∈ ℱ f(x) ≠ 0
x ≠ x′ f ∈ ℱ f(x) ≠ f(x′)

ℱ f, g ∈ ℱ αf + g ∈ ℱ fg = (x ↦ f(x)g(x)) ∈ ℱ

5

If is continuous, , , works too:

Approximate by with error, and replace each with a 1d -based net

σ : ℝ → ℝ lim
z→−∞

σ(z) = 0 lim
z→−∞

σ(z) = 1
g h ∈ ℱexp

ε
2 exp σ

Conditions hold for , , so that σ1 = exp σ2 = Id ℱexp = {x ↦
m

∑
i=1

ai exp(w⊤
i x)}

Generally: universal approximator iff is not a polynomialσ

Limits of universal approximation

• Curse of dimensionality: usually requires # of units exponential in dimension

• Also usually requires exponential norm of weights 

• Doesn’t say anything about whether ERM finds a good network, just that one exists

• Let alone anything about whether (S)GD finds it

6

Universal approximation via circuit complexity

SSBD chapter 20:
• 2 layer nets with sign activations can represent all functions {±1}d → {±1}

7

https://go.exlibris.link/dfCmBkCW

Universal approximation via circuit complexity

SSBD chapter 20:
• 2 layer nets with sign activations can represent all functions {±1}d → {±1}
• (remember that computers always represent things as …){0,1}d

7

https://go.exlibris.link/dfCmBkCW

Universal approximation via circuit complexity

SSBD chapter 20:
• 2 layer nets with sign activations can represent all functions {±1}d → {±1}
• (remember that computers always represent things as …){0,1}d

• …but, it takes exponential width to do that

7

https://go.exlibris.link/dfCmBkCW

Universal approximation via circuit complexity

SSBD chapter 20:
• 2 layer nets with sign activations can represent all functions {±1}d → {±1}
• (remember that computers always represent things as …){0,1}d

• …but, it takes exponential width to do that
• …but, there’s a network of size that can implement all boolean functions

that can be computed in maximum runtime
3(T2)

T

7

https://go.exlibris.link/dfCmBkCW

Universal approximation via circuit complexity

SSBD chapter 20:
• 2 layer nets with sign activations can represent all functions {±1}d → {±1}
• (remember that computers always represent things as …){0,1}d

• …but, it takes exponential width to do that
• …but, there’s a network of size that can implement all boolean functions

that can be computed in maximum runtime
3(T2)

T

7

https://go.exlibris.link/dfCmBkCW

Universal approximation via circuit complexity

SSBD chapter 20:
• 2 layer nets with sign activations can represent all functions {±1}d → {±1}
• (remember that computers always represent things as …){0,1}d

• …but, it takes exponential width to do that
• …but, there’s a network of size that can implement all boolean functions

that can be computed in maximum runtime
3(T2)

T

Circuit Complexity and Neural Networks, Ian Parberry (1994) - UBC access

7

https://go.exlibris.link/dfCmBkCW

8

Why deep instead of wide?
• Deep networks much better at learning compositional structure

9

http://yann.lecun.com/exdb/publis/pdf/bengio-lecun-07.pdf
https://arxiv.org/abs/1603.00988
https://arxiv.org/abs/1709.02540
https://openreview.net/forum?id=SkpSlKIel

Why deep instead of wide?
• Deep networks much better at learning compositional structure
• “We claim that most functions that can be represented compactly by deep

architectures cannot be represented by a compact shallow architecture.”  
 – Y. Bengio & LeCun (2007)

9

http://yann.lecun.com/exdb/publis/pdf/bengio-lecun-07.pdf
https://arxiv.org/abs/1603.00988
https://arxiv.org/abs/1709.02540
https://openreview.net/forum?id=SkpSlKIel

Why deep instead of wide?
• Deep networks much better at learning compositional structure
• “We claim that most functions that can be represented compactly by deep

architectures cannot be represented by a compact shallow architecture.”  
 – Y. Bengio & LeCun (2007)

• Lots of empirical evidence, but theoretical support pretty limited until recently  

9

http://yann.lecun.com/exdb/publis/pdf/bengio-lecun-07.pdf
https://arxiv.org/abs/1603.00988
https://arxiv.org/abs/1709.02540
https://openreview.net/forum?id=SkpSlKIel

Why deep instead of wide?
• Deep networks much better at learning compositional structure
• “We claim that most functions that can be represented compactly by deep

architectures cannot be represented by a compact shallow architecture.”  
 – Y. Bengio & LeCun (2007)

• Lots of empirical evidence, but theoretical support pretty limited until recently  

