Double Descent / Implicit Regularization + Neural Tangent Kernels

CPSC 532D: Modern Statistical Learning Theory 28 November 2022 cs.ubc.ca/~dsuth/532D/22w1/

Nakkiran et al. blog post's companion notebook

Nakkiran et al. blog post's companion notebook

 $f(w) = \frac{n}{2} l_{\mathcal{S}}(w) = \frac{1}{2} ||Xw - \gamma||^{2}$ $\int_{\mathbf{x}} \frac{1}{\sqrt{n}} \int_{\mathbf{x}} \frac{1}{\sqrt{n}} \int_{\mathbf{x}} \frac{1}{\sqrt{n}} \frac{1}{\sqrt{n$ Vf (u $w^{(1)} = 0$ $w^{(\ell+1)} = w^{(\ell)} - \eta \nabla f(w^{(\ell)}) = (T - \eta X^T X) w^{(\ell)}$ = y = (I-g x x) K X = N E (I-y VE²V^T) = y & v (I-y 2) v v (x-y 2) v Gake Ind $= 9 V [\tilde{z} (I - 9 \tilde{z})^{\kappa}]$; + 19[6] $\xrightarrow{\text{row}} \mathcal{N} \left(I - (I - \eta \varepsilon^2) \right)$ ŊEĩ Ama = ny viz v v v z u y 2min $= V z' u^T y$ $= \chi^{\dagger} \gamma$ (I-ŋ 2

$$v) = \chi^{T}(\chi_{W-Y}) \qquad n \times r \qquad \forall : n \times d$$

$$X = U \leq V^{T} \qquad r = r \cdot n \times (x)$$

$$+ y \times^{T} \qquad \qquad \chi^{T} U \leq V^{T} \qquad r = r \cdot n \times (x)$$

$$+ y \times^{T} \qquad \qquad \chi^{T} U = I_{r} \qquad U \cup T \quad i \neq n = r, \qquad U \cup T$$

$$V^{T} U = I_{r} \qquad U \cup T \qquad i \neq n = r, \qquad U \cup T$$

$$V^{T} U = I_{r} \qquad \qquad U \cup T \cup U^{T} U \leq U^{T} = y \vee Z^{2} \cup U^{T} \cup U^{T} U = y \vee Z^{2} \cup U^{T} \cup U^$$

Implicit regularization of gradient descent • We just showed that gradient descent for OLS with X of rank n, starting from zero with $\eta < 2n / \sigma_{\max}(X)^2$, UUTUEVT=UEVT=X converges to the minimum-norm interpolator $X^{\dagger}y$

$$\begin{array}{l} \text{Assume} \quad X = y \\ x \left(X^{\dagger} y + 9 \right) = y \\ \text{AEV}^{\intercal} \left(V = \left(V = \left(V = \right) \right) = y \\ u = \left(V = \left(V = \left(V = \right) \right) = y \\ u = \left(V = \left(V = \left(V = \right) \right) = y \\ \end{array} \right) \end{array}$$

$$\| V \mathcal{E}' \mathcal{U}^{\tau} y + q \|^{2} = y^{\tau} \mathcal{U}$$

it rank (x) = n

 $X_{q} = 0 = U \le V_{q} = 0 = V_{q} = 0$

 $y^{\tau} U \mathcal{E}^{2} U^{\tau} y + y^{\tau} U \mathcal{E}^{1} V^{\tau} q + ||q||^{2}$

starting from zero with $\eta < 2n / \sigma_{max}(X)^2$, converges to the minimum-norm interpolator $X^{\dagger}y$ • "Ridgeless" regression: $\lim (X^T X + n\lambda I)^{-1} X^T y = X^{\dagger} y = \lim X^T (XX^T + n\lambda I)^{-1} y$ $\lambda \rightarrow 0$

