
Neural Tangent Kernels
CPSC 532D: Modern Statistical Learning Theory

28 November 2022

cs.ubc.ca/~dsuth/532D/22w1/

1

https://www.cs.ubc.ca/~dsuth/532D/22w1/
Mobile User

Mobile User

Mobile User

Mobile User

2

https://arxiv.org/abs/1911.01413

(S)GD works on over-parameterized nets

• Okay, so there are bad local minima

3

(S)GD works on over-parameterized nets

• Okay, so there are bad local minima
• But…does (S)GD actually find them?

3

(S)GD works on over-parameterized nets

• Okay, so there are bad local minima
• But…does (S)GD actually find them?
• Several papers around 2018-19 showed that:

3

(S)GD works on over-parameterized nets

• Okay, so there are bad local minima
• But…does (S)GD actually find them?
• Several papers around 2018-19 showed that:
• If the network is very overparameterized (width , possibly)≫ n → ∞

3

(S)GD works on over-parameterized nets

• Okay, so there are bad local minima
• But…does (S)GD actually find them?
• Several papers around 2018-19 showed that:
• If the network is very overparameterized (width , possibly)≫ n → ∞
• and we use an appropriate random initialization

3

(S)GD works on over-parameterized nets

• Okay, so there are bad local minima
• But…does (S)GD actually find them?
• Several papers around 2018-19 showed that:
• If the network is very overparameterized (width , possibly)≫ n → ∞
• and we use an appropriate random initialization
• with square loss

3

(S)GD works on over-parameterized nets

• Okay, so there are bad local minima
• But…does (S)GD actually find them?
• Several papers around 2018-19 showed that:
• If the network is very overparameterized (width , possibly)≫ n → ∞
• and we use an appropriate random initialization
• with square loss
• then (S)GD finds a global minimum

3

(S)GD works on over-parameterized nets

• Okay, so there are bad local minima
• But…does (S)GD actually find them?
• Several papers around 2018-19 showed that:
• If the network is very overparameterized (width , possibly)≫ n → ∞
• and we use an appropriate random initialization
• with square loss
• then (S)GD finds a global minimum

• Implicit in these papers:

3

(S)GD works on over-parameterized nets

• Okay, so there are bad local minima
• But…does (S)GD actually find them?
• Several papers around 2018-19 showed that:
• If the network is very overparameterized (width , possibly)≫ n → ∞
• and we use an appropriate random initialization
• with square loss
• then (S)GD finds a global minimum

• Implicit in these papers:
• Behaviour of deep nets converges to kernel ridge regression with the

neural tangent kernel

3

Shallow case
• Let’s start with a depth 2 case (Telgarsky notes section 4)

4

Shallow case
• Let’s start with a depth 2 case (Telgarsky notes section 4)

• f(x; W) = 1
m

m

∑
j=1

aj σ(w⊤
j x)

4

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Shallow case
• Let’s start with a depth 2 case (Telgarsky notes section 4)

• f(x; W) = 1
m

m

∑
j=1

aj σ(w⊤
j x)

• is the th row of (as a column vector)wi i W ∈ ℝm×d

4

Shallow case
• Let’s start with a depth 2 case (Telgarsky notes section 4)

• f(x; W) = 1
m

m

∑
j=1

aj σ(w⊤
j x)

• is the th row of (as a column vector)wi i W ∈ ℝm×d

• Going to treat the as fixed for simplicityaj

4

Shallow case
• Let’s start with a depth 2 case (Telgarsky notes section 4)

• f(x; W) = 1
m

m

∑
j=1

aj σ(w⊤
j x)

• is the th row of (as a column vector)wi i W ∈ ℝm×d

• Going to treat the as fixed for simplicityaj

• The core idea: think about a linearization of in f W

4

Shallow case
• Let’s start with a depth 2 case (Telgarsky notes section 4)

• f(x; W) = 1
m

m

∑
j=1

aj σ(w⊤
j x)

• is the th row of (as a column vector)wi i W ∈ ℝm×d

• Going to treat the as fixed for simplicityaj

• The core idea: think about a linearization of in f W
• fW0

(x; W) = f(x; W0) + ⟨∇W f(x; W0), W − W0⟩

4

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Shallow case
• Let’s start with a depth 2 case (Telgarsky notes section 4)

• f(x; W) = 1
m

m

∑
j=1

aj σ(w⊤
j x)

• is the th row of (as a column vector)wi i W ∈ ℝm×d

• Going to treat the as fixed for simplicityaj

• The core idea: think about a linearization of in f W
• fW0

(x; W) = f(x; W0) + ⟨∇W f(x; W0), W − W0⟩
• Approximates behaviour of as we change ; nonlinear in f W x

4

Shallow case
• Let’s start with a depth 2 case (Telgarsky notes section 4)

• f(x; W) = 1
m

m

∑
j=1

aj σ(w⊤
j x)

• is the th row of (as a column vector)wi i W ∈ ℝm×d

• Going to treat the as fixed for simplicityaj

• The core idea: think about a linearization of in f W
• fW0

(x; W) = f(x; W0) + ⟨∇W f(x; W0), W − W0⟩
• Approximates behaviour of as we change ; nonlinear in f W x
• We’ll see that, for large and random , through trainingm W0 f ≈ fW0

