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Deep learning
• Mostly assuming fully-connected, feedforward nets (“multilayer perceptrons”):
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Deep learning
• Mostly assuming fully-connected, feedforward nets (“multilayer perceptrons”):
•                                         f (0)(x) = x f (ℓ)(x) = σℓ(Wℓ f (ℓ−1)(x) + bℓ) f(x) = f (L)(x)
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• Componentwise: ,ReLU(z) = max{z,0} sigmoid(z) = 1/(1 + exp(−z))

• , max pooling, attention, …softmax(z)i = exp(zi)/∑
j

exp(zj)

• Usually train via SGD, but it’s non-convex: in general, possibility of local minima
• ERM is NP-hard, even with 1 ReLU, even for square loss (Goel et al. ITCS 2021)
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Universal approximation in ℝ
Theorem: Let  be -Lipschitz. For any , there is a two-layer network 
 with  hidden nodes, , with .

g : ℝ → ℝ ρ ε > 0
f m := ⌈ ρ

ε ⌉ σ1(z) = )(z ≥ 0) sup
x∈[0,1]

|f(x) − g(x)| ≤ ε
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f m := ⌈ ρ

ε ⌉ σ1(z) = )(z ≥ 0) sup
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|f(x) − g(x)| ≤ ε

3

bi = iε
ρ a0 = g(0) ai = g(bi) − g(bi−1) f(x) =

m−1

∑
i=0

ai)(xi ≥ bi)
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Universal approximation in ℝd
Theorem: Let  be continuous. For any , choose  so that 

 implies . Then there is a three-layer ReLU network  

with  nodes satisfying .

g : ℝd → ℝ ε > 0 δ > 0
∥x − x′ ∥∞ ≤ δ |g(x) − g(x′ )| ≤ ε f

Ω ( 1
δd ) ∫[0,1]d

|f(x) − g(x)|dx ≤ 2ε

4

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User



Universal approximation in ℝd
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 implies . Then there is a three-layer ReLU network  

with  nodes satisfying .

g : ℝd → ℝ ε > 0 δ > 0
∥x − x′ ∥∞ ≤ δ |g(x) − g(x′ )| ≤ ε f

Ω ( 1
δd ) ∫[0,1]d

|f(x) − g(x)|dx ≤ 2ε

4

Proof approximates continuous  by piecewise-constant , 
then uses a two-layer ReLU net to check if  is in each piece, roughly like in 1d.

(Telgarsky’s Theorem 2.1.)

g h
x

https://mjt.cs.illinois.edu/dlt/#theorem:mv_bumps
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Universal approximation in , one hidden layerℝd

Stone-Weierstrass Theorem: Let  be a set of functions such that

1. Each  is continuous.

2. For each , there is at least one  with .

3. Separates points: for each , there is at least one  with .

4.  is an algebra: for ,       and   .

ℱ
f ∈ ℱ

x f ∈ ℱ f(x) ≠ 0
x ≠ x′ f ∈ ℱ f(x) ≠ f(x′ )

ℱ f, g ∈ ℱ αf + g ∈ ℱ fg = (x ↦ f(x)g(x)) ∈ ℱ

5
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Universal approximation in , one hidden layerℝd

Stone-Weierstrass Theorem: Let  be a set of functions such that

1. Each  is continuous.

2. For each , there is at least one  with .

3. Separates points: for each , there is at least one  with .

4.  is an algebra: for ,       and   .

ℱ
f ∈ ℱ

x f ∈ ℱ f(x) ≠ 0
x ≠ x′ f ∈ ℱ f(x) ≠ f(x′ )

ℱ f, g ∈ ℱ αf + g ∈ ℱ fg = (x ↦ f(x)g(x)) ∈ ℱ

5

Conditions hold for , , so that  σ1 = exp σ2 = Id ℱexp = {x ↦
m

∑
i=1

ai exp(w⊤
i x)}
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4.  is an algebra: for ,       and   .

ℱ
f ∈ ℱ
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Universal approximation in , one hidden layerℝd

Stone-Weierstrass Theorem: Let  be a set of functions such that

1. Each  is continuous.

2. For each , there is at least one  with .

3. Separates points: for each , there is at least one  with .

4.  is an algebra: for ,       and   .

