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Deep learning

 Mostly assuming fully-connected, feedforward nets (“multilayer perceptrons”):

¢ fOw) = x fO@) = o, (W, f D) + b,) fx) = f )
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Mostly assuming fully-connected, feedforward nets (“multilayer perceptrons’):

¢ fOw) = x fO@) = o, (W, f D) + b,) fx) = f )

. W, € R4 b, € R% o, : R% — R% (usually d, = d,)

» (Can think of this as a directed, acyclic computation graph, organized in layers
o Usually 6;(x) = x; intermediate layers called hidden layers

« Common choices for activations o:
» Componentwise: ReLU(z) = max{z,0},sigmoid(z) = 1/(1 + exp(—z2))
' softmax(z); = exp(z;)/ Z exp(zj), max pooling, attention, ...

J
o Usually train via SGD, but it’s non-convex: in general, possibility of local minima

« ERM is NP-hard, even with 1 RelLU, even for square loss (Goel et al. ITCS 2021)
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Universal approximation in R

Theorem: Let g : |

— |

be p-Lipschitz. For any € > 0, there is a two-layer network

fwithm := [g] hidden nodes, 0,(z) = [(z > 0), with sup |[f(x) — g(x)| L &

xe[0,1]

0
0
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Universal approximation in R

Theorem: Let ¢ : R — R be p-Lipschitz. For any € > 0, there is a two-layer network
fwithm := [%1 hidden nodes, 0,(z) = [(z > 0), with sup |[f(x) — g(x)| L &
xe[0,1]
je m—1
bj = — ap=80) a;=gb;)—gb;,_) f(x) = 2 al(xg > b
P € () | i=0
y 7(01( [\Qq, _G(bo) - éOL\’ = 7(b5) '3“’(1"() ‘,ju’lﬂ., s
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Theorem: Let g : |

— |

be p-Lipschitz. For any € > 0, there is a two-layer network

fwithm := [%1 hidden nodes, 0,(z) = [(z > 0), with sup |[f(x) — g(x)| L &

xe[0,1]

m—1

b = — ay=80) a=gby—gb_,) X =) allx;>Db)

\M =
k = maxi{k: b, < x} B

| g(x) —fx)| < |gx) —gb) |+ 1gby) —fb) | + | f(by) — f(x) ]

—_—— —~——
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Universal approximation in R

Theorem: Let ¢ : R — R be p-Lipschitz. For any € > 0, there is a two-layer network
fwithm := [g] hidden nodes, 0,(z) = [(z > 0), with sup |[f(x) — g(x)| L &
xe[0,1]
je m—1
b=— =30 a=gb)-gby) f= ) allzb)
i=0

k = maxi{k: b, < x}
| g(x) —fx)| < |gx) —gb) |+ 1gby) —fb) | + | f(by) — f(x) ]

<plx—1b

< pﬁ — e Can do better by depending on total variation of g

I,
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Universal approximation in R4

Yd/‘jo‘
Theorem: Let ¢ : 82 — R be continuous. For any € > (), choose 0 > (0 so that

|x — x|, < 6 implies |g(x) — g(x')| £ €. Then there is a three-layer ReLU network f

. 1 . .
with €2 (ﬁ) nodes satisfying [ d 1f(x) — g(x)|dx < 2e.
[0,1]
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Universal approximation in R4

d

Theorem: Let g : R — R be continuous. For any € > 0, choose 0 > 0 so that
|x — x|, < 6 implies |g(x) — g(x')| £ €. Then there is a three-layer ReLU network f

. 1 . .
with €2 (ﬁ) nodes satisfying [ d 1f(x) — g(x)|dx < 2e.
[0,1]

Proof approximates continuous g by piecewise-constant £,

then uses a two-layer RelLU net to check if x is in each piece, roughly like in 1d.

(Telgarsky’s Theorem 2.1) 7\
ﬂ(ﬁ epie ce{) &[g&fﬁ(ﬁz}

S
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https://mjt.cs.illinois.edu/dlt/#theorem:mv_bumps
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Universal approximation in IRd, one hidden layer

Stone-Weierstrass Theorem: Let & be a set of functions such that

1. Each f € F is continuous.

2. For each x, there is at least one f € & with f(x) # 0.

3. Separates points: for each x # x’, there is at least one f € & with f(x) # f(x').
4. F isanalgebra:forf,g € F, af+ g€ F and fg=xr f(x)gx)) € F.

