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(S)GD works on over-parameterized nets

• Okay, so there are bad local minima
• But…does (S)GD actually find them?
• Several papers around 2018-19 showed that:
• If the network is very overparameterized (width , possibly )≫ n → ∞
• and we use an appropriate random initialization
• with square loss
• then (S)GD finds a global minimum

• Implicit in these papers:
• Behaviour of deep nets converges to kernel ridge regression with the 

neural tangent kernel
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• The core idea: think about a linearization of  in f W
• fW0

(x; W) = f(x; W0) + ⟨∇W f(x; W0), W − W0⟩
• Approximates behaviour of  as we change ; nonlinear in f W x
• We’ll see that, for large  and random ,  through trainingm W0 f ≈ fW0
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• Proof is more annoying: Telgarsky’s Lemma 4.1
• Can do multi-layer versions, but approximation degrades with depth

7



What happens in the linearized model?
• For the ReLU,  fW0

(x; W) = ⟨∇f(x; W0), W⟩

8



What happens in the linearized model?
• For the ReLU,  fW0

(x; W) = ⟨∇f(x; W0), W⟩
• This is a kernel model!

8



What happens in the linearized model?
• For the ReLU,  fW0

(x; W) = ⟨∇f(x; W0), W⟩
• This is a kernel model!
• k(x, x′ ) = ⟨∇f(x; W0), ∇f(x′ ; W0)⟩

8



What happens in the linearized model?
• For the ReLU,  fW0

(x; W) = ⟨∇f(x; W0), W⟩
• This is a kernel model!
• k(x, x′ ) = ⟨∇f(x; W0), ∇f(x′ ; W0)⟩

8

= ⟨
a1x⊤σ′ (w⊤

0,1x)/ m
⋮

amx⊤σ′ (w⊤
0,mx)/ m

,
a1(x′ )⊤σ′ (w⊤

0,1x′ )/ m
⋮

am(x′ )⊤σ′ (w⊤
0,mx′ )/ m

⟩



What happens in the linearized model?
• For the ReLU,  fW0

(x; W) = ⟨∇f(x; W0), W⟩
• This is a kernel model!
• k(x, x′ ) = ⟨∇f(x; W0), ∇f(x′ ; W0)⟩

8

= ⟨
a1x⊤σ′ (w⊤

0,1x)/ m
⋮

amx⊤σ′ (w⊤
0,mx)/ m

,
a1(x′ )⊤σ′ (w⊤

0,1x′ )/ m
⋮

am(x′ )⊤σ′ (w⊤
0,mx′ )/ m

⟩
= x⊤x′ 

1
m

m

∑
j=1

a2
j σ′ (w⊤

0,jx)σ′ (w⊤
0,jx′ )



What happens in the linearized model?
• For the ReLU,  fW0

(x; W) = ⟨∇f(x; W0), W⟩
• This is a kernel model!
• k(x, x′ ) = ⟨∇f(x; W0), ∇f(x′ ; W0)⟩

8

= ⟨
a1x⊤σ′ (w⊤

0,1x)/ m
⋮

amx⊤σ′ (w⊤
0,mx)/ m

,
a1(x′ )⊤σ′ (w⊤

0,1x′ )/ m
⋮

am(x′ )⊤σ′ (w⊤
0,mx′ )/ m

⟩
= x⊤x′ 

1
m

m

∑
j=1

a2
j σ′ (w⊤

0,jx)σ′ (w⊤
0,jx′ ) m→∞ x⊤x′ 2w [σ′ (w⊤x) σ′ (w⊤x′ )]

if |aj| = 1



arccos kernel
For , ∥x∥ = 1 = ∥x′ ∥ 2w[σ′ (w⊤x)σ′ (w⊤x′ )] = 1

2 − 1
2π

arccos(x⊤x′ )
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arccos kernel
For , ∥x∥ = 1 = ∥x′ ∥ 2w[σ′ (w⊤x)σ′ (w⊤x′ )] = 1

2 − 1
2π

arccos(x⊤x′ )

9

This kernel is universal on {x ∈ ℝd+1 : ∥x∥ = 1, xd+1 = 1/ 2}
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• but the linearization results are worse 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( ⋅ ; W) W ≈ W0

•  is an RKHS{fW0
( ⋅ ; W) − f( ⋅ ; W0) : W ∈ ℝp}

• kernel k(x, x′ ) = ⟨∇f(x; W0), ∇f(x′ ; W0)⟩
• Infinite-width limit is universal even for shallow, wide nets 

• The big remaining result:
• Training  for square loss  kernel ridge regression with f ≈ k
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We’ll optimize  based on squared loss LS(w) ℓ(w, (x, y)) = 1
2 ( f(x; w) − y)2

Take gradient flow on : LS(w) dwt

dt = − ∇LS(wt)

= − 1
n

n

∑
i=1

( f(xi; wt) − yi)
∂f(xi; wt)

∂w

df(xi; wt)
dt

= − 1
n

n

∑
j=1

( f(xj; wt) − yj)⟨ ∂f(xi; wt)
∂w

,
∂f(xj; wt)