• Telgarsky notes section 5 give a particular such function:  
shallow net needs huge width to approximate,  
but narrow not-super-deep net can approximate it efficiently

9

http://yann.lecun.com/exdb/publis/pdf/bengio-lecun-07.pdf
https://arxiv.org/abs/1603.00988
https://arxiv.org/abs/1709.02540
https://openreview.net/forum?id=SkpSlKIel

Why deep instead of wide?
• Deep networks much better at learning compositional structure
• “We claim that most functions that can be represented compactly by deep

architectures cannot be represented by a compact shallow architecture.”  
 – Y. Bengio & LeCun (2007)

• Lots of empirical evidence, but theoretical support pretty limited until recently  

• Telgarsky notes section 5 give a particular such function:  
shallow net needs huge width to approximate,  
but narrow not-super-deep net can approximate it efficiently

• Also proved for a certain class of functions by Mhaskar, Liao, Poggio (2016)

9

http://yann.lecun.com/exdb/publis/pdf/bengio-lecun-07.pdf
https://arxiv.org/abs/1603.00988
https://arxiv.org/abs/1709.02540
https://openreview.net/forum?id=SkpSlKIel

Why deep instead of wide?
• Deep networks much better at learning compositional structure
• “We claim that most functions that can be represented compactly by deep

architectures cannot be represented by a compact shallow architecture.”  
 – Y. Bengio & LeCun (2007)

• Lots of empirical evidence, but theoretical support pretty limited until recently  

• Telgarsky notes section 5 give a particular such function:  
shallow net needs huge width to approximate,  
but narrow not-super-deep net can approximate it efficiently

• Also proved for a certain class of functions by Mhaskar, Liao, Poggio (2016)
• Lu et al. (2017): approximating wide nets with deep nets easier(ish) than vice versa

9

http://yann.lecun.com/exdb/publis/pdf/bengio-lecun-07.pdf
https://arxiv.org/abs/1603.00988
https://arxiv.org/abs/1709.02540
https://openreview.net/forum?id=SkpSlKIel

Why deep instead of wide?
• Deep networks much better at learning compositional structure
• “We claim that most functions that can be represented compactly by deep

architectures cannot be represented by a compact shallow architecture.”  
 – Y. Bengio & LeCun (2007)

• Lots of empirical evidence, but theoretical support pretty limited until recently  

• Telgarsky notes section 5 give a particular such function:  
shallow net needs huge width to approximate,  
but narrow not-super-deep net can approximate it efficiently

• Also proved for a certain class of functions by Mhaskar, Liao, Poggio (2016)
• Lu et al. (2017): approximating wide nets with deep nets easier(ish) than vice versa
• Liang and Srikant (2017): can approximate piecewise-constant funcs with

exponentially smaller deep nets than shallow
9

http://yann.lecun.com/exdb/publis/pdf/bengio-lecun-07.pdf
https://arxiv.org/abs/1603.00988
https://arxiv.org/abs/1709.02540
https://openreview.net/forum?id=SkpSlKIel

• We have some universal approximation results
• A lot of people use this to say “neural networks can do anything! !” 

 
 

10

• We have some universal approximation results
• A lot of people use this to say “neural networks can do anything! !” 

 
  but…

10

• We have some universal approximation results
• A lot of people use this to say “neural networks can do anything! !” 

 
 

• These kind of approximation results don’t tell us:
• What practically-sized networks can do

but…

10

• We have some universal approximation results
• A lot of people use this to say “neural networks can do anything! !” 

 
 

• These kind of approximation results don’t tell us:
• What practically-sized networks can do
• Gaussian kernels can also do anything (!)…with ridiculously large norm

but…

10

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

• We have some universal approximation results
• A lot of people use this to say “neural networks can do anything! !” 

 
 

• These kind of approximation results don’t tell us:
• What practically-sized networks can do
• Gaussian kernels can also do anything (!)…with ridiculously large norm
• Neural nets can do anything…if they’re ridiculously large (or large norm) 

but…

10

• We have some universal approximation results
• A lot of people use this to say “neural networks can do anything! !” 

 
 

• These kind of approximation results don’t tell us:
• What practically-sized networks can do
• Gaussian kernels can also do anything (!)…with ridiculously large norm
• Neural nets can do anything…if they’re ridiculously large (or large norm) 

• Even if our class approximates, do we generalize? (Does ERM, RLM, … work?) 

but…

10

• We have some universal approximation results
• A lot of people use this to say “neural networks can do anything! !” 

 
 

• These kind of approximation results don’t tell us:
• What practically-sized networks can do
• Gaussian kernels can also do anything (!)…with ridiculously large norm
• Neural nets can do anything…if they’re ridiculously large (or large norm) 

• Even if our class approximates, do we generalize? (Does ERM, RLM, … work?) 