- We just showed that gradient descent for OLS with X of rank n, starting from zero with $\eta < 2n / \sigma_{\max}(X)^2$, converges to the minimum-norm interpolator $X^{\dagger}y$ • "Ridgeless" regression: $\lim (X^T X + \lambda I)^{-1} X^T y = X^{\dagger} y = \lim X^T (X X^T + \lambda I)^{-1} y$
 - If we track $w_0^{(\prime)} \neq 0$ in same analysis, get $w_{\omega}^{(\prime)} = (I VV^{\top})w_0^{(\prime)} + X^{\dagger}y$ (proof) =? argmin Xwzy ||x-woll² Xwzy

Implicit regularization of gradient descent • We just showed that gradient descent for OLS with X of rank n, starting from zero with $\eta < \sqrt[n]{n} / \sigma_{\max}(X)^2$, $\sum_{x \in \mathbb{Z}} \frac{x n}{\sqrt{n} + \sqrt{a}} = \frac{n}{1 + \sqrt{a}} + \frac{1}{n}$ if d = w(n) = 0 converges to the minimum-norm interpolator $X^{\dagger}y^{(\sqrt{n} + \sqrt{a})^2} = \frac{1}{1 + \sqrt{a}} + \frac{1}{n}$ • "Ridgeless" regression: $\lim_{x \to a} (X^{\mathsf{T}}X + \lambda I)^{-1}X^{\mathsf{T}}y = X^{\dagger}y = \lim_{x \to a} X^{\mathsf{T}}(XX^{\mathsf{T}} + \lambda I)^{-1}y$ $\lambda \rightarrow 0$ • If we track $w_0 \neq 0$ in same analysis, get $w_{\infty} = (I - VV^{\top})w_0 + X^{\dagger}y$ (proof)

- So, the 1,000-degree polynomial picture is what (small-LR) GD would give

- We just showed that gradient descent for OLS with X of rank n, starting from zero with $\eta < 2n / \sigma_{max}(X)^2$, converges to the minimum-norm interpolator $X^{\dagger}y$ • "Ridgeless" regression: $\lim_{\lambda \to 0} (X^{\top}X + \lambda I)^{-1}X^{\top}y = X^{\dagger}y = \lim_{\lambda \to 0} X^{\top}(XX^{\top} + \lambda I)^{-1}y$
 - If we track $w_0 \neq 0$ in same analysis, get $w_{\infty} = (I VV^{\top})w_0 + X^{\dagger}y$ (proof)
- So, the 1,000-degree polynomial picture is what (small-LR) GD would give
- Does this same idea hold for other losses / models? Not necessarily.

- We just showed that gradient descent for OLS with X of rank n, starting from zero with $\eta < 2n / \sigma_{max}(X)^2$, converges to the minimum-norm interpolator $X^{\dagger}y$ • "Ridgeless" regression: $\lim_{\lambda \to 0} (X^{\top}X + \lambda I)^{-1}X^{\top}y = X^{\dagger}y = \lim_{\lambda \to 0} X^{\top}(XX^{\top} + \lambda I)^{-1}y$
 - If we track $w_0 \neq 0$ in same analysis, get $w_{\infty} = (I VV^{\mathsf{T}})w_0 + X^{\dagger}y$ (proof)
- So, the 1,000-degree polynomial picture is what (small-LR) GD would give
- Does this same idea hold for other losses / models? Not necessarily.
 - Logistic regression:

- We just showed that gradient descent for OLS with X of rank n, starting from zero with $\eta < 2n / \sigma_{\max}(X)^2$, converges to the minimum-norm interpolator $X^{\dagger}y$ • "Ridgeless" regression: $\lim (X^{\mathsf{T}}X + \lambda I)^{-1}X^{\mathsf{T}}y = X^{\dagger}y = \lim X^{\mathsf{T}}(XX^{\mathsf{T}} + \lambda I)^{-1}y$ $\lambda \rightarrow 0$
 - If we track $w_0 \neq 0$ in same analysis, get $w_{\infty} = (I VV^{\top})w_0 + X^{\dagger}y$ (proof)
- So, the 1,000-degree polynomial picture is what (small-LR) GD would give Does this same idea hold for other losses / models? Not necessarily.
- - Logistic regression:
 - Separable: norm diverges in direction of max-margin separator (Soudry et al.)