∂w ⟩
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We’ll optimize  based on squared loss LS(w) ℓ(w, (x, y)) = 1
2 ( f(x; w) − y)2

Take gradient flow on : LS(w) dwt

dt = − ∇LS(wt)

= − 1
n
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∑
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( f(xi; wt) − yi)
∂f(xi; wt)

∂w

df(xi; wt)
dt

= − 1
n

n

∑
j=1

( f(xj; wt) − yj)⟨ ∂f(xi; wt)
∂w

,
∂f(xj; wt)

∂w ⟩
So the vector    evolves as fS(t) = (f(x1; wt), …, f(xn; wt))

dfS(t)
dt

= − 1
n k(wt)

SS ( fS(t) − y)

If  is constant over time, exact same dynamics as kernel (ridgeless) regressionk(wt)
SS = kSS
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• As width , Arora et al. (2019) show  is roughly constant over training,  

and converges to its expectation 
→ ∞ k(wt)

SS

 

• Proof is kind of gnarly, but basically amounts to showing kernel being close => 
gradients are close throughout training => final result is close

• Scales network so that initialization has f|S ≈ 0
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• and so f∞(x) = f0(x) + kS(x) k−1
SS ( f*S − ( f0)S)

• If , this is just kernel ridge regressionf0(x) = 0
• In general, it’s GP regression with prior mean f0

• Proof actually needs infinite width but only really shows for finite time t
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NTK regime and scaling

• Chizat and Bach (2019) argue that scaling is the key thing:
• Using a small scale “zooms in” on the Taylor expansion,  

and makes the behaviour more linear
• Can give a short-ish proof of NTK behaviour based on this scaling
• Basically, things “look strongly convex” 

• But…it’s pretty abstract, and takes a bunch of work to connect back to 
actual network architectures

• Telgarsky section 8 gives a simplified proof, but it’s a little bit WIP
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So, is deep learning just kernels?

• No.
• Real neural net optimization isn’t in “the NTK regime”
• NTK regime doesn’t allow for feature learning – the kernel doesn’t change…
• There are problems where NNs provably do better than any kernel method 

possibly could 

• But NTK is still useful:
• AFAIK, the main (only?) proofs that GD optimizes deep networks reasonably
• Can be practically useful in some settings
• Probably a building block for whatever comes next
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Making Look-Ahead Active Learning Strategies Feasible 
with Neural Tangent Kernels

Overview

Mohamad Amin Mohamad*, Wonho Bae*, Danica J. Sutherland

Preliminary: Active Learning 

Problems of Look-Ahead Strategies 

NTK Approx. for Look-Ahead Strategies

Local Approximation of Functions Comparison of Look-Ahead Models

Comparison with State-of-the-art

• Look-ahead active learning strategies: “what would my 
model do if I saw this label for this point”?

• Too expensive for neural nets
…unless you use an NTK approximation!

• Outperform existing look-ahead strategies and 
matches/beats SOTA in pool-based active learning

Virtual Github ArXiv
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!ℒ! " ≈ !ℒ!"#$ "

• Measure the relationship between !ℒ and !ℒ!
e.g. L2-distance: !ℒ " − !ℒ! " %

where ℒ& = ℒ ∪ "# , )# with a candidate data "# , )#
• Infeasible to compute !ℒ! for every candidate "# , )# ∈ +
• Only special model classes have been available, 

e.g. Naïve Bayes, Gaussian Processes
➜ Can we make it feasible for neural networks?

= !ℒ " + Θℒ ",.& Θℒ .&, .& '((0& − !ℒ .& )

• Visually, !ℒ!"#$ " =
Look-AheadModel ChangeMyopic

• For any Look-Ahead strategies e.g. Most Likely Model 
Output Change (MLMOC),

2)*)+, = ∑-∈/ !ℒ " − !ℒ! " %

approximate 40! 5 as, 

➜ Can be computed even faster using block computation

• Approx. of !1 " (trained for 6 → ∞) in a closed form [2],
!ℒ"#$ " = !2 " + Θ2 ",. Θ2 .,. '((0 − !2 . )

• Bounded as  sup
3

!3 " − !3"#$ " % = <( (
4#536 )

➜ Only look-ahead strategies consider the interaction of 
the updated model on unseen data [1]

Oracle

Model !

Unlabeled set+Labeled set ℒ

selected data label

train query

class1 class2 unlabeled information

Acquisition Functions – Selection of Data

• Approximation of re-training (above) is no more than 
augmenting kernels, which is justified by Theorem 3.1

• (Informal) =( ⊆ =%… ⊆ =, denote @ datasets. Then, as 
the width of a network → ∞, !7" " = !7#,7$,…,7"(")

Additional Experiments

• Performs better and 100 times faster than Naïve
• Outperforms other look-ahead methods – inf. NTK, 1-step 

approx. of re-training, NTK-based Gaussian Processes 

• Comparable to the SOTA on many datasets including 
CIFAR10 and 100 with various neural net architectures

CIFAR10: 2-layer WideResNet CIFAR100: ResNet18

• Generally robust to the 
width and look-ahead 
acquisition functions

• Can be extended to 
sequential query strategy 
(not available in previous 
active learning methods) 
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