4

5

f(x; W) = 1
m

m

∑
j=1

aj σ(w⊤
j x)

fW0
(x; W) = f(x; W0) + ⟨∇f(x; W0), W − W0⟩

5

f(x; W) = 1
m

m

∑
j=1

aj σ(w⊤
j x)

fW0
(x; W) = f(x; W0) + ⟨∇f(x; W0), W − W0⟩

= 1
m

m

∑
j=1

aj [σ(w⊤
0,jx) + σ′ (w⊤

0,jx)x⊤(wj − w0,j)]

5

f(x; W) = 1
m

m

∑
j=1

aj σ(w⊤
j x)

fW0
(x; W) = f(x; W0) + ⟨∇f(x; W0), W − W0⟩

= 1
m

m

∑
j=1

aj [σ(w⊤
0,jx) + σ′ (w⊤

0,jx)x⊤(wj − w0,j)]
= 1

m

m

∑
j=1

aj ([σ(w⊤
0,jx) − σ′ (w⊤

0,jx)w⊤
0,jx] + σ′ (w⊤

0,jx)w⊤
j x)

5

f(x; W) = 1
m

m

∑
j=1

aj σ(w⊤
j x)

fW0
(x; W) = f(x; W0) + ⟨∇f(x; W0), W − W0⟩

= 1
m

m

∑
j=1

aj [σ(w⊤
0,jx) + σ′ (w⊤

0,jx)x⊤(wj − w0,j)]
= 1

m

m

∑
j=1

aj ([σ(w⊤
0,jx) − σ′ (w⊤

0,jx)w⊤
0,jx] + σ′ (w⊤

0,jx)w⊤
j x)

= 0 for ReLU: σ(z)=zσ′ (z)

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

5

f(x; W) = 1
m

m

∑
j=1

aj σ(w⊤
j x)

fW0
(x; W) = f(x; W0) + ⟨∇f(x; W0), W − W0⟩

= 1
m

m

∑
j=1

aj [σ(w⊤
0,jx) + σ′ (w⊤

0,jx)x⊤(wj − w0,j)]
= 1

m

m

∑
j=1

aj ([σ(w⊤
0,jx) − σ′ (w⊤

0,jx)w⊤
0,jx] + σ′ (w⊤

0,jx)w⊤
j x)

= 0 for ReLU: σ(z)=zσ′ (z)

fW0
(x; W) = ⟨∇f(x; W0), W⟩

5

f(x; W) = 1
m

m

∑
j=1

aj σ(w⊤
j x)

fW0
(x; W) = f(x; W0) + ⟨∇f(x; W0), W − W0⟩

= 1
m

m

∑
j=1

aj [σ(w⊤
0,jx) + σ′ (w⊤

0,jx)x⊤(wj − w0,j)]
= 1

m

m

∑
j=1

aj ([σ(w⊤
0,jx) − σ′ (w⊤

0,jx)w⊤
0,jx] + σ′ (w⊤

0,jx)w⊤
j x)

= 0 for ReLU: σ(z)=zσ′ (z)

We’ll see shortly that shrinks as growsf − f0 m

fW0
(x; W) = ⟨∇f(x; W0), W⟩

Mobile User

6

f(x; W) = 1
m

m

∑
j=1

aj σ(w⊤
j x)

fW0
(x; W) = 1

m

m

∑
j=1

aj (σ(w⊤
0,jx) − σ′ (w⊤

0,jx)w⊤
0,jx + σ′ (w⊤

0,jx)w⊤
j x)

6

f(x; W) = 1
m

m

∑
j=1

aj σ(w⊤
j x)

fW0
(x; W) = 1

m

m

∑
j=1

aj (σ(w⊤
0,jx) − σ′ (w⊤

0,jx)w⊤
0,jx + σ′ (w⊤

0,jx)w⊤
j x)

If is -smooth, , :σ β |aj| ≤ 1 ∥x∥ ≤ 1

6

f(x; W) = 1
m

m

∑
j=1

aj σ(w⊤
j x)

fW0
(x; W) = 1

m

m

∑
j=1

aj (σ(w⊤
0,jx) − σ′ (w⊤

0,jx)w⊤
0,jx + σ′ (w⊤

0,jx)w⊤
j x)

If is -smooth, , :σ β |aj| ≤ 1 ∥x∥ ≤ 1

f(x; W) − fW0
(x; W) ≤ 1

m

m

∑
j=1

|aj| σ(w⊤
j x) − σ(w⊤

0,jx) − σ′ (w⊤
0,jx)x⊤(wj − w0,j)

6

f(x; W) = 1
m

m

∑
j=1

aj σ(w⊤
j x)

fW0
(x; W) = 1

m

m

∑
j=1

aj (σ(w⊤
0,jx) − σ′ (w⊤

0,jx)w⊤
0,jx + σ′ (w⊤

0,jx)w⊤
j x)