T%en f (S Lo -denge 17 C(ﬂ.SJ e, Y confiuous 9: T - @/ g te s+ “@y(lao c £,
e~

$op [l 96
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Universal approximation in IRd, one hidden layer

Stone-Weierstrass Theorem: Let & be a set of functions such that

1. Each f € F is continuous.

2. For each x, there is at least one f € & with f(x) # 0.

3. Separates points: for each x # x’, there is at least one f € & with f(x) # f(x').
4. Fisanalgebra:forf,ge € #, af+ g€ F and fg =(x |—>f(x)g(x)) c F

Conditions hold for 6, = exp, 6, = Id, sothat &, = {x — Z a;exp(w;' x)}

(2& exple; ,c)>(2q eqA(w; %)) =t
2 QoL QSCV((‘” +w) T )

‘

p—
&
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Universal approximation in IRd, one hidden layer

Stone-Weierstrass Theorem: Let & be a set of functions such that

1. Each f € F is continuous.

2. For each x, there is at least one f € & with f(x) # 0.

3. Separates points: for each x # x’, there is at least one f € & with f(x) # f(x').
4. Fisanalgebra:forf,ge € #, af+ g€ F and fg =(x |—>f(x)g(x)) c F

Conditions hold for 6; = exp, 6, = Id, sothat F_,, = {x — Z a; exp(w, X))
If o : R — R iscontinuous, Ilm o(z) =0, lim o(2) = 1, works too:
7——00 7——00

Approximate g by h € F# exp with % error, and replace each exp with a 1d o-based net



Universal approximation in IRd, one hidden layer

Stone-Weierstrass Theorem: Let & be a set of functions such that

1. Each f € F is continuous.

2. For each x, there is at least one f € & with f(x) # 0.

3. Separates points: for each x # x’, there is at least one f € & with f(x) # f(x').
4. Fisanalgebra:forf,ge € #, af+ g€ F and fg =(x |—>f(x)g(x)) c F

Conditions hold for 6, = exp, 6, = Id, sothat &, = {x — Z a;exp(w;' x)}

If o : R — R is continuous, Ilm o(z) =0, llm o(z) = 1, works too:
7—>—00 I—>—00
Approximate g by h € F# exp with % error, and replace each exp with a 1d o-based net

Generally: universal approximator iff o is not a polynomial

5



Limits of universal approximation

 Curse of dimensionality: usually requires # of units exponential in dimension
* Also usually requires exponential norm of weights

 Doesn’t say anything about whether ERM finds a good network, just that one exists
» et alone anything about whether (S)GD finds it



Universal approximation via circuit complexity

SSBD chapter 20:
. 2 layer nets with sign activations can represent all functions {+1}¢ — {+1}
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SSBD chapter 20:
. 2 layer nets with sign activations can represent all functions {+1}¢ — {+1}

. (remember that computers always represent things as {0,11¢...)
e ...but, it takes exponential width to do that

e ...but, there’s a network of size @(Tz) that can implement all boolean functions
that can be computed in maximum runtime 71’

Circuit Complexity and Neural Networks, lan Parberry (1994) - UBC access
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Abstract

The classical Universal Approximation Theorem holds for neural networks of arbitrary width and
bounded depth. Here we consider the natural ‘dual’ scenario for networks of bounded width and
arbitrary depth. Precisely, let n be the number of inputs neurons, m be the number of output

neurons, and let p be any nonaffine continuous function, with a continuous nonzero derivative at
some point. Then we show that the class of neural networks of arbitrary depth, width n + m + 2,

and activation function p, is dense in C'( K; R™) for K C R™ with K compact. This covers every
activation function possible to use 1n practice, and also includes polynomial activation functions,
which is unlike the classical version of the theorem, and provides a qualitative difference between
deep narrow networks and shallow wide networks. We then consider several extensions of this
result. In particular we consider nowhere differentiable activation functions, density in noncompact
domains with respect to the LP-norm, and how the width may be reduced to just n + m + 1 for
‘most’ activation functions. 8
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Why deep instead of wide?

Deep networks much better at learning compositional structure

 “We claim that most functions that can be represented compactly by deep

architectures cannot be represented by a compact shallow architecture.”
— Y. Bengio & L. eCun (2007)

* Lots of empirical evidence, but theoretical support pretty limited until recently

* Telgarsky notes section 5 give a particular such function:
shallow net needs huge width to approximate,
but narrow not-super-deep net can approximate it efficiently

* Also proved for a certain class of functions by Mhaskar, Liao, Poggio (2016)
 Luetal. (2017): approximating wide nets with deep nets easier(ish) than vice versa

* Liang and Srikant (2017): can approximate piecewise-constant funcs with
exponentially smaller deep nets than shallow
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 We have some universal approximation results
* A lot of people use this to say “neural networks can do anything! .

but...