• Does (S)GD find an approximate ERM / RLM / something that generalizes?

but…

10

• We have some universal approximation results
• A lot of people use this to say “neural networks can do anything! !” 

 
 

• These kind of approximation results don’t tell us:
• What practically-sized networks can do
• Gaussian kernels can also do anything (!)…with ridiculously large norm
• Neural nets can do anything…if they’re ridiculously large (or large norm) 

• Even if our class approximates, do we generalize? (Does ERM, RLM, … work?) 

• Does (S)GD find an approximate ERM / RLM / something that generalizes?
• We (pretty much) know it doesn’t always find an (approximate) ERM:  

ERM with deep nets (even for square loss) is NP-hard  
 so, if you can prove that it does, let me know =)

but…

10

Generalization: VC dimension
• For ReLU (or general piecewise-linear) nets with params, VCdim = P 3(PL log P)
• and , so nearly tight – Bartlett/Harvey/Liaw/Mehrabian (2019)Ω(PL log P

L)

11

https://jmlr.org/papers/v20/17-612.html
https://go.exlibris.link/dfCmBkCW

Generalization: VC dimension
• For ReLU (or general piecewise-linear) nets with params, VCdim = P 3(PL log P)
• and , so nearly tight – Bartlett/Harvey/Liaw/Mehrabian (2019)Ω(PL log P

L)

• for fully-connected networksP =
L

∏
ℓ=1

dℓ−1dℓ

11

https://jmlr.org/papers/v20/17-612.html
https://go.exlibris.link/dfCmBkCW

Generalization: VC dimension
• For ReLU (or general piecewise-linear) nets with params, VCdim = P 3(PL log P)
• and , so nearly tight – Bartlett/Harvey/Liaw/Mehrabian (2019)Ω(PL log P

L)

• for fully-connected networksP =
L

∏
ℓ=1

dℓ−1dℓ

• For piecewise-constant, e.g. threshold functions, VCdim = Θ(P log P)

11

https://jmlr.org/papers/v20/17-612.html
https://go.exlibris.link/dfCmBkCW

Generalization: VC dimension
• For ReLU (or general piecewise-linear) nets with params, VCdim = P 3(PL log P)
• and , so nearly tight – Bartlett/Harvey/Liaw/Mehrabian (2019)Ω(PL log P

L)

• for fully-connected networksP =
L

∏
ℓ=1

dℓ−1dℓ

• For piecewise-constant, e.g. threshold functions, VCdim = Θ(P log P)
• For piecewise-polynomial, , with units3(PL2 + PL log P) 3(PU) U

11

https://jmlr.org/papers/v20/17-612.html
https://go.exlibris.link/dfCmBkCW

Generalization: VC dimension
• For ReLU (or general piecewise-linear) nets with params, VCdim = P 3(PL log P)
• and , so nearly tight – Bartlett/Harvey/Liaw/Mehrabian (2019)Ω(PL log P

L)

• for fully-connected networksP =
L

∏
ℓ=1

dℓ−1dℓ

• For piecewise-constant, e.g. threshold functions, VCdim = Θ(P log P)
• For piecewise-polynomial, , with units3(PL2 + PL log P) 3(PU) U
• For sigmoids/similar, and 3(P2U2) Ω(P2)

11

https://jmlr.org/papers/v20/17-612.html
https://go.exlibris.link/dfCmBkCW

Generalization: VC dimension
• For ReLU (or general piecewise-linear) nets with params, VCdim = P 3(PL log P)
• and , so nearly tight – Bartlett/Harvey/Liaw/Mehrabian (2019)Ω(PL log P

L)

• for fully-connected networksP =
L

∏
ℓ=1

dℓ−1dℓ

• For piecewise-constant, e.g. threshold functions, VCdim = Θ(P log P)
• For piecewise-polynomial, , with units3(PL2 + PL log P) 3(PU) U
• For sigmoids/similar, and 3(P2U2) Ω(P2)
• Theorem 8.13/8.14 of Anthony & Bartlett (1999) textbook - UBC access

11

https://jmlr.org/papers/v20/17-612.html
https://go.exlibris.link/dfCmBkCW

Problems with parameter counting
• We use networks with a lot of parameters
• ResNet-50 has ~25 million parameters and depth 50: VCdim > 1 billion  

12

https://arxiv.org/abs/1412.6614
https://arxiv.org/pdf/1611.03530.pdf

Problems with parameter counting
• We use networks with a lot of parameters
• ResNet-50 has ~25 million parameters and depth 50: VCdim > 1 billion  