- starting from zero with $\eta < 2n / \sigma_{\max}(X)^2$, converges to the minimum-norm interpolator $X^{\dagger}y$
 - "Ridgeless" regression: $\lim (X^T X + \lambda I)^{-1} X^T y = X^{\dagger} y = \lim X^T (X X^T + \lambda I)^{-1} y$ $\lambda \rightarrow 0$ • If we track $w_0 \neq 0$ in same analysis, get $w_{\infty} = (I - VV^{\top})w_0 + X^{\dagger}y$ (proof)
- So, the 1,000-degree polynomial picture is what (small-LR) GD would give • Does this same idea hold for other losses / models? Not necessarily.
- - Logistic regression:
 - Separable: norm diverges in direction of max-margin separator (Soudry et al.) • Non-separable: biased towards max-margin, but complicated (Ji/Telgarsky)

- starting from zero with $\eta < 2n / \sigma_{\max}(X)^2$, converges to the minimum-norm interpolator $X^{\dagger}y$
 - "Ridgeless" regression: $\lim (X^T X + \lambda I)^{-1} X^T y = X^{\dagger} y = \lim X^T (X X^T + \lambda I)^{-1} y$ $\lambda \rightarrow 0$ • If we track $w_0 \neq 0$ in same analysis, get $w_{\infty} = (I - VV^{\top})w_0 + X^{\dagger}y$ (proof)
- So, the 1,000-degree polynomial picture is what (small-LR) GD would give • Does this same idea hold for other losses / models? Not necessarily.
- - Logistic regression:
 - Separable: norm diverges in direction of max-margin separator (Soudry et al.) • Non-separable: biased towards max-margin, but complicated (Ji/Telgarsky) Also see <u>Telgarsky notes section 10</u>

- starting from zero with $\eta < 2n / \sigma_{\max}(X)^2$, converges to the minimum-norm interpolator $X^{\dagger}y$
 - "Ridgeless" regression: $\lim (X^{\top}X + \lambda I)^{-1}X^{\top}y = X^{\dagger}y = \lim X^{\top}(XX^{\top} + \lambda I)^{-1}y$ $\lambda \rightarrow 0$ • If we track $w_0 \neq 0$ in same analysis, get $w_{\infty} = (I - VV^{\top})w_0 + X^{\dagger}y$ (proof)
- So, the 1,000-degree polynomial picture is what (small-LR) GD would give • Does this same idea hold for other losses / models? Not necessarily.
- - Logistic regression:
 - Separable: norm diverges in direction of max-margin separator (Soudry et al.) • Non-separable: biased towards max-margin, but complicated (Ji/Telgarsky) $X = UV^{T}$
 - Also see <u>Telgarsky notes section 10</u> Matrix factorization models: <u>conjectured</u> min nuclear norm, slightly controversial

- starting from zero with $\eta < 2n / \sigma_{\max}(X)^2$, converges to the minimum-norm interpolator $X^{\dagger}y$
 - "Ridgeless" regression: $\lim (X^T X + \lambda I)^{-1} X^T y = X^{\dagger} y = \lim X^T (X X^T + \lambda I)^{-1} y$ $\lambda \rightarrow 0$ • If we track $w_0 \neq 0$ in same analysis, get $w_{\infty} = (I - VV^{\top})w_0 + X^{\dagger}y$ (proof)
- So, the 1,000-degree polynomial picture is what (small-LR) GD would give • Does this same idea hold for other losses / models? Not necessarily.
- - Logistic regression:
 - Separable: norm diverges in direction of max-margin separator (Soudry et al.) • Non-separable: biased towards max-margin, but complicated (Ji/Telgarsky) Also see <u>Telgarsky notes section 10</u>
 - Matrix factorization models: <u>conjectured</u> min nuclear norm, slightly controversial
 - Deep learning: ???