If is -smooth, , :σ β |aj| ≤ 1 ∥x∥ ≤ 1

|σ(r) − σ(s) − σ′ (s)(r − s)| = ∫
s

r
σ′ ′ (z)(s − z)dz

f(x; W) − fW0
(x; W) ≤ 1

m

m

∑
j=1

|aj| σ(w⊤
j x) − σ(w⊤

0,jx) − σ′ (w⊤
0,jx)x⊤(wj − w0,j)

6

f(x; W) = 1
m

m

∑
j=1

aj σ(w⊤
j x)

fW0
(x; W) = 1

m

m

∑
j=1

aj (σ(w⊤
0,jx) − σ′ (w⊤

0,jx)w⊤
0,jx + σ′ (w⊤

0,jx)w⊤
j x)

If is -smooth, , :σ β |aj| ≤ 1 ∥x∥ ≤ 1

|σ(r) − σ(s) − σ′ (s)(r − s)| = ∫
s

r
σ′ ′ (z)(s − z)dz ≤ β

2 (r − s)2

f(x; W) − fW0
(x; W) ≤ 1

m

m

∑
j=1

|aj| σ(w⊤
j x) − σ(w⊤

0,jx) − σ′ (w⊤
0,jx)x⊤(wj − w0,j)

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

6

f(x; W) = 1
m

m

∑
j=1

aj σ(w⊤
j x)

fW0
(x; W) = 1

m

m

∑
j=1

aj (σ(w⊤
0,jx) − σ′ (w⊤

0,jx)w⊤
0,jx + σ′ (w⊤

0,jx)w⊤
j x)

If is -smooth, , :σ β |aj| ≤ 1 ∥x∥ ≤ 1

|σ(r) − σ(s) − σ′ (s)(r − s)| = ∫
s

r
σ′ ′ (z)(s − z)dz ≤ β

2 (r − s)2

f(x; W) − fW0
(x; W) ≤ 1

m

m

∑
j=1

|aj| σ(w⊤
j x) − σ(w⊤

0,jx) − σ′ (w⊤
0,jx)x⊤(wj − w0,j)

≤ 1
m

m

∑
j=1

1
2 β(w⊤

j x − w⊤
0,jx)2

6

f(x; W) = 1
m

m

∑
j=1

aj σ(w⊤
j x)

fW0
(x; W) = 1

m

m

∑
j=1

aj (σ(w⊤
0,jx) − σ′ (w⊤

0,jx)w⊤
0,jx + σ′ (w⊤

0,jx)w⊤
j x)

If is -smooth, , :σ β |aj| ≤ 1 ∥x∥ ≤ 1

|σ(r) − σ(s) − σ′ (s)(r − s)| = ∫
s

r
σ′ ′ (z)(s − z)dz ≤ β

2 (r − s)2

f(x; W) − fW0
(x; W) ≤ 1

m

m

∑
j=1

|aj| σ(w⊤
j x) − σ(w⊤

0,jx) − σ′ (w⊤
0,jx)x⊤(wj − w0,j)

≤ 1
m

m

∑
j=1

1
2 β(w⊤

j x − w⊤
0,jx)2 ≤ β

2 m

m

∑
j=1

∥wj − w0,j∥2∥x∥2

6

f(x; W) = 1
m

m

∑
j=1

aj σ(w⊤
j x)

fW0
(x; W) = 1

m

m

∑
j=1

aj (σ(w⊤
0,jx) − σ′ (w⊤

0,jx)w⊤
0,jx + σ′ (w⊤

0,jx)w⊤
j x)

If is -smooth, , :σ β |aj| ≤ 1 ∥x∥ ≤ 1

|σ(r) − σ(s) − σ′ (s)(r − s)| = ∫
s

r
σ′ ′ (z)(s − z)dz ≤ β

2 (r − s)2

f(x; W) − fW0
(x; W) ≤ 1

m

m

∑
j=1

|aj| σ(w⊤
j x) − σ(w⊤

0,jx) − σ′ (w⊤
0,jx)x⊤(wj − w0,j)

≤ 1
m

m

∑
j=1

1
2 β(w⊤

j x − w⊤
0,jx)2 ≤ β

2 m
∥W − W0∥2

F≤ β
2 m

m

∑
j=1

∥wj − w0,j∥2∥x∥2

Linearization quality
• For a two-layer net with -smooth hidden activations,  

second-layer weights with linear activation, 

then for any ,

β
≤ 1/ m

∥x∥ ≤ 1 |f(x; W) − f0(x; W)| ≤ β
2 m

∥W − W0∥2
F

7

Mobile User

Mobile User

Linearization quality
• For a two-layer net with -smooth hidden activations,  

second-layer weights with linear activation, 

then for any ,

β
≤ 1/ m

∥x∥ ≤ 1 |f(x; W) − f0(x; W)| ≤ β
2 m

∥W − W0∥2
F

• This holds for any and , but only for this shallow caseW W0

7

Linearization quality
• For a two-layer net with -smooth hidden activations,  

second-layer weights with linear activation, 

then for any ,

β
≤ 1/ m

∥x∥ ≤ 1 |f(x; W) − f0(x; W)| ≤ β
2 m

∥W − W0∥2
F

• This holds for any and , but only for this shallow caseW W0
• For two-layer ReLU nets as above, with entries of iid standard normal:  