• We can train our networks to get zero error even for random labels

12

https://arxiv.org/abs/1412.6614
https://arxiv.org/pdf/1611.03530.pdf

Problems with parameter counting
• We use networks with a lot of parameters
• ResNet-50 has ~25 million parameters and depth 50: VCdim > 1 billion  

• We can train our networks to get zero error even for random labels
• Even AlexNet can shatter CIFAR-10, almost shatter ImageNet
• Neyshabur et al. (2015), Zhang et al. (2017)

12

https://arxiv.org/abs/1412.6614
https://arxiv.org/pdf/1611.03530.pdf

Problems with parameter counting
• We use networks with a lot of parameters
• ResNet-50 has ~25 million parameters and depth 50: VCdim > 1 billion  

• We can train our networks to get zero error even for random labels
• Even AlexNet can shatter CIFAR-10, almost shatter ImageNet
• Neyshabur et al. (2015), Zhang et al. (2017)
• But these architectures do generalize well – VC of arch. can’t explain that

13

https://arxiv.org/abs/1412.6614
https://arxiv.org/pdf/1611.03530.pdf

Problems with parameter counting
• We use networks with a lot of parameters
• ResNet-50 has ~25 million parameters and depth 50: VCdim > 1 billion  

• We can train our networks to get zero error even for random labels
• Even AlexNet can shatter CIFAR-10, almost shatter ImageNet
• Neyshabur et al. (2015), Zhang et al. (2017)
• But these architectures do generalize well – VC of arch. can’t explain that
• Uniform stability can’t either, since it’s data-independent;  

on-average replace-one stability always can, but hard  

13

https://arxiv.org/abs/1412.6614
https://arxiv.org/pdf/1611.03530.pdf

Problems with parameter counting
• We use networks with a lot of parameters
• ResNet-50 has ~25 million parameters and depth 50: VCdim > 1 billion  

• We can train our networks to get zero error even for random labels
• Even AlexNet can shatter CIFAR-10, almost shatter ImageNet
• Neyshabur et al. (2015), Zhang et al. (2017)
• But these architectures do generalize well – VC of arch. can’t explain that
• Uniform stability can’t either, since it’s data-independent;  

on-average replace-one stability always can, but hard  

• Making hidden layers wider can often improve generalization,  
but worsens parameter counting-based bounds

13

https://arxiv.org/abs/1412.6614
https://arxiv.org/pdf/1611.03530.pdf

Problems with parameter counting
• We use networks with a lot of parameters
• ResNet-50 has ~25 million parameters and depth 50: VCdim > 1 billion  

• We can train our networks to get zero error even for random labels
• Even AlexNet can shatter CIFAR-10, almost shatter ImageNet
• Neyshabur et al. (2015), Zhang et al. (2017)
• But these architectures do generalize well – VC of arch. can’t explain that
• Uniform stability can’t either, since it’s data-independent;  

on-average replace-one stability always can, but hard  

• Making hidden layers wider can often improve generalization,  
but worsens parameter counting-based bounds

• Remember that has infinite VCdim for universal kernels,  
but we can still learn with small-norm predictors

ℋk

13

https://arxiv.org/abs/1412.6614
https://arxiv.org/pdf/1611.03530.pdf
Mobile User

Mobile User

Mobile User

Mobile User

Theorem: Fix each -Lipschitz with .  
Let be the set of -layer no-intercept nets, , 
with . Then .

σ1, …, σL ρ σℓ(0) = 0
ℱL L f (ℓ) = σℓ(Wℓ f (ℓ−1))
∥W⊤

ℓ ∥1,∞ ≤ B ℜ̂n(ℱ) ≤ 1
n ∥X∥2,∞(2ρB)L 2 log d

14

∥M∥b,c = (∥M⋅1∥b, …,∥M⋅d∥b)
c

Theorem: Fix each -Lipschitz with .  
Let be the set of -layer no-intercept nets, , 
with . Then .

σ1, …, σL ρ σℓ(0) = 0
ℱL L f (ℓ) = σℓ(Wℓ f (ℓ−1))
∥W⊤

ℓ ∥1,∞ ≤ B ℜ̂n(ℱ) ≤ 1
n ∥X∥2,∞(2ρB)L 2 log d

14

∥M∥b,c = (∥M⋅1∥b, …,∥M⋅d∥b)
cBase case, : L = 0

Theorem: Fix each -Lipschitz with .  
Let be the set of -layer no-intercept nets, , 
with . Then .

