PAC learning + uniform convergence

CPSC 532D: Modern Statistical Learning Theory 14 September 2022 cs.ubc.ca/~dsuth/532D/22w1/

- Everyone should be registered now; if not, talk to me
 - If you want to audit, email me a form
- A1 is up
 - Work in pairs if you want
 - Cite any sources you use other than the course books (SSBD, MRT, Tel) Including talking to people not in your group: say so + what extent Gradescope link to submit will be up soon
- UBC is closed next Monday for the Queen's funeral
 - So, class is canceled again...sorry
 - Assignment deadline likely to become Tuesday will update on Piazza
- Final is scheduled: Wednesday Dec 14, 2-4:30pm, ICCS 246
 - Let me know if there's a serious problem and we can maybe adapt

Admin

Last time: definitions

- name \in {"true", "population"} \times {"risk", "loss"}
- $(x, y) \sim \mathcal{D}$, a distribution over $\mathcal{X} = \mathcal{X} \times \mathcal{Y}$ • Training "set" $S = (z_1, ..., z_n) = ((x_1, y_1), ..., (x_n, y_n)) \sim \mathcal{D}^n$ • Loss function $\ell : \mathcal{H} \times \mathcal{I} \to \mathbb{R}$, e.g. $\ell_{0-1}(h, (x, y)) = \mathbb{I}(h(x) \neq y)$ • Want to find h minimizing $L_{\mathcal{D}}(h) = \mathbb{E}_{z \sim \mathcal{D}}[\ell(h, z)]$, e.g. error rate = 1-accuracy for 0-1
- Have $L_{S}(h) = \frac{1}{n} \sum_{i=1}^{n} \ell(h, z_{i});$ name $\in \{\text{"empirical", "training"}\} \times \{\text{"risk", "loss"}\}$
- Empirical risk minimization (ERM): choose h minimizing $L_s(h)$ from a *hypothesis class* \mathcal{H} of functions $h: \mathcal{X} \to \mathcal{Y}$
- To start with something simple, assume **realizability** for a nonnegative loss: there is an $h^* \in \mathscr{H}$ with $L_{\oslash}(h^*) = 0$
 - Implies (a.s.) that $L_{S}(h^{*}) = 0$

Realizable, finite \mathcal{H}

- Assume $0 \le \ell(h, z) \le 1$ for all h, z; also assume realizability • $\hat{h}_S \in \arg\min_{h \in \mathscr{H}} L_S(h)$
 - Realizable means that $L_S(\hat{h}_S) = 0$, but maybe $L_{\mathcal{D}}(\hat{h}_S) > 0$
- Call $\mathscr{H}_{\varepsilon}$ the set of "bad" hypotheses, $\{h \in \mathscr{H} : L_{\mathscr{D}}(h) > \varepsilon\}$
- If ERM failed, S must be consistent with a bad hypothesis:

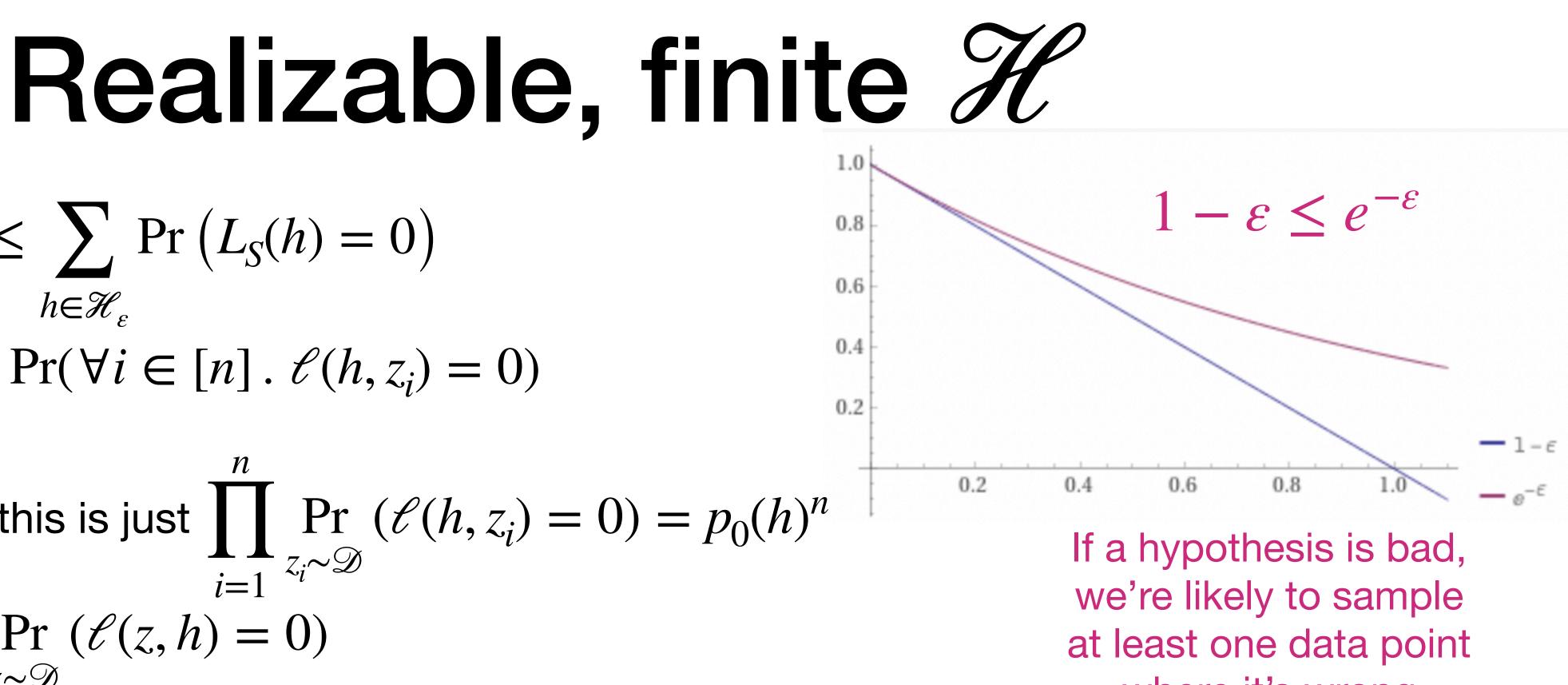
$$\Pr(L_{\mathscr{D}}(\hat{h}_{S}) > \varepsilon) \le \Pr\left(S \in \bigcup_{h \in \mathscr{H}_{\varepsilon}} \{S : L_{S}(k)\}\right)$$

• Would like to show $\Pr_{S} \left(L_{\mathscr{D}}(\hat{h}_{S}) \leq \varepsilon \right) \geq 1 - \delta$, i.e. $\Pr(L_{\mathscr{D}}(h_{S}) > \varepsilon) < \delta$ Union bound $\Pr(A \cup B) = \Pr(A) + \Pr(B) - \Pr(A \cap B) \leq \Pr(A) + \Pr(B)$ $\leq \Pr(A) + \Pr(B)$ $\leq \sum_{h \in \mathscr{H}_{\varepsilon}} \Pr(L_{S}(h) = 0)$

$$\Pr(L_{\mathcal{D}}(\hat{h}_{S}) > \varepsilon) \leq \sum_{h \in \mathcal{H}_{\varepsilon}} \Pr\left(L_{S}(h) = 0\right)$$

• $\Pr(L_{S}(h) = 0) = \Pr(\forall i \in [n] \, \ell(h, z_{i}) = 0)$

0.2 Because *S* is iid, this is just $\prod_{i=1}^{n} \Pr_{z_i \sim \mathscr{D}} (\ell(h, z_i) = 0) = p_0(h)^n$ where $p_0(h) = \Pr(\ell(z, h) = 0)$ $z\sim \mathcal{D}$ • Know that $L_{\mathcal{D}}(h) = p_0(h) \times 0 + (1 - p_0(h)) \times \mathbb{E}_{z}[\ell(z, h) \mid \ell(z, h) > 0]$ • So, if $L_{\mathcal{D}}(h) > \varepsilon$, then must have $1 - p_0$ $\Pr(L_{\mathcal{D}}(\hat{h}_S) > \varepsilon) < \sum (1 - \varepsilon)^n$ Not too likely to get unlucky with any bad hypothesis $h \in \mathcal{H}_{c}$ $= |\mathscr{H}_{\varepsilon}|(1-\varepsilon)^n < |\mathscr{I}|$



where it's wrong

$$p_0(h) > \varepsilon$$
, i.e. $p_0(h) < 1 - \varepsilon$

$$\mathcal{H}_{5}(1-\varepsilon)^{n} \leq |\mathcal{H}|e^{-\varepsilon n}$$

Finite *H* are (realizable) PAC-learnable

- . We showed that $\Pr\left(L_{\mathscr{D}}(\hat{h}_S) < \varepsilon\right) \geq$