for any and any fixed with , 
with probability at least over the draw of , 

W0
B ≥ 0 x ∈ ℝd ∥x∥ ≤ 1

1 − δ W0

sup
W: ∥W−W0∥F≤B

|f(x; W) − fW0
(x; W)| ≤ 2B4/3 + B log(1/δ)1/4

m1/6

7

Linearization quality
• For a two-layer net with -smooth hidden activations,  

second-layer weights with linear activation, 

then for any ,

β
≤ 1/ m

∥x∥ ≤ 1 |f(x; W) − f0(x; W)| ≤ β
2 m

∥W − W0∥2
F

• This holds for any and , but only for this shallow caseW W0
• For two-layer ReLU nets as above, with entries of iid standard normal:  

for any and any fixed with , 
with probability at least over the draw of , 

W0
B ≥ 0 x ∈ ℝd ∥x∥ ≤ 1

1 − δ W0

sup
W: ∥W−W0∥F≤B

|f(x; W) − fW0
(x; W)| ≤ 2B4/3 + B log(1/δ)1/4

m1/6

• Proof is more annoying: Telgarsky’s Lemma 4.1
7

Linearization quality
• For a two-layer net with -smooth hidden activations,  

second-layer weights with linear activation, 

then for any ,

β
≤ 1/ m

∥x∥ ≤ 1 |f(x; W) − f0(x; W)| ≤ β
2 m

∥W − W0∥2
F

• This holds for any and , but only for this shallow caseW W0
• For two-layer ReLU nets as above, with entries of iid standard normal:  

for any and any fixed with , 
with probability at least over the draw of , 

W0
B ≥ 0 x ∈ ℝd ∥x∥ ≤ 1

1 − δ W0

sup
W: ∥W−W0∥F≤B

|f(x; W) − fW0
(x; W)| ≤ 2B4/3 + B log(1/δ)1/4

m1/6

• Proof is more annoying: Telgarsky’s Lemma 4.1
• Can do multi-layer versions, but approximation degrades with depth

7

What happens in the linearized model?
• For the ReLU, fW0

(x; W) = ⟨∇f(x; W0), W⟩

8

What happens in the linearized model?
• For the ReLU, fW0

(x; W) = ⟨∇f(x; W0), W⟩
• This is a kernel model!

8

What happens in the linearized model?
• For the ReLU, fW0

(x; W) = ⟨∇f(x; W0), W⟩
• This is a kernel model!
• k(x, x′) = ⟨∇f(x; W0), ∇f(x′ ; W0)⟩

8

What happens in the linearized model?
• For the ReLU, fW0

(x; W) = ⟨∇f(x; W0), W⟩
• This is a kernel model!
• k(x, x′) = ⟨∇f(x; W0), ∇f(x′ ; W0)⟩

8

= ⟨
a1x⊤σ′ (w⊤

0,1x)/ m
⋮

amx⊤σ′ (w⊤
0,mx)/ m

,
a1(x′)⊤σ′ (w⊤

0,1x′)/ m
⋮

am(x′)⊤σ′ (w⊤
0,mx′)/ m

⟩

What happens in the linearized model?
• For the ReLU, fW0

(x; W) = ⟨∇f(x; W0), W⟩
• This is a kernel model!
• k(x, x′) = ⟨∇f(x; W0), ∇f(x′ ; W0)⟩

8

= ⟨
a1x⊤σ′ (w⊤

0,1x)/ m
⋮

amx⊤σ′ (w⊤
0,mx)/ m

,
a1(x′)⊤σ′ (w⊤

0,1x′)/ m
⋮

am(x′)⊤σ′ (w⊤
0,mx′)/ m

⟩
= x⊤x′

1
m

m

∑
j=1

a2
j σ′ (w⊤

0,jx)σ′ (w⊤
0,jx′)

What happens in the linearized model?
• For the ReLU, fW0

(x; W) = ⟨∇f(x; W0), W⟩
• This is a kernel model!
• k(x, x′) = ⟨∇f(x; W0), ∇f(x′ ; W0)⟩

8

= ⟨
a1x⊤σ′ (w⊤

0,1x)/ m
⋮

amx⊤σ′ (w⊤
0,mx)/ m

,
a1(x′)⊤σ′ (w⊤

0,1x′)/ m
⋮

am(x′)⊤σ′ (w⊤
0,mx′)/ m

⟩
= x⊤x′

1
m

m

∑
j=1

a2
j σ′ (w⊤

0,jx)σ′ (w⊤
0,jx′) m→∞ x⊤x′ 2w [σ′ (w⊤x) σ′ (w⊤x′)]

if |aj| = 1

arccos kernel
For , ∥x∥ = 1 = ∥x′ ∥ 2w[σ′ (w⊤x)σ′ (w⊤x′)] = 1

2 − 1
2π

arccos(x⊤x′)

9

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

arccos kernel
For , ∥x∥ = 1 = ∥x′ ∥ 2w[σ′ (w⊤x)σ′ (w⊤x′)] = 1

2 − 1
2π

arccos(x⊤x′)

