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Admin
• Everyone should be registered now; if not, talk to me

• If you want to audit, email me a form 

• A1 is up

• Work in pairs if you want

• Cite any sources you use other than the course books (SSBD, MRT, Tel)

• Including talking to people not in your group: say so + what extent


• Gradescope link to submit will be up soon 

• UBC is closed next Monday for the Queen’s funeral

• So, class is canceled again…sorry

• Assignment deadline likely to become Tuesday – will update on Piazza 

• Final is scheduled: Wednesday Dec 14, 2-4:30pm, ICCS 246

• Let me know if there’s a serious problem and we can maybe adapt

2



Last time: definitions
• , a distribution over 


• Training “set” 


• Loss function , e.g. 


• Want to find  minimizing , e.g. error rate = 1-accuracy for 0-1


• name  {“true”, “population”}  {“risk”, “loss”}


• Have ;     name  {“empirical”, “training”}  {“risk”, “loss”}


• Empirical risk minimization (ERM): choose  minimizing  
from a hypothesis class  of functions 


• To start with something simple, assume realizability for a nonnegative loss:

there is an  with 


• Implies (a.s.) that 

(x, y) ∼ 𝒟 𝒵 = 𝒳 × 𝒴
S = (z1, …, zn) = ((x1, y1), …, (xn, yn)) ∼ 𝒟n

ℓ : ℋ × 𝒵 → ℝ ℓ0−1(h, (x, y)) = 𝕀(h(x) ≠ y)
h L𝒟(h) = 𝔼z∼𝒟[ℓ(h, z)]

∈ ×

LS(h) =
1
n

n

∑
i=1

ℓ(h, zi) ∈ ×

h Ls(h)
ℋ h : 𝒳 → 𝒴

h* ∈ ℋ L𝒟 (h*) = 0
LS(h*) = 0
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Realizable, finite ℋ
• Assume  for all ; also assume realizability

• 


• Realizable means that , but maybe 


• Would like to show , i.e. 


• Call  the set of “bad” hypotheses, 


• If ERM failed,  must be consistent with a bad hypothesis:

0 ≤ ℓ(h, z) ≤ 1 h, z
ĥS ∈ arg minh∈ℋ LS(h)

LS(ĥS) = 0 L𝒟 (ĥS) > 0
Pr
S (L𝒟(ĥS) ≤ ε) ≥ 1 − δ Pr(L𝒟(hS) > ε) < δ

ℋε {h ∈ ℋ : L𝒟(h) > ε}
S
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Union bound

≤ ∑
h∈ℋε

Pr
S∼𝒟n (LS(h) = 0)Pr(L𝒟(ĥS) > ε) ≤ Pr S ∈ ⋃

h∈ℋε

{S : LS(h) = 0}



1 − ε ≤ e−ε

Realizable, finite ℋ
• 


•  

• Because  is iid, this is just  

  where 


• Know that 


• So, if , then must have , i.e. 


•

Pr(L𝒟(ĥS) > ε) ≤ ∑
h∈ℋε

Pr (LS(h) = 0)
Pr(LS(h) = 0) = Pr(∀i ∈ [n] . ℓ(h, zi) = 0)

S
n

∏
i=1

Pr
zi∼𝒟

(ℓ(h, zi) = 0) = p0(h)n

p0(h) = Pr
z∼𝒟

(ℓ(z, h) = 0)

L𝒟(h) = p0(h) × 0 + (1 − p0(h)) × 𝔼z[ℓ(z, h) ∣ ℓ(z, h) > 0]
L𝒟(h) > ε 1 − p0(h) > ε p0(h) < 1 − ε

Pr(L𝒟(ĥS) > ε) < ∑
h∈ℋε

(1 − ε)n
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= |ℋε|(1 − ε)n < |ℋ|(1 − ε)n ≤ |ℋ|e−εn

If a hypothesis is bad, 
we’re likely to sample 
at least one data point 

where it’s wrong

Not too likely to get unlucky 
with any bad hypothesis 



Finite  are (realizable) PAC-learnableℋ
• We showed that 


• Or: if we have ,  with prob. at least .


• Or: error is at most  with probability at least  

•  is PAC learnable if there is a function  and a learning alg. s.t.:

• For every , for every  over  which is realizable by ,

• then running the algorithm on  i.i.d. examples from 

• will return a hypothesis  with 

• with probability at least  over the choice of examples 

Pr (L𝒟(ĥS) < ε) ≥ 1 − |ℋ|e−εn

n ≥
1
ε (log|ℋ| + log 1

δ ) L𝒟(h) ≤ ε 1 − δ
1
n (log|ℋ| + log 1

δ ) 1 − δ

ℋ nℋ : (0,1)2 → ℕ
ε, δ ∈ (0,1) 𝒟 𝒳 × {0,1} ℋ

n ≥ nℋ(ε, δ) 𝒟
h L𝒟(h) ≤ ε
1 − δ S
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Example: Boolean conjunctions
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a b c d e f y

0 1 1 0 1 1 +

0 0 1 0 0 1 +

0 1 1 1 1 1 -

1 1 1 0 1 1 +

0 1 0 0 1 0 -

1 0 1 0 0 0 -

1 1 1 1 0 1 ?