- - then running the algorithm on $n \ge n_{\mathscr{H}}(\varepsilon, \delta)$ i.i.d. examples from \mathscr{D}
 - will return a hypothesis h with $L_{\infty}(h) \leq \varepsilon$
 - with probability at least 1δ over the choice of examples S

$$1 - |\mathcal{H}|e^{-\varepsilon n}$$

• Or: if we have $n \ge \frac{1}{\varepsilon} \left(\log |\mathcal{H}| + \log \frac{1}{\delta} \right), L_{\mathcal{D}}(h) \le \varepsilon$ with prob. at least $1 - \delta$. • Or: error is at most $\frac{1}{n} \left(\log |\mathcal{H}| + \log \frac{1}{\delta} \right)$ with probability at least $1 - \delta$

• \mathscr{H} is PAC learnable if there is a function $n_{\mathscr{H}}: (0,1)^2 \to \mathbb{N}$ and a learning alg. s.t.: • For every $\varepsilon, \delta \in (0,1)$, for every \mathscr{D} over $\mathscr{X} \times \{0,1\}$ which is realizable by \mathscr{H} ,

a	b	С	d	е	f	У
0	1	1	0	1	1	+
0	0	1	0	0	1	+
0	1	1	1	1	1	_
1	1	1	0	1	1	+
0	1	0	0	1	0	_
1	0	1	0	0	0	
1	1	1	1	0	1	?

\mathscr{H} : conjunctions of the form $a \wedge \overline{c} \wedge f$

- Start with $a \wedge \bar{a} \wedge \cdots \wedge f \wedge f$
- Cross out bits inconsistent with the positives

a	b	С	d	е	f	У
0	1	1	0	1	1	+
0	0	1	0	0	1	+
0	1	1	1	1	1	_
1	1	1	0	1	1	+
0	1	0	0	1	0	_
1	0	1	0	0	0	-
1	1	1	1	0	1	?

\mathscr{H} : conjunctions of the form $a \wedge \overline{c} \wedge f$

- Start with $a \wedge \bar{a} \wedge \cdots \wedge f \wedge f$
- Cross out bits inconsistent with the positives

a	b	С	d	е	f	У
0	1	1	0	1	1	+
0	0	1	0	0	1	+
0	1	1	1	1	1	_
1	1	1	0	1	1	+
0	1	0	0	1	0	_
1	0	1	0	0	0	
1	1	1	1	0	1	?

\mathscr{H} : conjunctions of the form $a \wedge \overline{c} \wedge f$

- Start with $a \wedge \bar{a} \wedge \cdots \wedge f \wedge f$
- Cross out bits inconsistent with the positives

a	b	С	d	е	f	У
0	1	1	0	1	1	+
0	0	1	0	0	1	+
0	1	1	1	1	1	_
1	1	1	0	1	1	+
0	1	0	0	1	0	_
1	0	1	0	0	0	-
1	1	1	1	0	1	?

\mathscr{H} : conjunctions of the form $a \wedge \overline{c} \wedge f$

- Start with $a \wedge \bar{a} \wedge \cdots \wedge f \wedge f$
- Cross out bits inconsistent with the positives

Example: Boolean conjunctions $c \wedge \overline{d} \wedge f$ $|\mathcal{H}| = 3^d: \left[\frac{1}{\varepsilon} \left(d \log(3) + \log \frac{1}{\delta}\right)\right]$ samples enough \mathcal{H} : conjunctions of the form $a \wedge \overline{c} \wedge f$

a	b	С	d	е	f	У
0	1	1	0	1	1	+
0	0	1	0	0	1	+
0	1	1	1	1	1	_
1	1	1	0	1	1	+
0	1	0	0		0	_
1	0	1	0	0	0	-
1	1	1	1	0	1	?

Algorithm:

- Start with $a \wedge \bar{a} \wedge \cdots \wedge f \wedge \bar{f}$
- Cross out bits inconsistent with the positives

Assuming realizability, this gives an ERM

- Algorithm makes every + example a +
- True function f is only "less specific" that h(x) = - for anything truly -

n	h	
an	11	

So, are we done with the course?

- Every practical \mathcal{H} is finite if you put it on a computer
- Total size of weights in a big deep network is typically up to ~ 1 GB
- Say 100MB, $8 * 100 * 2^{20}$ bits, so there are $2^{25 \cdot 2^{25}}$ possible networks

•
$$\log\left(2^{25\cdot2^{25}}\right) = 25\ 2^{25}\log(2)$$

- If we want, say, $\varepsilon = 0.1$ (90% accuracy): 2.5 billion training points
- (Plus, we don't actually do ERM with realizable, fixed hypothesis classes...)