 These kind of approximation results don'’t tell us:
 \What practically-sized networks can do

« Gaussian kernels can also do anything (.)...with ridiculously large norm
* Neural nets can do anything...if they’re ridiculously large (or large norm)

 Even if our class approximates, do we generalize? (Does ERM, RLM, ... work?)

* Does (S)GD find an approximate ERM / RLM / something that generalizes”?

e \We (pretty much) know it doesn’t always find an (approximate) ERM:
ERM with deep nets (even for square loss) is NP-hard

so, If you can prove that it does, let me know =)
10
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Generalization: VC dimension

For ReLU (or general piecewise-linear) nets with P params, VCdim = O(PL log P)
« and Q(PL log %) so nearly tight — Bartlett/Harvey/Liaw/Mehrabian (2019)

L
P = de_ldf for fully-connected networks
=1
For piecewise-constant, e.g. threshold functions, VCdim = O(P log P)
For piecewise-polynomial, O(PL* + PLlog P), O(PU) with U units
For sigmoids/similar, O(P?U?) and Q(P?)
 Theorem 8.13/8.14 of Anthony & Bartlett (1999) textbook - UBC access
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 Neyshabur et al. (2015), Zhang et al. (2017)

1.0
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2.0 e—e random labels |- 33T o—0 AlexNet 0.8}
Q »-% shuffled p'ixels & 3gL| ™= MLP 1x512 1 _ o7l
= 1.5k - random pixels | % 2 |
) 4—® Qgaussian o 2.5 e
g o £ 2.0 204
s g s B i B =8 |[nception ||
0.3
0.5 151 " o—0 AlexNet
—"" 0.2 #—t  MLP 1x512 |1
0.0 1.0 | 1 1 0.1 ] ] 1 ]
0 5 10 15 20 25 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
thousand steps label corruption label corruption
(a) learning curves (b) convergence slowdown (c) generalization error growth

Figure 1: Fitting random labels and random pixels on CIFAR10. (a) shows the training loss of
various experiment settings decaying with the training steps. (b) shows the relative convergence
time with different label corruption ratio. (c) shows the test error (also the generalization error since
training error 1s 0) under different label corruptions.
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 But these architectures do generalize well — VC of arch. can’t explain that

o Uniform stablility can’t either, since it's data-independent;
on-average replace-one stability always can, but hard

 Making hidden layers wider can often improve generalization,
but worsens parameter counting-based bounds

« Remember that 0@( has infinite VCdim for universal kernels,

but we can still learn with small-norm predictors
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S’A{S(PZKH) = 5{5 ({x ™ Op+1 (HWKHHLOO g(x)) -8 € COHV( ~ eV gf) })

< pB 9%5 (COHV(_P}{ U 57'5)) E)A{S(conv(cﬁ)) = 9?{5(‘5)
< pBRs (~F, U Fy)

R(AUB) < RJ(A)+R(B)if0€ A 0€B
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Theorem: Fix ¢, ..., 0; each p-Lipschitz with 6,(0) =
Let &; be the set of L—Iayer no- mtercept nets f(’/ﬂ ) =0 (W f(”ﬂ Dy,

with HWTH1 '« < B. Then 91 (F) < —HXHZOO(ZpB)L 2logd.
RACA,) Ml = || (I 11ps - IM.gll)

Base case, . = 0: C

mS({xl—)X J € |d]}) <= (maXH(xlj,.. -l ) 2logd

—HXHzoo 2logd ——HXHzoo(ZpB)O 2logd
Inductive step:

S’A{S(PZKH) = 5{5 ({x ™ Op+1 (HWKHHLOO g(x)) -8 € COHV( ~ eV gf) })

< pB 9%5 (COHV(_P}{ U 57'5)) E)A{S(conv(cﬁ)) = 9?{5(‘5)
< pBRs (~F, U Fy)
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Rademacher of convex hull

n k>1 a€A, gy,....8,.€EG

5 | K
R(conv(&)) = —FE_sup sup sup <0 Z a.(g-)5>
’ JAS)
j=1



Rademacher of convex hull
—_sup sup  sup <0, Zaj(gj)5>

. 1
R (conv(¥)) = —
n k>1 a€A, gy,....8,.€EG
1 k
—[E_sup sup Z a; sup <e, (8j)s>
n kZl ClEAk ]:1 g]E?
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Rademacher of convex hull
—_sup sup  sup <0, Zaj(gj)5>

. 1
R (conv(¥)) = —
n k>1 a€A, gy,....8,.€EG
1 k
—[E_sup sup Z a; sup <e, (8j)s>
n kZl ClEAk ]:1 g]E?