5

model predictors $h_{n,N}$ learned on a subset of MNIST ($n = 10^4$, 10 classes). The interpolation threshold is achieved at $N = 10^4$.

Fig. 2. Double-descent risk curve for the RFF model on MNIST. Shown are test risks (log scale), coefficient ℓ_2 norms (log scale), and training risks of the RFF

5

Classical regime (left of peak): unique ERM

model predictors $h_{n,N}$ learned on a subset of MNIST ($n = 10^4$, 10 classes). The interpolation threshold is achieved at $N = 10^4$.

Fig. 2. Double-descent risk curve for the RFF model on MNIST. Shown are test risks (log scale), coefficient ℓ_2 norms (log scale), and training risks of the RFF

Classical regime (left of peak): unique ERM

model predictors $h_{n,N}$ learned on a subset of MNIST ($n = 10^4$, 10 classes). The interpolation threshold is achieved at $N = 10^4$.

Fig. 2. Double-descent risk curve for the RFF model on MNIST. Shown are test risks (log scale), coefficient ℓ_2 norms (log scale), and training risks of the RFF

Classical regime (left of peak): unique ERM

model predictors $h_{n,N}$ learned on a subset of MNIST ($n = 10^4$, 10 classes). The interpolation threshold is achieved at $N = 10^4$.

Fig. 2. Double-descent risk curve for the RFF model on MNIST. Shown are test risks (log scale), coefficient ℓ_2 norms (log scale), and training risks of the RFF

Fig. 3. interpolation threshold (black dashed line) is observed at $n \cdot K$.

Double-descent risk curve for a fully connected neural network Fig. 4. Double-descent risk curve for random forests on MNIST. The doubleon MNIST. Shown are training and test risks of a network with a single descent risk curve is observed for random forests with increasing model layer of H hidden units, learned on a subset of MNIST ($n = 4 \cdot 10^3$, d = 784, complexity trained on a subset of MNIST ($n = 10^4$, 10 classes). Its complex-K = 10 classes). The number of parameters is $(d + 1) \cdot H + (H + 1) \cdot K$. The ity is controlled by the number of trees N_{tree} and the maximum number of leaves allowed for each tree N_{leaf}^{max} .

More data hurts!

75 100 125 150 175 200 Embedding Dimension (Transformer Model Size)

Nakkiran et al. ICLR-20

Test Error

Nakkiran et al. ICLR-20

procedure \mathcal{T} , with respect to distribution \mathcal{D} and parameter $\epsilon > 0$, is defined as:

where $\operatorname{Error}_{S}(M)$ is the mean error of model M on train samples S.

Our main hypothesis can be informally stated as follows:

predicting labels based on n samples from D then:

that increases its effective complexity will decrease the test error.

that increases its effective complexity will decrease the test error.

effective complexity might decrease or increase the test error.

Definition 1 (Effective Model Complexity) *The* Effective Model Complexity (*EMC*) of a training

- $\mathrm{EMC}_{\mathcal{D},\epsilon}(\mathcal{T}) := \max \left\{ n \mid \mathbb{E}_{S \sim \mathcal{D}^n}[\mathrm{Error}_S(\mathcal{T}(S))] \le \epsilon \right\}$
- Hypothesis 1 (Generalized Double Descent hypothesis, informal) For any natural data distribution D, neural-network-based training procedure T, and small $\epsilon > 0$, if we consider the task of
- **Under-paremeterized regime.** If $\text{EMC}_{\mathcal{D},\epsilon}(\mathcal{T})$ is sufficiently smaller than n, any perturbation of \mathcal{T}
- **Over-parameterized regime.** If $\text{EMC}_{\mathcal{D},\epsilon}(\mathcal{T})$ is sufficiently larger than n, any perturbation of \mathcal{T}
- Critically parameterized regime. If $\text{EMC}_{\mathcal{D},\epsilon}(\mathcal{T}) \approx n$, then a perturbation of \mathcal{T} that increases its