 ≈ 252 million

PAC learnability and computational efficiency

- Valiant (1984)'s formulation required the algorithm to run in polynomial time
- We're going to mostly not care about runtime (call poly version "efficient PAC learning"), but be aware many authors keep that in the definition
- Independent(?), closely related development by Vapnik and Chervonenkis in the USSR; much more on their work soon

RESEARCH CONTRIBUTIONS

Artificial Intelligence and Language Processing

A Theory of the Learnable

David Waltz Editor

L. G. VALIANT

Communications of the ACM, 1984



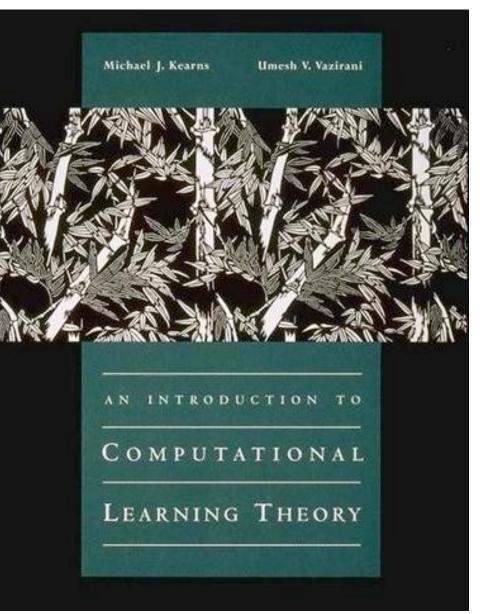
PAC learnability and computational efficiency

- A class that can be PAC-learned but not in polynomial time (assuming P = BPP and $P \neq NP$):
- 3-DNF: 3-term clauses in *disjunctive normal form* $T_1 \vee T_2 \vee T_3$

terms are conjunctions: $T_1 = a \wedge \overline{c} \wedge \cdots$

- Graph 3-coloring reduces to learning 3-DNFs
- But: 3-DNF \subset 3-CNF, $\bigwedge (a \lor b \lor c)$, $T_1 \lor T_2 \lor T_3 = \qquad \bigwedge \qquad (u \lor v \lor w)$ $u \in T_1, v \in T_2, w \in T_3$
- and 3-CNF can be efficiently PAC-learned

(Sec 1.4-1.5 PDF through UBC: log in here)



Computational Limitations on Learning from Examples

(1988)

LEONARD PITT

University of Illinois, Urbana-Champaign, Urbana, Illinois

AND

LESLIE G. VALIANT

Harvard University, Cambridge, Massachusetts

(pause)

Non-realizable (agnostic) learning

- What if we don't know that *H* can realize *D*?
 (Does the class of ResNet-101s realize ImageNet? ^(A))
- What if we know that ${\mathscr H}$ can't realize ${\mathscr D}?$
 - If one x can have two possible ys, no function can get zero loss*
 - *if there's a positive probability of getting such an x

Agnostic PAC

• \mathcal{H} is agnostically PAC learnable for a set \mathcal{I} and loss $\ell : \mathcal{H} \times \mathcal{I} \to \mathbb{R}$ if there is a function $n_{\mathscr{H}}: (0,1)^2 \to \mathbb{N}$ and a learning algorithm such that: For every $\varepsilon, \delta \in (0,1)$ and every distribution \mathcal{D} over \mathcal{X} , then running the algorithm on $n \ge n_{\mathscr{H}}(\varepsilon, \delta)$ i.i.d. examples from \mathscr{D} will return a hypothesis $h \in \mathcal{H}$ with $L_{\mathcal{D}}(h) \leq \inf L_{\mathcal{D}}(h') + \varepsilon$ $h' \subset \mathcal{H}$

with probability at least $1 - \delta$ over the choice of examples

- We don't (necessarily) get error arbitrarily close to 0 anymore! . Realizable means $\inf_{h'\in \mathcal{H}} L_{\mathscr{D}}(h') = 0$: then, this is same as realizable PAC
 - Otherwise, $\inf L_{\mathscr{D}}(h')$ is the best loss achievable in \mathscr{H} $h' \in \mathcal{H}$