: conjunctions of the form 
                 
ℋ

a ∧ c̄ ∧ f
Algorithm:

• Start with 

• Cross out bits inconsistent with the positives

a ∧ ā ∧ ⋯ ∧ f ∧ f̄
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a b c d e f y

0 1 1 0 1 1 +

0 0 1 0 0 1 +

0 1 1 1 1 1 -

1 1 1 0 1 1 +

0 1 0 0 1 0 -

1 0 1 0 0 0 -

1 1 1 1 0 1 ?

: conjunctions of the form 
                 
ℋ

a ∧ c̄ ∧ f
Algorithm:

• Start with 

• Cross out bits inconsistent with the positives

a ∧ ā ∧ ⋯ ∧ f ∧ f̄

Assuming realizability, this gives an ERM

• Algorithm makes every + example a +

• True function f is only “less specific” than h: 

h(x) = - for anything truly -

c ∧ d̄ ∧ f :  samples enough|ℋ| = 3d ⌈ 1
ε (d log(3) + log 1

δ )⌉



So, are we done with the course?

• Every practical  is finite if you put it on a computer

• Total size of weights in a big deep network is typically up to ~1GB

• Say 100MB,  bits, so there are  possible networks


• 


• If we want, say,  (90% accuracy): 2.5 billion training points 

• (Plus, we don’t actually do ERM with realizable, fixed hypothesis classes…)

ℋ

8 * 100 * 220 225⋅225

log (225⋅225) = 25 225 log(2) ≈ 252 million

ε = 0.1

12



PAC learnability and computational efficiency

• Valiant (1984)’s formulation 
required the algorithm 
to run in polynomial time


• We’re going to mostly not care about runtime 
(call poly version “efficient PAC learning”), 
but be aware many authors keep that in the definition 

• Independent(?), closely related development by Vapnik and Chervonenkis 
in the USSR; much more on their work soon
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Communications of the ACM, 1984



PAC learnability and computational efficiency
• A class that can be PAC-learned but not in polynomial time 

(assuming P = BPP and P ≠ NP):

• 3-DNF: 3-term clauses in disjunctive normal form 

     
    terms are conjunctions: 

• Graph 3-coloring reduces to learning 3-DNFs 

• But: 3-DNF  3-CNF, ,


• 


• and 3-CNF can be efficiently PAC-learned 

T1 ∨ T2 ∨ T3
T1 = a ∧ c̄ ∧ ⋯

⊂ ⋀ (a ∨ b ∨ c)
T1 ∨ T2 ∨ T3 = ⋀

u∈T1,v∈T2,w∈T3

(u ∨ v ∨ w)
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(1988)

(Sec 1.4-1.5 
PDF through UBC: log in here)

https://direct-mit-edu.eu1.proxy.openathens.net/books/book/2604/An-Introduction-to-Computational-Learning-Theory


(pause)
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Non-realizable (agnostic) learning

• What if we don’t know that  can realize ?

• (Does the class of ResNet-101s realize ImageNet? 🤷)


• What if we know that  can’t realize ?

• If one  can have two possible s, no function can get zero loss*

• *if there’s a positive probability of getting such an 

ℋ 𝒟

ℋ 𝒟
x y

x
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Agnostic PAC
•  is agnostically PAC learnable for a set  and loss 


if there is a function  and a learning algorithm such that:

For every  and every distribution  over ,

then running the algorithm on  i.i.d. examples from 

will return a hypothesis  with 


with probability at least  over the choice of examples 

• We don’t (necessarily) get error arbitrarily close to 0 anymore!


• Realizable means : then, this is same as realizable PAC


• Otherwise,  is the best loss achievable in 

ℋ 𝒵 ℓ : ℋ × 𝒵 → ℝ
nℋ : (0,1)2 → ℕ

ε, δ ∈ (0,1) 𝒟 𝒵
n ≥ nℋ(ε, δ) 𝒟

h ∈ ℋ L𝒟(h) ≤ inf
h′ ∈ℋ

L𝒟(h′ ) + ε

1 − δ

inf
h′ ∈ℋ

L𝒟(h′ ) = 0

inf
h′ ∈ℋ

L𝒟(h′ ) ℋ
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Improper Agnostic PAC
•  is improperly agnostically PAC learnable in  for , loss 


if there is a function  and a learning algorithm such that:

For every  and every distribution  over ,

then running the algorithm on  i.i.d. examples from 

will return a hypothesis  with 


with probability at least  over the choice of examples 

• e.g.: learn a polynomial classifier almost as good as the best linear classifier, 
        or learn a 3-DNF function with a 3-CNF 

• Shai+Shai: “there is nothing improper about representation-independent learning”

ℋ ℋ′ 𝒵 ℓ : ℋ′ × 𝒵 → ℝ
nℋ : (0,1)2 → ℕ

ε, δ ∈ (0,1) 𝒟 𝒵
n ≥ nℋ(ε, δ) 𝒟

h ∈ ℋ′ ⊃ ℋ L𝒟(h) ≤ inf
h′ ∈ℋ

L𝒟(h′ ) + ε

1 − δ
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Bayes error rate

• What can we say about ?