(pause)

 Gradient descent for square loss finds min-norm interpolator ("ridgeless" regression)

- Gradient descent for square loss finds min-norm interpolator ("ridgeless" regression)
- As we'll see, training an "ultrawide" deep network for square loss ends up being equivalent to "ridgeless" regression with a neural tangent kernel

- Gradient descent for square loss finds min-norm interpolator ("ridgeless" regression)
- As we'll see, training an "ultrawide" deep network for square loss ends up being equivalent to "ridgeless" regression with a neural tangent kernel
- has small RKHS norm for the neural tangent kernel

• So, in the infinite-width limit, we know things correspond to finding the solution that

- Gradient descent for square loss finds min-norm interpolator ("ridgeless" regression)
- As we'll see, training an "ultrawide" deep network for square loss ends up being equivalent to "ridgeless" regression with a neural tangent kernel
- has small RKHS norm for the neural tangent kernel

• So, in the infinite-width limit, we know things correspond to finding the solution that

- Gradient descent for square loss finds min-norm interpolator ("ridgeless" regression)
- As we'll see, training an "ultrawide" deep network for square loss ends up being equivalent to "ridgeless" regression with a neural tangent kernel
- So, in the infinite-width limit, we know things correspond to finding the solution that has small RKHS norm for the neural tangent kernel
- Another POV: $L_{\mathcal{D}}(\mathcal{A}(S)) - L^* = L_{\mathcal{D}}(\mathcal{A}(S)) - L_{\mathcal{D}}(\mathrm{ERM}_{\mathcal{H}}(S))$

optimization error

$$(Y) + L_{\mathcal{D}}(\operatorname{ERM}_{\mathcal{H}}(S))) - \inf_{h \in \mathcal{H}} L_{\mathcal{D}}(h) + \inf_{h \in \mathcal{$$

Nonconvex optimization are not convex $l(w; (x,y)) = (f_w(x) - y)^2$

Neural nets are not convex

- Neural nets are not convex
- Even deep linear networks are not convex

 $f_{W}(x) = W_{C} \cdots W_{2} W_{C} X$ EIR Ixd,

- Neural nets are not convex
- Even deep linear networks are not convex
- But we do know that SGD converges to a *critical point* under fairly mild conditions

- Neural nets are not convex
- Even deep linear networks are not convex
- But we do know that SGD converges to a *critical point* under fairly mild conditions
 - e.g.: if $f \ge f^{inf}$ is differentiable and β -smooth, and

there are A, B, C s.t. for all x, $\mathbb{E}[\|\hat{g}(x)\|^2] \le 2A(f(x) - f^{\inf}) + B\|\nabla f(X)\|^2 + C$, then the best iterate from $\mathcal{O}(\varepsilon^{-4})$ steps has $\mathbb{E}[\|\nabla f(x)\|^2] \leq \varepsilon^2$ (Khaled/Richtárik 2020)

- Neural nets are not convex
- Even deep linear networks are not convex
- But we do know that SGD converges to a *critical point* under fairly mild conditions \bullet
 - e.g.: if $f \ge f^{inf}$ is differentiable and β -smooth, and
- \bullet

there are A, B, C s.t. for all x, $\mathbb{E}[\|\hat{g}(x)\|^2] \le 2A(f(x) - f^{\inf}) + B\|\nabla f(X)\|^2 + C$, then the best iterate from $\mathcal{O}(\varepsilon^{-4})$ steps has $\mathbb{E}\left[\|\nabla f(x)\|^2\right] \leq \varepsilon^2$ (Khaled/Richtárik 2020)

In deep linear nets, local minima are global minima (Kawaguchi 2016, Laurent/von Brecht 2019)