9

This kernel is universal on {x ∈ ℝd+1 : ∥x∥ = 1, xd+1 = 1/ 2}

Non-ReLU, multi-layer version
• General : σ fW0

(x; W) = f(x; W0) − ⟨∇f(x; W0), W0⟩ + ⟨∇f(x; W0), W⟩

10

http://github.com/google/neural-tangents

Non-ReLU, multi-layer version
• General : σ fW0

(x; W) = f(x; W0) − ⟨∇f(x; W0), W0⟩ + ⟨∇f(x; W0), W⟩
• Fitting to labels is fitting a function in to the residual  fW0

yi ℋk yi − f(xi; W0)

10

http://github.com/google/neural-tangents
Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Non-ReLU, multi-layer version
• General : σ fW0

(x; W) = f(x; W0) − ⟨∇f(x; W0), W0⟩ + ⟨∇f(x; W0), W⟩
• Fitting to labels is fitting a function in to the residual  fW0

yi ℋk yi − f(xi; W0)

• For multiple layers, idea is the same: kernel is still 
  
but now uses all of the parameters in the network

k(x, x′) = ⟨∇f(x; W0), ∇f(x′ ; W0)⟩
∇

10

http://github.com/google/neural-tangents

Non-ReLU, multi-layer version
• General : σ fW0

(x; W) = f(x; W0) − ⟨∇f(x; W0), W0⟩ + ⟨∇f(x; W0), W⟩
• Fitting to labels is fitting a function in to the residual  fW0

yi ℋk yi − f(xi; W0)

• For multiple layers, idea is the same: kernel is still 
  
but now uses all of the parameters in the network

k(x, x′) = ⟨∇f(x; W0), ∇f(x′ ; W0)⟩
∇

• but the linearization results are worse 

10

http://github.com/google/neural-tangents

Non-ReLU, multi-layer version
• General : σ fW0

(x; W) = f(x; W0) − ⟨∇f(x; W0), W0⟩ + ⟨∇f(x; W0), W⟩
• Fitting to labels is fitting a function in to the residual  fW0

yi ℋk yi − f(xi; W0)

• For multiple layers, idea is the same: kernel is still 
  
but now uses all of the parameters in the network

k(x, x′) = ⟨∇f(x; W0), ∇f(x′ ; W0)⟩
∇

• but the linearization results are worse 

• Can compute expectation version, even for convolutional nets with pooling

10

http://github.com/google/neural-tangents

Non-ReLU, multi-layer version
• General : σ fW0

(x; W) = f(x; W0) − ⟨∇f(x; W0), W0⟩ + ⟨∇f(x; W0), W⟩
• Fitting to labels is fitting a function in to the residual  fW0

yi ℋk yi − f(xi; W0)

• For multiple layers, idea is the same: kernel is still 
  
but now uses all of the parameters in the network

k(x, x′) = ⟨∇f(x; W0), ∇f(x′ ; W0)⟩
∇

• but the linearization results are worse 

• Can compute expectation version, even for convolutional nets with pooling
• github.com/google/neural-tangents

10

http://github.com/google/neural-tangents

NTK correspondence
• So far we know that:
• for wide nets with f(⋅ ; W) ≈ fW0

(⋅ ; W) W ≈ W0

11

NTK correspondence
• So far we know that:
• for wide nets with f(⋅ ; W) ≈ fW0

(⋅ ; W) W ≈ W0

• is an RKHS{fW0
(⋅ ; W) − f(⋅ ; W0) : W ∈ ℝp}

11

NTK correspondence
• So far we know that:
• for wide nets with f(⋅ ; W) ≈ fW0

(⋅ ; W) W ≈ W0

• is an RKHS{fW0
(⋅ ; W) − f(⋅ ; W0) : W ∈ ℝp}

• kernel k(x, x′) = ⟨∇f(x; W0), ∇f(x′ ; W0)⟩

11

NTK correspondence
• So far we know that:
• for wide nets with f(⋅ ; W) ≈ fW0

(⋅ ; W) W ≈ W0

• is an RKHS{fW0
(⋅ ; W) − f(⋅ ; W0) : W ∈ ℝp}

• kernel k(x, x′) = ⟨∇f(x; W0), ∇f(x′ ; W0)⟩
• Infinite-width limit is universal even for shallow, wide nets 

11

NTK correspondence
• So far we know that:
• for wide nets with f(⋅ ; W) ≈ fW0

(⋅ ; W) W ≈ W0

• is an RKHS{fW0
(⋅ ; W) − f(⋅ ; W0) : W ∈ ℝp}

• kernel k(x, x′) = ⟨∇f(x; W0), ∇f(x′ ; W0)⟩
• Infinite-width limit is universal even for shallow, wide nets 

• The big remaining result:

11

NTK correspondence
• So far we know that:
• for wide nets with f(⋅ ; W) ≈ fW0

(⋅ ; W) W ≈ W0

• is an RKHS{fW0
(⋅ ; W) − f(⋅ ; W0) : W ∈ ℝp}

• kernel k(x, x′) = ⟨∇f(x; W0), ∇f(x′ ; W0)⟩
• Infinite-width limit is universal even for shallow, wide nets 