σ1, …, σL ρ σℓ(0) = 0
ℱL L f (ℓ) = σℓ(Wℓ f (ℓ−1))
∥W⊤

ℓ ∥1,∞ ≤ B ℜ̂n(ℱ) ≤ 1
n ∥X∥2,∞(2ρB)L 2 log d

14

∥M∥b,c = (∥M⋅1∥b, …,∥M⋅d∥b)
cBase case, : L = 0

ℜ̂S({x ↦ xj : j ∈ [d]})

Theorem: Fix each -Lipschitz with .  
Let be the set of -layer no-intercept nets, , 
with . Then .

σ1, …, σL ρ σℓ(0) = 0
ℱL L f (ℓ) = σℓ(Wℓ f (ℓ−1))
∥W⊤

ℓ ∥1,∞ ≤ B ℜ̂n(ℱ) ≤ 1
n ∥X∥2,∞(2ρB)L 2 log d

14

∥M∥b,c = (∥M⋅1∥b, …,∥M⋅d∥b)
cBase case, : L = 0

ℜ̂S({x ↦ xj : j ∈ [d]}) ≤ 1
n (max

j
∥(x1,j, …, xn,j)∥2) 2 log d

Theorem: Fix each -Lipschitz with .  
Let be the set of -layer no-intercept nets, , 
with . Then .

σ1, …, σL ρ σℓ(0) = 0
ℱL L f (ℓ) = σℓ(Wℓ f (ℓ−1))
∥W⊤

ℓ ∥1,∞ ≤ B ℜ̂n(ℱ) ≤ 1
n ∥X∥2,∞(2ρB)L 2 log d

14

∥M∥b,c = (∥M⋅1∥b, …,∥M⋅d∥b)
cBase case, : L = 0

ℜ̂S({x ↦ xj : j ∈ [d]}) ≤ 1
n (max

j
∥(x1,j, …, xn,j)∥2) 2 log d

= 1
n ∥X∥2,∞ 2 log d

Theorem: Fix each -Lipschitz with .  
Let be the set of -layer no-intercept nets, , 
with . Then .

σ1, …, σL ρ σℓ(0) = 0
ℱL L f (ℓ) = σℓ(Wℓ f (ℓ−1))
∥W⊤

ℓ ∥1,∞ ≤ B ℜ̂n(ℱ) ≤ 1
n ∥X∥2,∞(2ρB)L 2 log d

14

∥M∥b,c = (∥M⋅1∥b, …,∥M⋅d∥b)
cBase case, : L = 0

ℜ̂S({x ↦ xj : j ∈ [d]}) ≤ 1
n (max

j
∥(x1,j, …, xn,j)∥2) 2 log d

= 1
n ∥X∥2,∞ 2 log d = 1

n ∥X∥2,∞(2ρB)0 2 log d

Theorem: Fix each -Lipschitz with .  
Let be the set of -layer no-intercept nets, , 
with . Then .

σ1, …, σL ρ σℓ(0) = 0
ℱL L f (ℓ) = σℓ(Wℓ f (ℓ−1))
∥W⊤

ℓ ∥1,∞ ≤ B ℜ̂n(ℱ) ≤ 1
n ∥X∥2,∞(2ρB)L 2 log d

14

∥M∥b,c = (∥M⋅1∥b, …,∥M⋅d∥b)
cBase case, : L = 0

ℜ̂S({x ↦ xj : j ∈ [d]}) ≤ 1
n (max

j
∥(x1,j, …, xn,j)∥2) 2 log d

= 1
n ∥X∥2,∞ 2 log d = 1

n ∥X∥2,∞(2ρB)0 2 log d
Inductive step:

Theorem: Fix each -Lipschitz with .  
Let be the set of -layer no-intercept nets, , 
with . Then .

σ1, …, σL ρ σℓ(0) = 0
ℱL L f (ℓ) = σℓ(Wℓ f (ℓ−1))
∥W⊤

ℓ ∥1,∞ ≤ B ℜ̂n(ℱ) ≤ 1
n ∥X∥2,∞(2ρB)L 2 log d

14

∥M∥b,c = (∥M⋅1∥b, …,∥M⋅d∥b)
cBase case, : L = 0

ℜ̂S({x ↦ xj : j ∈ [d]}) ≤ 1
n (max

j
∥(x1,j, …, xn,j)∥2) 2 log d

= 1
n ∥X∥2,∞ 2 log d = 1

n ∥X∥2,∞(2ρB)0 2 log d
Inductive step:

ℜ̂S(ℱℓ+1) = ℜ̂S ({x ↦ σℓ+1 (∥W⊤
ℓ+1∥1,∞ g(x)) : g ∈ conv(− ℱℓ ∪ ℱℓ)})

Theorem: Fix each -Lipschitz with .  
Let be the set of -layer no-intercept nets, , 
with . Then .

