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Implicit regularization of gradient descent
• We just showed that gradient descent for OLS with  of rank , 

starting from zero with , 
converges to the minimum-norm interpolator 

X n
η < 2n / σmax(X)2

X†y

4

https://math.stackexchange.com/a/3499305/19147
https://arxiv.org/abs/1710.10345
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https://mjt.cs.illinois.edu/dlt/#sec:margin_opt
https://proceedings.neurips.cc/paper/2017/file/58191d2a914c6dae66371c9dcdc91b41-Paper.pdf
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Implicit regularization of gradient descent
• We just showed that gradient descent for OLS with  of rank , 

starting from zero with , 
converges to the minimum-norm interpolator 

X n
η < 2n / σmax(X)2

X†y
• “Ridgeless” regression: lim

λ→0
(X⊤X + λI)−1X⊤y = X†y = lim

λ→0
X⊤(XX⊤ + λI)−1y
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(X⊤X + λI)−1X⊤y = X†y = lim

λ→0
X⊤(XX⊤ + λI)−1y

• If we track  in same analysis, get  (proof) w0 ≠ 0 w∞ = (I − VV⊤)w0 + X†y

• So, the 1,000-degree polynomial picture is what (small-LR) GD would give
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Implicit regularization of gradient descent
• We just showed that gradient descent for OLS with  of rank , 

starting from zero with , 
converges to the minimum-norm interpolator 
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X†y
• “Ridgeless” regression: lim

λ→0
(X⊤X + λI)−1X⊤y = X†y = lim

λ→0
X⊤(XX⊤ + λI)−1y

• If we track  in same analysis, get  (proof) w0 ≠ 0 w∞ = (I − VV⊤)w0 + X†y

• So, the 1,000-degree polynomial picture is what (small-LR) GD would give
• Does this same idea hold for other losses / models? Not necessarily.
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Implicit regularization of gradient descent
• We just showed that gradient descent for OLS with  of rank , 

starting from zero with , 
converges to the minimum-norm interpolator 

X n
η < 2n / σmax(X)2

X†y
• “Ridgeless” regression: lim

λ→0
(X⊤X + λI)−1X⊤y = X†y = lim

λ→0
X⊤(XX⊤ + λI)−1y

• If we track  in same analysis, get  (proof) w0 ≠ 0 w∞ = (I − VV⊤)w0 + X†y

• So, the 1,000-degree polynomial picture is what (small-LR) GD would give
• Does this same idea hold for other losses / models? Not necessarily.
• Logistic regression:
• Separable: norm diverges in direction of max-margin separator (Soudry et al.)
• Non-separable: biased towards max-margin, but complicated (Ji/Telgarsky)
• Also see Telgarsky notes section 10
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• Separable: norm diverges in direction of max-margin separator (Soudry et al.)
• Non-separable: biased towards max-margin, but complicated (Ji/Telgarsky)
• Also see Telgarsky notes section 10

• Matrix factorization models: conjectured min nuclear norm, slightly controversial
• Deep learning: ??? 4
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5 Belkin/Hsu/Ma/Mandal, PNAS 2019

Double descent

Classical regime 
(left of peak): 
unique ERM

Interpolating regime 
(right of peak): 
many possible 
interpolators

which one we get 
depends on alg.’s 

implicit bias

https://www.pnas.org/doi/abs/10.1073/pnas.1903070116
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Neural Tangent Kernels (NTKs)
• Gradient descent for square loss finds min-norm interpolator 

(“ridgeless” regression) 

• As we’ll see, training an “ultrawide” deep network for square loss 
ends up being equivalent to “ridgeless” regression 
with a neural tangent kernel 

• So, in the infinite-width limit, we know things correspond to finding the solution that 
has small RKHS norm for the neural tangent kernel

• Another POV:  
L&('(S)) − L* = L&('(S)) − L&(ERMℋ(S))

optimization error

+ L&(ERMℋ(S))) − inf
h∈ℋ

L&(h)

estimation error

+ inf
h∈ℋ

L&(h) − L*

approximation error
13
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• …but there are saddle points, including “bad” ones where λmin(∇2f ) = 0
• …but gradient descent almost surely escapes saddles, reaches a local min (Lee et al. 2016)
• …but it can take exponential time to escape (Du et al. 2017)
• …but that doesn’t happen on deep linear nets [under conditions] (Arora et al. 2019)
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Bad local minima in ReLU nets
 (reals to reals), square loss, :h(x) = ReLU(wx) S = ((1,1))
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