• The big remaining result:
• Training for square loss kernel ridge regression with f ≈ k

11

Mobile User

Mobile User

Mobile User

Mobile User

NTK correspondence

12

We’ll optimize based on squared loss LS(w) ℓ(w, (x, y)) = 1
2 (f(x; w) − y)2

NTK correspondence

12

We’ll optimize based on squared loss LS(w) ℓ(w, (x, y)) = 1
2 (f(x; w) − y)2

Take gradient flow on : LS(w) dwt

dt = − ∇LS(wt)

NTK correspondence

12

We’ll optimize based on squared loss LS(w) ℓ(w, (x, y)) = 1
2 (f(x; w) − y)2

Take gradient flow on : LS(w) dwt

dt = − ∇LS(wt)

= − 1
n

n

∑
i=1

(f(xi; wt) − yi)
∂f(xi; wt)

∂w

NTK correspondence

This means training set predictions update as:

12

We’ll optimize based on squared loss LS(w) ℓ(w, (x, y)) = 1
2 (f(x; w) − y)2

Take gradient flow on : LS(w) dwt

dt = − ∇LS(wt)

= − 1
n

n

∑
i=1

(f(xi; wt) − yi)
∂f(xi; wt)

∂w

NTK correspondence

This means training set predictions update as:

12

We’ll optimize based on squared loss LS(w) ℓ(w, (x, y)) = 1
2 (f(x; w) − y)2

Take gradient flow on : LS(w) dwt

dt = − ∇LS(wt)

= − 1
n

n

∑
i=1

(f(xi; wt) − yi)
∂f(xi; wt)

∂w

df(xi; wt)
dt

= − 1
n

n

∑
j=1

(f(xj; wt) − yj)⟨ ∂f(xi; wt)
∂w

,
∂f(xj; wt)

∂w ⟩

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

NTK correspondence

This means training set predictions update as:

12

We’ll optimize based on squared loss LS(w) ℓ(w, (x, y)) = 1
2 (f(x; w) − y)2

Take gradient flow on : LS(w) dwt

dt = − ∇LS(wt)

= − 1
n

n

∑
i=1

(f(xi; wt) − yi)
∂f(xi; wt)

∂w

df(xi; wt)
dt

= − 1
n

n

∑
j=1

(f(xj; wt) − yj)⟨ ∂f(xi; wt)
∂w

,
∂f(xj; wt)

∂w ⟩
So the vector evolves as fS(t) = (f(x1; wt), …, f(xn; wt))

dfS(t)
dt

= − 1
n k(wt)

SS (fS(t) − y)

NTK correspondence

This means training set predictions update as:

12

We’ll optimize based on squared loss LS(w) ℓ(w, (x, y)) = 1
2 (f(x; w) − y)2

Take gradient flow on : LS(w) dwt

dt = − ∇LS(wt)

= − 1
n

n

∑
i=1

(f(xi; wt) − yi)
∂f(xi; wt)

∂w

df(xi; wt)
dt

= − 1
n

n

∑
j=1

(f(xj; wt) − yj)⟨ ∂f(xi; wt)
∂w

,
∂f(xj; wt)

∂w ⟩
So the vector evolves as fS(t) = (f(x1; wt), …, f(xn; wt))

dfS(t)
dt

= − 1
n k(wt)

SS (fS(t) − y)

If is constant over time, exact same dynamics as kernel (ridgeless) regressionk(wt)
SS = kSS

NTK correspondence
• As width , Arora et al. (2019) show is roughly constant over training,  

and converges to its expectation 
→ ∞ k(wt)

SS

13

https://arxiv.org/abs/1904.11955

NTK correspondence
• As width , Arora et al. (2019) show is roughly constant over training,  

and converges to its expectation 
→ ∞ k(wt)

SS

 

13

https://arxiv.org/abs/1904.11955

NTK correspondence
• As width , Arora et al. (2019) show is roughly constant over training,  

and converges to its expectation 
→ ∞ k(wt)

SS

 

• Proof is kind of gnarly, but basically amounts to showing kernel being close =>
gradients are close throughout training => final result is close

13

https://arxiv.org/abs/1904.11955

NTK correspondence
• As width , Arora et al. (2019) show is roughly constant over training,  

and converges to its expectation 
→ ∞ k(wt)

SS

 

• Proof is kind of gnarly, but basically amounts to showing kernel being close =>
gradients are close throughout training => final result is close

• Scales network so that initialization has f|S ≈ 0
13

https://arxiv.org/abs/1904.11955

Showing the NTK correspondence

• Jacot, Gabriel, and Hongler (2018) (earlier) introduced the term NTK

14

https://arxiv.org/abs/1806.07572

Showing the NTK correspondence

• Jacot, Gabriel, and Hongler (2018) (earlier) introduced the term NTK
• Pretty abstract approach: argued that gradient descent on NN parameters

corresponds to kernel gradient descent in function space

14

https://arxiv.org/abs/1806.07572

Showing the NTK correspondence

• Jacot, Gabriel, and Hongler (2018) (earlier) introduced the term NTK
• Pretty abstract approach: argued that gradient descent on NN parameters

corresponds to kernel gradient descent in function space
• Doing gradient flow gives us an explicit formula for prediction function:  

 ft(x) = f0(x) + kS(x)K−1
SS (I − e−tKSS)(f*S − (f0)S)