σ1, …, σL ρ σℓ(0) = 0
ℱL L f (ℓ) = σℓ(Wℓ f (ℓ−1))
∥W⊤

ℓ ∥1,∞ ≤ B ℜ̂n(ℱ) ≤ 1
n ∥X∥2,∞(2ρB)L 2 log d

14

∥M∥b,c = (∥M⋅1∥b, …,∥M⋅d∥b)
cBase case, : L = 0

ℜ̂S({x ↦ xj : j ∈ [d]}) ≤ 1
n (max

j
∥(x1,j, …, xn,j)∥2) 2 log d

= 1
n ∥X∥2,∞ 2 log d = 1

n ∥X∥2,∞(2ρB)0 2 log d
Inductive step:

ℜ̂S(ℱℓ+1) = ℜ̂S ({x ↦ σℓ+1 (∥W⊤
ℓ+1∥1,∞ g(x)) : g ∈ conv(− ℱℓ ∪ ℱℓ)})

≤ ρB ℜ̂S (conv(−ℱℓ ∪ ℱℓ))

Theorem: Fix each -Lipschitz with .  
Let be the set of -layer no-intercept nets, , 
with . Then .

σ1, …, σL ρ σℓ(0) = 0
ℱL L f (ℓ) = σℓ(Wℓ f (ℓ−1))
∥W⊤

ℓ ∥1,∞ ≤ B ℜ̂n(ℱ) ≤ 1
n ∥X∥2,∞(2ρB)L 2 log d

14

∥M∥b,c = (∥M⋅1∥b, …,∥M⋅d∥b)
cBase case, : L = 0

ℜ̂S({x ↦ xj : j ∈ [d]}) ≤ 1
n (max

j
∥(x1,j, …, xn,j)∥2) 2 log d

= 1
n ∥X∥2,∞ 2 log d = 1

n ∥X∥2,∞(2ρB)0 2 log d
Inductive step:

ℜ̂S(ℱℓ+1) = ℜ̂S ({x ↦ σℓ+1 (∥W⊤
ℓ+1∥1,∞ g(x)) : g ∈ conv(− ℱℓ ∪ ℱℓ)})

≤ ρB ℜ̂S (conv(−ℱℓ ∪ ℱℓ)) ℜ̂S(conv(:)) = ℜ̂S(:)

Theorem: Fix each -Lipschitz with .  
Let be the set of -layer no-intercept nets, , 
with . Then .

σ1, …, σL ρ σℓ(0) = 0
ℱL L f (ℓ) = σℓ(Wℓ f (ℓ−1))
∥W⊤

ℓ ∥1,∞ ≤ B ℜ̂n(ℱ) ≤ 1
n ∥X∥2,∞(2ρB)L 2 log d

14

∥M∥b,c = (∥M⋅1∥b, …,∥M⋅d∥b)
cBase case, : L = 0

ℜ̂S({x ↦ xj : j ∈ [d]}) ≤ 1
n (max

j
∥(x1,j, …, xn,j)∥2) 2 log d

= 1
n ∥X∥2,∞ 2 log d = 1

n ∥X∥2,∞(2ρB)0 2 log d
Inductive step:

ℜ̂S(ℱℓ+1) = ℜ̂S ({x ↦ σℓ+1 (∥W⊤
ℓ+1∥1,∞ g(x)) : g ∈ conv(− ℱℓ ∪ ℱℓ)})

≤ ρB ℜ̂S (conv(−ℱℓ ∪ ℱℓ)) ℜ̂S(conv(:)) = ℜ̂S(:)
≤ ρB ℜ̂S (−ℱℓ ∪ ℱℓ)

Theorem: Fix each -Lipschitz with .  
Let be the set of -layer no-intercept nets, , 
with . Then .

σ1, …, σL ρ σℓ(0) = 0
ℱL L f (ℓ) = σℓ(Wℓ f (ℓ−1))
∥W⊤

ℓ ∥1,∞ ≤ B ℜ̂n(ℱ) ≤ 1
n ∥X∥2,∞(2ρB)L 2 log d

14

∥M∥b,c = (∥M⋅1∥b, …,∥M⋅d∥b)
cBase case, : L = 0

ℜ̂S({x ↦ xj : j ∈ [d]}) ≤ 1
n (max

j
∥(x1,j, …, xn,j)∥2) 2 log d

= 1
n ∥X∥2,∞ 2 log d = 1

n ∥X∥2,∞(2ρB)0 2 log d
Inductive step:

ℜ̂S(ℱℓ+1) = ℜ̂S ({x ↦ σℓ+1 (∥W⊤
ℓ+1∥1,∞ g(x)) : g ∈ conv(− ℱℓ ∪ ℱℓ)})

≤ ρB ℜ̂S (conv(−ℱℓ ∪ ℱℓ)) ℜ̂S(conv(:)) = ℜ̂S(:)

 if , ℜ̂S(A ∪ B) ≤ ℜ̂S(A) + ℜ̂S(B) 0 ∈ A 0 ∈ B≤ ρB ℜ̂S (−ℱℓ ∪ ℱℓ)

Theorem: Fix each -Lipschitz with .  
Let be the set of -layer no-intercept nets, , 
with . Then .