• It’s at least as big as the Bayes error: error of the Bayes-optimal predictor 

              e.g. for 0-1 loss,   

• The best predictor in  might be as good as this, or it might be worse


• Gap between Bayes error and  called approximation error

inf
h∈ℋ

L𝒟(h)

f𝒟(x) = {1 if  Pr(y = 1 ∣ x) ≥ 1
2

0 otherwise

ℋ
inf

h∈ℋ
L𝒟(h)
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ERM on finite classes, agnostic edition
• Want  to compete with best predictor in  with high probability 

• First step: “good”  are -representative,  for all 

• The generalization gap is small, for all 


• Lemma: If  is -representative, then for any comparator , 
             
 

•  has the uniform convergence property w.r.t.  and  if, 
with  samples from any distribution  over , 

 is  representative with probability at least  

• So: sufficient to show that finite  have the uniform convergence property

ĥS ℋ

S ε |LS(h) − L𝒟(h)| ≤ ε h
h

S ε h′ ∈ ℋ

ℋ 𝒵 ℓ
n ≥ nUC

ℋ (ε, δ) 𝒟 𝒵
S ∼ 𝒟n ε 1 − δ

ℋ 20

≤ L𝒟(h′ ) + 2ε≤ LS(h′ ) + ε≤ LS(ĥS) + εL𝒟(ĥS) and so L𝒟(ĥS) ≤ inf
h∈ℋ

L𝒟(h) + 2ε



Wassily Hoeffding

Hoeffding 
Bound 
(1963)

Finite  have the uniform convergence propertyℋ
         (we want to show it’s )
Pr

S
(∃h ∈ ℋ . |LS(h) − L𝒟(h)| > ε) < δ
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≤ ∑
h∈ℋ

Pr
S∼𝒟n (|LS(h) − L𝒟(h)| > ε)= Pr

S (S ∈ ⋃
h∈ℋ

{S : |LS(h) − L𝒟(h)| > ε})

If  independent, , ,X1, …, Xn ∈ ℝ 𝔼[Xi] = μ Pr(a ≤ Xi ≤ b) = 1

then Pr ( 1
n ∑ Xi − μ > ε) ≤ 2 exp ( −2nε2

(b − a)2 )

≤ ∑
h∈ℋ

2 exp (− 2
B2 nε2) = 2|ℋ|exp (− 2

B2 nε2)assume A ≤ ℓ(h, z) ≤ A + B



Finite  have the uniform convergence propertyℋ
         (we want to show it’s )
Pr

S
(∃h ∈ ℋ . |LS(h) − L𝒟(h)| > ε) < δ
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≤ ∑
h∈ℋ

Pr
S∼𝒟n (|LS(h) − L𝒟(h)| > ε)= Pr

S (S ∈ ⋃
h∈ℋ

{S : |LS(h) − L𝒟(h)| > ε})
≤ ∑

h∈ℋ

2 exp (− 2
B2 nε2) = 2|ℋ|exp (− 2

B2 nε2)
2|ℋ|exp (− 2

B2 nε2) < δ − 2
B2 nε2 < log

δ
2|ℋ| n >

B2

2ε2 [log(2|ℋ|) + log 1
δ ]iff iff

ERM agnostically PAC-learns  with  samples
ℋ n >
2B2

ε2 [log(2|ℋ|) + log 1
δ ]

assume A ≤ ℓ(h, z) ≤ A + B
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≤ ∑
h∈ℋ

Pr
S∼𝒟n (|LS(h) − L𝒟(h)| > ε)= Pr

S (S ∈ ⋃
h∈ℋ

{S : |LS(h) − L𝒟(h)| > ε})
≤ ∑

h∈ℋ

2 exp (− 2
B2 nε2) = 2|ℋ|exp (− 2

B2 nε2)

ERM agnostically PAC-learns  with  samples
ℋ n >
2B2

ε2 [log(2|ℋ|) + log 1
δ ]

assume A ≤ ℓ(h, z) ≤ A + B

Equivalently: error of ERM over  is at most ℋ
2B2

n [log(2|ℋ|) + log
1
δ ]



Realizable vs agnostic rates
• ERM for finite hypothesis classes,  to get excess error  w/ prob. , 

for a loss bounded in :


• Realizable:       “  rate”


• Agnostic:         “  rate”


• Late in the course, we’ll (probably) see “optimistic rates”: 
interpolate between the two regimes based on 

n ε 1 − δ
[0,1]

n ≥
1
ε (log|ℋ| + log 1

δ ) 1
n

n >
2
ε2 [log|ℋ| + log 2

δ ] 1

n

inf
h∈ℋ

L𝒟(h)
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Summary

• PAC learnability: realizable, agnostic, improper

• Finite classes are PAC learnable, both in realizable and agnostic settings

• but rate is different 

• Uniform convergence of  to  over 

• Key tool: Hoeffding bound (a concentration inequality) 

• Next time: choosing ; what about infinite hypothesis classes?

LS(h) L𝒟(h) ℋ

ℋ
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