14

https://arxiv.org/abs/1806.07572

Showing the NTK correspondence

• Jacot, Gabriel, and Hongler (2018) (earlier) introduced the term NTK
• Pretty abstract approach: argued that gradient descent on NN parameters

corresponds to kernel gradient descent in function space
• Doing gradient flow gives us an explicit formula for prediction function:  

 ft(x) = f0(x) + kS(x)K−1
SS (I − e−tKSS)(f*S − (f0)S)

• and so f∞(x) = f0(x) + kS(x) k−1
SS (f*S − (f0)S)

14

https://arxiv.org/abs/1806.07572

Showing the NTK correspondence

• Jacot, Gabriel, and Hongler (2018) (earlier) introduced the term NTK
• Pretty abstract approach: argued that gradient descent on NN parameters

corresponds to kernel gradient descent in function space
• Doing gradient flow gives us an explicit formula for prediction function:  

 ft(x) = f0(x) + kS(x)K−1
SS (I − e−tKSS)(f*S − (f0)S)

• and so f∞(x) = f0(x) + kS(x) k−1
SS (f*S − (f0)S)

• If , this is just kernel ridge regressionf0(x) = 0

14

https://arxiv.org/abs/1806.07572

Showing the NTK correspondence

• Jacot, Gabriel, and Hongler (2018) (earlier) introduced the term NTK
• Pretty abstract approach: argued that gradient descent on NN parameters

corresponds to kernel gradient descent in function space
• Doing gradient flow gives us an explicit formula for prediction function:  

 ft(x) = f0(x) + kS(x)K−1
SS (I − e−tKSS)(f*S − (f0)S)

• and so f∞(x) = f0(x) + kS(x) k−1
SS (f*S − (f0)S)

• If , this is just kernel ridge regressionf0(x) = 0
• In general, it’s GP regression with prior mean f0

14

https://arxiv.org/abs/1806.07572

Showing the NTK correspondence

• Jacot, Gabriel, and Hongler (2018) (earlier) introduced the term NTK
• Pretty abstract approach: argued that gradient descent on NN parameters

corresponds to kernel gradient descent in function space
• Doing gradient flow gives us an explicit formula for prediction function:  

 ft(x) = f0(x) + kS(x)K−1
SS (I − e−tKSS)(f*S − (f0)S)

• and so f∞(x) = f0(x) + kS(x) k−1
SS (f*S − (f0)S)

• If , this is just kernel ridge regressionf0(x) = 0
• In general, it’s GP regression with prior mean f0

• Proof actually needs infinite width but only really shows for finite time t

14

https://arxiv.org/abs/1806.07572

NTK regime and scaling

• Chizat and Bach (2019) argue that scaling is the key thing:

15

https://arxiv.org/abs/1812.07956

NTK regime and scaling

• Chizat and Bach (2019) argue that scaling is the key thing:
• Using a small scale “zooms in” on the Taylor expansion,  

and makes the behaviour more linear

15

https://arxiv.org/abs/1812.07956

NTK regime and scaling

• Chizat and Bach (2019) argue that scaling is the key thing:
• Using a small scale “zooms in” on the Taylor expansion,  

and makes the behaviour more linear
• Can give a short-ish proof of NTK behaviour based on this scaling

15

https://arxiv.org/abs/1812.07956

NTK regime and scaling

• Chizat and Bach (2019) argue that scaling is the key thing:
• Using a small scale “zooms in” on the Taylor expansion,  

and makes the behaviour more linear
• Can give a short-ish proof of NTK behaviour based on this scaling
• Basically, things “look strongly convex” 

15

https://arxiv.org/abs/1812.07956

NTK regime and scaling

• Chizat and Bach (2019) argue that scaling is the key thing:
• Using a small scale “zooms in” on the Taylor expansion,  

and makes the behaviour more linear
• Can give a short-ish proof of NTK behaviour based on this scaling
• Basically, things “look strongly convex” 

• But…it’s pretty abstract, and takes a bunch of work to connect back to
actual network architectures

15

https://arxiv.org/abs/1812.07956

NTK regime and scaling

• Chizat and Bach (2019) argue that scaling is the key thing:
• Using a small scale “zooms in” on the Taylor expansion,  

and makes the behaviour more linear
• Can give a short-ish proof of NTK behaviour based on this scaling
• Basically, things “look strongly convex” 

• But…it’s pretty abstract, and takes a bunch of work to connect back to
actual network architectures

• Telgarsky section 8 gives a simplified proof, but it’s a little bit WIP

15

https://arxiv.org/abs/1812.07956

So, is deep learning just kernels?

• No.

16

So, is deep learning just kernels?

• No.
• Real neural net optimization isn’t in “the NTK regime”

16

So, is deep learning just kernels?