σ1, …, σL ρ σℓ(0) = 0
ℱL L f (ℓ) = σℓ(Wℓ f (ℓ−1))
∥W⊤

ℓ ∥1,∞ ≤ B ℜ̂n(ℱ) ≤ 1
n ∥X∥2,∞(2ρB)L 2 log d

14

∥M∥b,c = (∥M⋅1∥b, …,∥M⋅d∥b)
cBase case, : L = 0

ℜ̂S({x ↦ xj : j ∈ [d]}) ≤ 1
n (max

j
∥(x1,j, …, xn,j)∥2) 2 log d

= 1
n ∥X∥2,∞ 2 log d = 1

n ∥X∥2,∞(2ρB)0 2 log d
Inductive step:

ℜ̂S(ℱℓ+1) = ℜ̂S ({x ↦ σℓ+1 (∥W⊤
ℓ+1∥1,∞ g(x)) : g ∈ conv(− ℱℓ ∪ ℱℓ)})

≤ ρB ℜ̂S (conv(−ℱℓ ∪ ℱℓ))

≤ 2ρB ℜ̂S (ℱℓ)

ℜ̂S(conv(:)) = ℜ̂S(:)

 if , ℜ̂S(A ∪ B) ≤ ℜ̂S(A) + ℜ̂S(B) 0 ∈ A 0 ∈ B≤ ρB ℜ̂S (−ℱℓ ∪ ℱℓ)

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Rademacher of convex hull

15

ℜ̂S(conv(:)) = 1
n

;σ sup
k≥1

sup
α∈Δk

sup
g1,…,gk∈: ⟨σ,

k

∑
j=1

αj(gj)S⟩

Rademacher of convex hull

15

ℜ̂S(conv(:)) = 1
n

;σ sup
k≥1

sup
α∈Δk

sup
g1,…,gk∈: ⟨σ,

k

∑
j=1

αj(gj)S⟩
= 1

n
;σ sup

k≥1
sup
α∈Δk

k

∑
j=1

αj sup
gj∈:

⟨ε, (gj)S⟩

Rademacher of convex hull

15

ℜ̂S(conv(:)) = 1
n

;σ sup
k≥1

sup
α∈Δk

sup
g1,…,gk∈: ⟨σ,

k

∑
j=1

αj(gj)S⟩
= 1

n
;σ sup

k≥1
sup
α∈Δk

k

∑
j=1

αj sup
gj∈:

⟨ε, (gj)S⟩

= 1
n

;σ sup
k≥1

sup
α∈Δk

k

∑
j=1

αj sup
g∈:

⟨ε, gS⟩

Rademacher of convex hull

15

ℜ̂S(conv(:)) = 1
n

;σ sup
k≥1

sup
α∈Δk

sup
g1,…,gk∈: ⟨σ,

k

∑
j=1

αj(gj)S⟩
= 1

n
;σ sup

k≥1
sup
α∈Δk

k

∑
j=1

αj sup
gj∈:

⟨ε, (gj)S⟩

= 1
n

;σ sup
k≥1

sup
α∈Δk

k

∑
j=1

αj sup
g∈:

⟨ε, gS⟩

= ℜ̂S(:)

Rademacher of union

16

ℜ̂S(: ∪ ℋ) = 1
n

;σ sup
g∈(:∪ℋ)

⟨σ, gS⟩

Rademacher of union

16

ℜ̂S(: ∪ ℋ) = 1
n

;σ sup
g∈(:∪ℋ)

⟨σ, gS⟩

 if , ≤ 1
n

;σ[sup
g∈:

⟨σ, gS⟩ + sup
g∈ℋ

⟨σ, gS⟩] 0 ∈ : 0 ∈ ℋ

Rademacher of union

16

ℜ̂S(: ∪ ℋ) = 1
n

;σ sup
g∈(:∪ℋ)

⟨σ, gS⟩

= ℜ̂S(:) + ℜ̂S(ℋ)

 if , ≤ 1
n

;σ[sup
g∈:

⟨σ, gS⟩ + sup
g∈ℋ

⟨σ, gS⟩] 0 ∈ : 0 ∈ ℋ

Rademacher of union

16

ℜ̂S(: ∪ ℋ) = 1
n

;σ sup
g∈(:∪ℋ)

