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Implicit regularization of gradient descent

« We just showed that gradient descent for OLS with X of rank n,

starting from zero with < 2n/o,,. (X)* UUTU2Vi=d eV =)
converges to the minimum-norm interpolator XTy
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Implicit regularization of gradient descent

« We just showed that gradient descent for OLS with X of rank n,
starting from zero with < 2n/o,,. (X)*

converges to the minimum-norm interpolator XTy

. “Ridgeless” regression: im (X'X +1/)~'X 'y = X'y = im X "(XX " +4D)~"y
1—0 A=0
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Implicit regularization of gradient descent

« We just showed that gradient descent for OLS with X of rank n,
starting from zero with < 2n/o,,. (X)*

converges to the minimum-norm interpolator XTy
. “Ridgeless” regression: lim (X' X + A" ' X'y = X'y = lim X'(XX " + AD~ly

A—0 A—0
o |f we track wg\;é 0 in same analysis, get w = - VVhw °"+ X"y (proof)
NS A ) e

Xw-;)/
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Implicit regularization of gradient descent

* We just showed that gradient descent for OLS with X of rank n,
starting from zero with  <@n /o, (X)*, ~— —J—/’

: (d’ Ja)" =1+
converges to the minimum-norm interpolator X'y
. “Ridgeless” regression: im (X' X+ A" ' X'y =Xy =lim X' (XX + 1D~y
A—0 A—0
» If we track wy # 0 in same analysis, get w_, = (I — VVT)WO + X"y (proof)

",e_ Jc W’(Vl ‘_>D

* S0, the 1,000-degree polynomial picture is what (small-LR) GD would give
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Implicit regularization of gradient descent

« We just showed that gradient descent for OLS with X of rank n,

starting from zero with n <{@n/ amaX(X)z,

converges to the minimum-norm interpolator XTy

. “Ridgeless” regression: im (X' X+ A" ' X'y =Xy =lim X' (XX + 1D~y
A—0 A—0

» If we track wy # 0 in same analysis, get w_, = (I — VVT)WO + X"y (proof)

* S0, the 1,000-degree polynomial picture is what (small-LR) GD would give
 Does this same idea hold for other losses / models? Not necessarily.
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Implicit regularization of gradient descent

« We just showed that gradient descent for OLS with X of rank n,
starting from zero with < 2n/o,,. (X)*

converges to the minimum-norm interpolator XTy

. “Ridgeless” regression: lim (X' X + AD)~'X 'y = X'y = lim X" (XX " + A1)~y
1—0 A=0

» If we track wy # 0 in same analysis, get w_, = (I — VVT)WO + X“Ly (proof)

* S0, the 1,000-degree polynomial picture is what (small-LR) GD would give
 Does this same idea hold for other losses / models? Not necessarily.
* Logistic regression:


https://math.stackexchange.com/a/3499305/19147
https://arxiv.org/abs/1710.10345
https://proceedings.mlr.press/v99/ji19a.html
https://mjt.cs.illinois.edu/dlt/#sec:margin_opt
https://proceedings.neurips.cc/paper/2017/file/58191d2a914c6dae66371c9dcdc91b41-Paper.pdf

Implicit regularization of gradient descent

« We just showed that gradient descent for OLS with X of rank n,
starting from zero with < 2n/o,,. (X)*

converges to the minimum-norm interpolator XTy

. “Ridgeless” regression: lim (X' X + AD)~'X 'y = X'y = lim X" (XX " + A1)~y
1—0 A=0

» If we track wy # 0 in same analysis, get w_, = (I — VVT)WO + X“Ly (proof)

* S0, the 1,000-degree polynomial picture is what (small-LR) GD would give
 Does this same idea hold for other losses / models? Not necessarily.
* Logistic regression:
e Separable: norm diverges in direction of max-margin separator (Soudry et al.)
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Definition 1 (Effective Model Complexity) The Effective Model Complexity (EMC) of a training
procedure T, with respect to distribution D and parameter € > 0, is defined as:

EMCop (7)) := max {n | Eg.pn[Errorg(7(S5))] < €}

where Errorg (M) is the mean error of model M on train samples S.

Our main hypothesis can be informally stated as follows:

Hypothesis 1 (Generalized Double Descent hypothesis, informal) For any natural data distribu-

tion D, neural-network-based training procedure T, and small ¢ > 0, if we consider the task of
predicting labels based on n samples from D then:

Under-paremeterized regime. I[f EMCop (7)) is sufficiently smaller than n, any perturbation of T
that increases its effective complexity will decrease the test error.

Over-parameterized regime. If EMCyp (7)) is sufficiently larger than n, any perturbation of T
that increases its effective complexity will decrease the test error.

Critically parameterized regime. If EMCp (7 ) = n, then a perturbation of T that increases its
effective complexity might decrease or Increase the test error.

11 Nakkiran et al. ICLR-20
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 As we’ll see, training an “ultrawide” deep network for square loss

ends up being equivalent to “ridgeless” regression
with a neural tangent kernel

* S0, in the infinite-width limit, we know things correspond to finding the solution that
has small RKHS norm for the neural tangent kernel

e Another POV:

Lo (A(5)) — L* = Lg(H(S)) — Lub(ERMg(S5)) + Lg(ERMg(5))) — hin;{ Lg(h) + hinyf{ Lg(h) — L*

optimization error

- estimation error approximation error
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Nonconvex optimization

* Neural nets are not convex [\;A" - dpd A
* Even deep linear networks are not convex 6,\, (x) = L—-LJ& ~

ciR <4
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. e.g..if f > f"™ is differentiable and -smooth, and
there are A, B, C s.t. for all x, E [Hgf(x)Hz] < 2A(f(x) — ™) + B||[VAX)|I” + C,

then the best iterate from O(e~*) steps has E [HV f(x)l\z] < €? (Khaled/Richtérik 2020)
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* ...but gradient descent almost surely escapes saddles, reaches a local min (Lee et al. 2016)
e ...but it can take exponential time to escape (Du et al. 2017)
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In deep linear nets, local minima are global minima (Kawaguchi 2016, Laurent/von Brecht 2019)

» ...but there are saddle points, including “bad” ones where 4 . ( V) =0

o ...but gradient descent almost surely escapes saddles, reaches a local min (Lee et al. 2016)
e ...but it can take exponential time to escape (Du et al. 2017)
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Bad local minima in RelLLU nets

h(x) = ReLU(wx) (reals to reals), square loss, S = ((1,1)):
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