ℱ
f ∈ ℱ

x f ∈ ℱ f(x) ≠ 0
x ≠ x′ f ∈ ℱ f(x) ≠ f(x′ )

ℱ f, g ∈ ℱ αf + g ∈ ℱ fg = (x ↦ f(x)g(x)) ∈ ℱ

5

If  is continuous, , , works too:


Approximate  by  with  error, and replace each  with a 1d -based net

σ : ℝ → ℝ lim
z→−∞

σ(z) = 0 lim
z→−∞

σ(z) = 1
g h ∈ ℱexp

ε
2 exp σ

Conditions hold for , , so that  σ1 = exp σ2 = Id ℱexp = {x ↦
m

∑
i=1

ai exp(w⊤
i x)}

Generally: universal approximator iff  is not a polynomialσ



Limits of universal approximation

• Curse of dimensionality: usually requires # of units exponential in dimension

• Also usually requires exponential norm of weights 

• Doesn’t say anything about whether ERM finds a good network, just that one exists

• Let alone anything about whether (S)GD finds it

6
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• (remember that computers always represent things as …){0,1}d

• …but, it takes exponential width to do that
• …but, there’s a network of size  that can implement all boolean functions 

that can be computed in maximum runtime 
3(T2)

T

Circuit Complexity and Neural Networks, Ian Parberry (1994) - UBC access
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                                                                           – Y. Bengio & LeCun (2007)

• Lots of empirical evidence, but theoretical support pretty limited until recently  

• Telgarsky notes section 5 give a particular such function:  
shallow net needs huge width to approximate,  
but narrow not-super-deep net can approximate it efficiently

• Also proved for a certain class of functions by Mhaskar, Liao, Poggio (2016)
• Lu et al. (2017): approximating wide nets with deep nets easier(ish) than vice versa
• Liang and Srikant (2017): can approximate piecewise-constant funcs with 

exponentially smaller deep nets than shallow
9
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• A lot of people use this to say “neural networks can do anything! !” 

 
 

• These kind of approximation results don’t tell us:
• What practically-sized networks can do
• Gaussian kernels can also do anything (!)…with ridiculously large norm
• Neural nets can do anything…if they’re ridiculously large (or large norm) 

• Even if our class approximates, do we generalize? (Does ERM, RLM, … work?) 

• Does (S)GD find an approximate ERM / RLM / something that generalizes?
• We (pretty much) know it doesn’t always find an (approximate) ERM:  

ERM with deep nets (even for square loss) is NP-hard  
             so, if you can prove that it does, let me know =)

but…
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•  for fully-connected networksP =
L

∏
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• For piecewise-constant, e.g. threshold functions, VCdim = Θ(P log P)
• For piecewise-polynomial, ,  with  units3(PL2 + PL log P) 3(PU) U
• For sigmoids/similar,  and 3(P2U2) Ω(P2)
• Theorem 8.13/8.14 of Anthony & Bartlett (1999) textbook - UBC access 
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• But these architectures do generalize well – VC of arch. can’t explain that
• Uniform stability can’t either, since it’s data-independent;  

on-average replace-one stability always can, but hard  

• Making hidden layers wider can often improve generalization,  
but worsens parameter counting-based bounds

• Remember that  has infinite VCdim for universal kernels,  
but we can still learn with small-norm predictors

ℋk
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Theorem: Fix  each -Lipschitz, positive homogenous (  for ). 
Let  be the set of -layer no-intercept nets, , 
with .  Then .

(More complicated proof: Golowich/Rakhlin/Shamir, COLT 2018 / Telgarsky’s 14.2.)
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https://arxiv.org/abs/1712.06541
https://mjt.cs.illinois.edu/dlt/#theorem:rad_frob


Theorem: Fix  each -Lipschitz with .  
Let  be the set of -layer no-intercept nets, , 
with .  Then .

σ1, …, σL ρ σℓ(0) = 0
ℱL L f (ℓ) = σℓ(Wℓ f (ℓ−1))
∥W⊤

ℓ ∥1,∞ ≤ B ℜ̂n(ℱ) ≤ 1
n ∥X∥2,∞(2ρB)L 2 log d

∥M∥b,c = (∥M⋅1∥b, …,∥M⋅d∥b)
c

Rademacher of deep nets

Theorem: Fix  each -Lipschitz, positive homogenous (  for ). 
Let  be the set of -layer no-intercept nets, , 
with .  Then .

(More complicated proof: Golowich/Rakhlin/Shamir, COLT 2018 / Telgarsky’s 14.2.)

σ1, …, σL 1 σℓ(ax) = aσℓ(x) a > 0
ℱL L f (ℓ) = σℓ(Wℓ f (ℓ−1))
∥Wℓ∥F ≤ B ℜ̂n(ℱ) ≤ 1

n ∥X∥FBL (1 + 2L log 2)

Can get a slightly better rate via covering numbers: see Telgarsky’s section 16.2.

https://arxiv.org/abs/1712.06541
https://mjt.cs.illinois.edu/dlt/#theorem:rad_frob
https://mjt.cs.illinois.edu/dlt/#sec:gen:specnorm


So, does this solve it?

• Experiment by Dziugaite/Roy (2017): 
training a small network on MNIST (0-4 vs 5-9),  
plotting a Rademacher-based margin bound 
using a different (but similarly[?] tight)  
upper bound on the Rademacher complexity
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https://arxiv.org/abs/1703.11008