• No.
• Real neural net optimization isn’t in “the NTK regime”
• NTK regime doesn’t allow for feature learning – the kernel doesn’t change…

16

So, is deep learning just kernels?

• No.
• Real neural net optimization isn’t in “the NTK regime”
• NTK regime doesn’t allow for feature learning – the kernel doesn’t change…
• There are problems where NNs provably do better than any kernel method

possibly could 

16

So, is deep learning just kernels?

• No.
• Real neural net optimization isn’t in “the NTK regime”
• NTK regime doesn’t allow for feature learning – the kernel doesn’t change…
• There are problems where NNs provably do better than any kernel method

possibly could 

• But NTK is still useful:

16

So, is deep learning just kernels?

• No.
• Real neural net optimization isn’t in “the NTK regime”
• NTK regime doesn’t allow for feature learning – the kernel doesn’t change…
• There are problems where NNs provably do better than any kernel method

possibly could 

• But NTK is still useful:
• AFAIK, the main (only?) proofs that GD optimizes deep networks reasonably

16

So, is deep learning just kernels?

• No.
• Real neural net optimization isn’t in “the NTK regime”
• NTK regime doesn’t allow for feature learning – the kernel doesn’t change…
• There are problems where NNs provably do better than any kernel method

possibly could 

• But NTK is still useful:
• AFAIK, the main (only?) proofs that GD optimizes deep networks reasonably
• Can be practically useful in some settings

16

So, is deep learning just kernels?

• No.
• Real neural net optimization isn’t in “the NTK regime”
• NTK regime doesn’t allow for feature learning – the kernel doesn’t change…
• There are problems where NNs provably do better than any kernel method

possibly could 

• But NTK is still useful:
• AFAIK, the main (only?) proofs that GD optimizes deep networks reasonably
• Can be practically useful in some settings
• Probably a building block for whatever comes next

16

17

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

18

19

Making Look-Ahead Active Learning Strategies Feasible
with Neural Tangent Kernels

Overview

Mohamad Amin Mohamad*, Wonho Bae*, Danica J. Sutherland

Preliminary: Active Learning

Problems of Look-Ahead Strategies

NTK Approx. for Look-Ahead Strategies

Local Approximation of Functions Comparison of Look-Ahead Models

Comparison with State-of-the-art

• Look-ahead active learning strategies: “what would my
model do if I saw this label for this point”?

• Too expensive for neural nets
…unless you use an NTK approximation!

• Outperform existing look-ahead strategies and
matches/beats SOTA in pool-based active learning

Virtual Github ArXiv

Reference
[1] Freytag et al., Selecting Influential Examples: Active Learning

with Expected Model Output Changes, ECCV 2014.
[2] Lee et al., Wide Neural Networks of Any Depth Evolve as

Linear Models Under Gradient Descent, NeurIPS 2019.

!ℒ! " ≈ !ℒ!"#$ "

• Measure the relationship between !ℒ and !ℒ!
e.g. L2-distance: !ℒ " − !ℒ! " %

where ℒ& = ℒ ∪ "# ,)# with a candidate data "# ,)#
• Infeasible to compute !ℒ! for every candidate "# ,)# ∈ +
• Only special model classes have been available,

e.g. Naïve Bayes, Gaussian Processes
➜ Can we make it feasible for neural networks?

= !ℒ " + Θℒ ",.& Θℒ .&, .& '((0& − !ℒ .&)

• Visually, !ℒ!"#$ " =
Look-AheadModel ChangeMyopic

• For any Look-Ahead strategies e.g. Most Likely Model
Output Change (MLMOC),

2)*)+, = ∑-∈/ !ℒ " − !ℒ! " %

approximate 40! 5 as,

➜ Can be computed even faster using block computation

• Approx. of !1 " (trained for 6 → ∞) in a closed form [2],
!ℒ"#$ " = !2 " + Θ2 ",. Θ2 .,. '((0 − !2 .)

• Bounded as sup
3

!3 " − !3"#$ " % = <((
4#536)

➜ Only look-ahead strategies consider the interaction of
the updated model on unseen data [1]

Oracle

Model !

Unlabeled set+Labeled set ℒ

selected data label

train query

class1 class2 unlabeled information

Acquisition Functions – Selection of Data

• Approximation of re-training (above) is no more than
augmenting kernels, which is justified by Theorem 3.1

• (Informal) =(⊆ =%… ⊆ =, denote @ datasets. Then, as
the width of a network → ∞, !7" " = !7#,7$,…,7"(")

Additional Experiments

• Performs better and 100 times faster than Naïve
• Outperforms other look-ahead methods – inf. NTK, 1-step

approx. of re-training, NTK-based Gaussian Processes

• Comparable to the SOTA on many datasets including
CIFAR10 and 100 with various neural net architectures

CIFAR10: 2-layer WideResNet CIFAR100: ResNet18

• Generally robust to the
width and look-ahead
acquisition functions

• Can be extended to
sequential query strategy
(not available in previous
active learning methods)

!!

"!($)

!!"

""($)
"#($)

"ℒ%&'($)

∇("# $ '
()(!