⟨σ, gS⟩

= ℜ̂S(:) + ℜ̂S(ℋ)

 if , ≤ 1
n

;σ[sup
g∈:

⟨σ, gS⟩ + sup
g∈ℋ

⟨σ, gS⟩] 0 ∈ : 0 ∈ ℋ

or if both sets are symmetric: 
for all , also have g ∈ : −g ∈ :

Rademacher of union

16

ℜ̂S(: ∪ ℋ) = 1
n

;σ sup
g∈(:∪ℋ)

⟨σ, gS⟩

= ℜ̂S(:) + ℜ̂S(ℋ)

 if , ≤ 1
n

;σ[sup
g∈:

⟨σ, gS⟩ + sup
g∈ℋ

⟨σ, gS⟩] 0 ∈ : 0 ∈ ℋ

or if both sets are symmetric: 
for all , also have g ∈ : −g ∈ :

…or if we otherwise know that 
,

for any assignment of

sup
g∈:

⟨σ, gS⟩ ≥ 0 sup
g∈ℋ

⟨σ, gS⟩ ≥ 0

σ

Theorem: Fix each -Lipschitz with .  
Let be the set of -layer no-intercept nets, , 
with . Then .

σ1, …, σL ρ σℓ(0) = 0
ℱL L f (ℓ) = σℓ(Wℓ f (ℓ−1))
∥W⊤

ℓ ∥1,∞ ≤ B ℜ̂n(ℱ) ≤ 1
n ∥X∥2,∞(2ρB)L 2 log d

∥M∥b,c = (∥M⋅1∥b, …,∥M⋅d∥b)
c

Rademacher of deep nets

Theorem: Fix each -Lipschitz with .  
Let be the set of -layer no-intercept nets, , 
with . Then .

σ1, …, σL ρ σℓ(0) = 0
ℱL L f (ℓ) = σℓ(Wℓ f (ℓ−1))
∥W⊤

ℓ ∥1,∞ ≤ B ℜ̂n(ℱ) ≤ 1
n ∥X∥2,∞(2ρB)L 2 log d

∥M∥b,c = (∥M⋅1∥b, …,∥M⋅d∥b)
c

Rademacher of deep nets

Theorem: Fix each -Lipschitz, positive homogenous (for). 
Let be the set of -layer no-intercept nets, , 
with . Then .

(More complicated proof: Golowich/Rakhlin/Shamir, COLT 2018 / Telgarsky’s 14.2.)

σ1, …, σL 1 σℓ(ax) = aσℓ(x) a > 0
ℱL L f (ℓ) = σℓ(Wℓ f (ℓ−1))
∥Wℓ∥F ≤ B ℜ̂n(ℱ) ≤ 1

n ∥X∥FBL (1 + 2L log 2)

https://arxiv.org/abs/1712.06541
https://mjt.cs.illinois.edu/dlt/#theorem:rad_frob

Theorem: Fix each -Lipschitz with .  
Let be the set of -layer no-intercept nets, , 
with . Then .

σ1, …, σL ρ σℓ(0) = 0
ℱL L f (ℓ) = σℓ(Wℓ f (ℓ−1))
∥W⊤

ℓ ∥1,∞ ≤ B ℜ̂n(ℱ) ≤ 1
n ∥X∥2,∞(2ρB)L 2 log d

∥M∥b,c = (∥M⋅1∥b, …,∥M⋅d∥b)
c

Rademacher of deep nets

Theorem: Fix each -Lipschitz, positive homogenous (for). 
Let be the set of -layer no-intercept nets, , 
with . Then .

(More complicated proof: Golowich/Rakhlin/Shamir, COLT 2018 / Telgarsky’s 14.2.)

σ1, …, σL 1 σℓ(ax) = aσℓ(x) a > 0
ℱL L f (ℓ) = σℓ(Wℓ f (ℓ−1))
∥Wℓ∥F ≤ B ℜ̂n(ℱ) ≤ 1

n ∥X∥FBL (1 + 2L log 2)

Can get a slightly better rate via covering numbers: see Telgarsky’s section 16.2.

https://arxiv.org/abs/1712.06541
https://mjt.cs.illinois.edu/dlt/#theorem:rad_frob
https://mjt.cs.illinois.edu/dlt/#sec:gen:specnorm

So, does this solve it?

• Experiment by Dziugaite/Roy (2017): 
training a small network on MNIST (0-4 vs 5-9),  
plotting a Rademacher-based margin bound 
using a different (but similarly[?] tight)  
upper bound on the Rademacher complexity

18

https://arxiv.org/abs/1703.11008