- Neural nets are not convex
- Even deep linear networks are not convex
- But we do know that SGD converges to a *critical point* under fairly mild conditions • • e.g.: if $f \ge f^{inf}$ is differentiable and β -smooth, and there are A, B, C s.t. for all x, $\mathbb{E}[\|\hat{g}(x)\|^2] \le 2A(f(x) - f^{\inf}) + B\|\nabla f(X)\|^2 + C$, then the best iterate from $\mathcal{O}(\varepsilon^{-4})$ steps has $\mathbb{E}\left[\|\nabla f(x)\|^2\right] \leq \varepsilon^2$ (Khaled/Richtárik 2020)
- In deep linear nets, local minima are global minima (Kawaguchi 2016, Laurent/von Brecht 2019) • ...but there are saddle points, including "bad" ones where $\lambda_{\min}(\nabla^2 f) = 0$

- Neural nets are not convex
- Even deep linear networks are not convex
- But we do know that SGD converges to a *critical point* under fairly mild conditions • • e.g.: if $f \ge f^{inf}$ is differentiable and β -smooth, and there are A, B, C s.t. for all x, $\mathbb{E}[\|\hat{g}(x)\|^2] \le 2A(f(x) - f^{\inf}) + B\|\nabla f(X)\|^2 + C$, then the best iterate from $\mathcal{O}(\varepsilon^{-4})$ steps has $\mathbb{E}\left[\|\nabla f(x)\|^2\right] \leq \varepsilon^2$ (Khaled/Richtárik 2020)
- In deep linear nets, local minima are global minima (Kawaguchi 2016, Laurent/von Brecht 2019) • ...but there are saddle points, including "bad" ones where $\lambda_{\min}(\nabla^2 f) = 0$ • ...but gradient descent almost surely escapes saddles, reaches a local min (Lee et al. 2016)

- Neural nets are not convex
- Even deep linear networks are not convex
- But we do know that SGD converges to a *critical point* under fairly mild conditions • • e.g.: if $f \ge f^{inf}$ is differentiable and β -smooth, and there are A, B, C s.t. for all x, $\mathbb{E}[\|\hat{g}(x)\|^2] \le 2A(f(x) - f^{\inf}) + B\|\nabla f(X)\|^2 + C$, then the best iterate from $\mathcal{O}(\varepsilon^{-4})$ steps has $\mathbb{E}\left[\|\nabla f(x)\|^2\right] \leq \varepsilon^2$ (Khaled/Richtárik 2020)
- In deep linear nets, local minima are global minima (Kawaguchi 2016, Laurent/von Brecht 2019) • ...but there are saddle points, including "bad" ones where $\lambda_{\min}(\nabla^2 f) = 0$ • ...but gradient descent almost surely escapes saddles, reaches a local min (Lee et al. 2016) • ...but it can take exponential time to escape (Du et al. 2017)

- Neural nets are not convex
- Even deep linear networks are not convex
- But we do know that SGD converges to a *critical point* under fairly mild conditions • • e.g.: if $f \ge f^{inf}$ is differentiable and β -smooth, and there are A, B, C s.t. for all x, $\mathbb{E}[\|\hat{g}(x)\|^2] \le 2A(f(x) - f^{\inf}) + B\|\nabla f(X)\|^2 + C$, then the best iterate from $\mathcal{O}(\varepsilon^{-4})$ steps has $\mathbb{E}\left[\|\nabla f(x)\|^2\right] \leq \varepsilon^2$ (Khaled/Richtárik 2020)
- In deep linear nets, local minima are global minima (Kawaguchi 2016, Laurent/von Brecht 2019) • ...but there are saddle points, including "bad" ones where $\lambda_{\min}(\nabla^2 f) = 0$ • ...but gradient descent almost surely escapes saddles, reaches a local min (Lee et al. 2016) • ...but it can take exponential time to escape (Du et al. 2017) • ...but that doesn't happen on deep linear nets [under conditions] (Arora et al. 2019)

Bad local minima in ReLU nets

 $h(x) = \operatorname{ReLU}(wx)$ (reals to reals), square loss, S = ((1,1)):

Sub-Optimal Local Minima Exist for Neural Networks with Almost All Non-Linear Activations

Nov 4, 2019