1 k
=—FE, [sup Sup z aj] sup (€, g )
n kZl (IEAk ]:1 gef‘?

— 9/\{5(56)
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Rademacher of union

R |
R(GEUH)=—E_ sup <0,g5>
n geE(GUX)



Rademacher of union

R |
R(GEUH)=—E_ sup <0,g5>
n geE(GUX)

< 2E,[ sup (0, 85) + sup (o.g5)] 0€ %, 0ex
n geyg gEH




Rademacher of union

R |
R(GEUH)=—E_ sup <0,g5>
n geE(GUX)

< 2E,[ sup (0, 85) + sup (o.g5)] 0€ %, 0ex
n geyg gEH

= R(Y) + R(X)
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Rademacher of union

R |
R(GUK)=—FE_ sup <0,g5>
n geE(GUX)

1 .
< — —6[ sup <a, g5> + sup <a, g5>] f0e &,0e #
n geEG geEH
or If both sets are symmetric:

— QA{S(S&) 4 z)A{S(%) forallg € &, alsohave —g € &
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Rademacher of union

R |
R(GUK)=—FE_ sup <0,g5>
n geE(GUX)

< 2E,[ sup (0, 85) + sup (o,g5)] 0€ %, 0ew
n geyg gEH

or if both sets are symmetric:
= NR(&) +NR(H) forallg € &, also have —g € &

...or If we otherwise know that

sup (o, gs) = 0, sup (o, g5) = 0
geEG geH

for any assignment of o
10



Rademacher of deep nets

Theorem: Fix oy, ..., 6; each p-Lipschitz with 6,(0) = 0.

Let 3‘7L be the set of L-layer no-intercept nets, f(f ) = af(WLﬂ f(”ﬂ _1)),
. T - 1 L

with [[W/ || o < B. Then R (F) < ;HXHz,OO(ZpB) \/2logd.

Ml = || (M1l - IM.qll)

C



Rademacher of deep hets

Theorem: Fix ¢y, ..., 0; each p-Lipschitz with 6,(0) =
Let F; be the set of L—Iayer no-intercept nets f(f ) =0 (W f(”ﬂ 1))

with HWTHI « < B. Then R (F) < —HXHZOO(ZpB)L\/Zlogd
Ml = || (M1l - IM.qll)

C

Theorem: Fix 0y, ..., 0; each 1 -Lipschitz, positive homogenous (6,(ax) = ac(x) for a > 0).
Let F, be the set of L-layer no-intercept nets, f\) = ¢ (W, =),

. - | L
with [|W, |l < B. Then R (%) < L||X]|.B (1 + \/2L10g2).
(More complicated proof: Golowich/Rakhlin/Shamir, COLT 2018 / Telgarsky’s 14.2.)



https://arxiv.org/abs/1712.06541
https://mjt.cs.illinois.edu/dlt/#theorem:rad_frob

Rademacher of deep hets

Theorem: Fix ¢y, ..., 0; each p-Lipschitz with 6,(0) =
Let F; be the set of L—Iayer no-intercept nets f(f ) =0 (W f(”ﬂ 1))

with HWTHI « < B. Then R (F) < —HXHZOO(ZpB)L\/Zlogd
Ml = || (M1l - IM.qll)

C

Theorem: Fix 0y, ..., 0; each 1 -Lipschitz, positive homogenous (6,(ax) = ac(x) for a > 0).
Let F, be the set of L-layer no-intercept nets, f\) = ¢ (W, =),

. - | L
with [|W, |l < B. Then R (%) < L||X]|.B (1 + \/2L10g2).
(More complicated proof: Golowich/Rakhlin/Shamir, COLT 2018 / Telgarsky’s 14.2.)

Can get a slightly better rate via covering numbers: see Telgarsky’s section 16.2.



https://arxiv.org/abs/1712.06541
https://mjt.cs.illinois.edu/dlt/#theorem:rad_frob
https://mjt.cs.illinois.edu/dlt/#sec:gen:specnorm

So, does this solve it?

Unregularized

et
o

©
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 Experiment by Dziugaite/Roy (2017):

training a small network on MNIST (0-4 vs 5-9), 3 |
plotting a Rademacher-based margin bound 5 o5 1k e
using a different (but similarly[?] tight) = Oa_““g —— Bound
upper bound on the Rademacher complexity R
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https://arxiv.org/abs/1703.11008