Improper Agnostic PAC

• \mathscr{H} is improperly agnostically PAC learnable in \mathscr{H}' for \mathscr{I} , loss $\mathscr{l} : \mathscr{H}' \times \mathscr{I} \to \mathbb{R}$ if there is a function $n_{\mathscr{H}}: (0,1)^2 \to \mathbb{N}$ and a learning algorithm such that: For every $\varepsilon, \delta \in (0,1)$ and every distribution \mathcal{D} over \mathcal{X} , then running the algorithm on $n \ge n_{\mathscr{H}}(\varepsilon, \delta)$ i.i.d. examples from \mathscr{D} will return a hypothesis $h \in \mathcal{H}' \supset \mathcal{H}$

with probability at least $1 - \delta$ over the choice of examples

- e.g.: learn a polynomial classifier almost as good as the best linear classifier, or learn a 3-DNF function with a 3-CNF
- Shai+Shai: "there is nothing improper about representation-independent learning"

$$\mathbb{V} \text{ with } L_{\mathcal{D}}(h) \leq \inf_{h' \in \mathcal{H}} L_{\mathcal{D}}(h') + \varepsilon$$

- . What can we say about $\inf_{h \in \mathcal{H}} L_{\mathcal{D}}(h)$?

e.g. for 0-1 loss,
$$f_{\mathcal{D}}(x) =$$

• The best predictor in \mathscr{H} might be as good as this, or it might be worse $h \in \mathcal{H}$

Bayes error rate

• It's at least as big as the **Bayes error**: error of the Bayes-optimal predictor $\begin{cases} 1 & \text{if } \Pr(y = 1 \mid x) \ge \frac{1}{2} \\ 0 & \text{otherwise} \end{cases}$

Gap between Bayes error and $\inf L_{\mathcal{D}}(h)$ called approximation error

ERM on finite classes, agnostic edition

- Want \hat{h}_{S} to compete with best predictor in \mathscr{H} with high probability
- First step: "good" S are ε -representative, $|L_S(h) L_N(h)| \le \varepsilon$ for all h • The generalization gap is small, for all h
- Lemma: If S is ε -representative, then for any comparator $h' \in \mathcal{H}$,

$$L_{\mathcal{D}}(\hat{h}_{S}) \leq L_{S}(\hat{h}_{S}) + \varepsilon \leq L_{S}(h') + \varepsilon \leq L_{\mathcal{D}}(h') + \varepsilon$$

- \mathscr{H} has the uniform convergence property w.r.t. \mathscr{X} and \mathscr{C} if, with $n \ge n_{\mathscr{W}}^{UC}(\varepsilon, \delta)$ samples from any distribution \mathscr{D} over \mathscr{Z} , $S \sim \mathcal{D}^n$ is ε representative with probability at least $1 - \delta$

 $_{\mathscr{Y}}(h') + 2\varepsilon$ and so $L_{\mathscr{D}}(\hat{h}_S) \leq \inf_{h \in \mathscr{H}} L_{\mathscr{D}}(h) + 2\varepsilon$

• So: sufficient to show that finite \mathscr{H} have the uniform convergence property

Finite \mathscr{H} have the uniform convergence property

 $\Pr_{S} \left(\exists h \in \mathscr{H} . |L_{S}(h) - L_{\mathfrak{D}}(h)| > \varepsilon \right) \quad \text{(we want to show it's < \delta)}$ $= \Pr_{S} \left(S \in \bigcup_{h \in \mathscr{H}} \{S : |L_{S}(h) - L_{\mathfrak{D}}(h)| > \varepsilon \} \right) \leq \sum_{h \in \mathscr{H}} \Pr_{S \sim \mathfrak{D}^{n}} \left(|L_{S}(h) - L_{\mathfrak{D}}(h)| > \varepsilon \right)$

assume $A \leq \ell(h, z) \leq A + B$

Hoeffding Bound (1963)

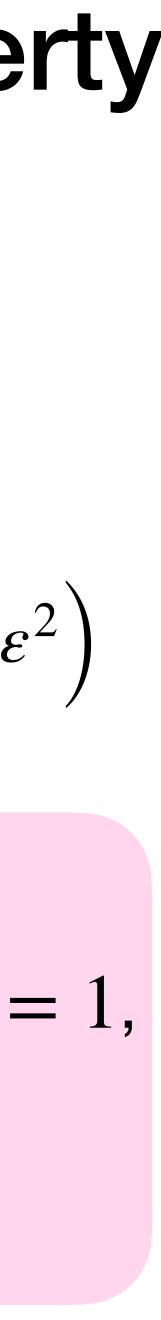
If $X_1, \ldots, X_n \in \mathbb{R}$ then $\Pr\left(\left|\frac{1}{n}\sum_{n}\right|\right)$

Wassily Hoeffding

$$\leq \sum_{h \in \mathcal{H}} \Pr_{S \sim \mathcal{D}^n} \left(|L_S(h) - L_{\mathcal{D}}(h)| > \varepsilon \right)$$

$$\leq \sum_{h \in \mathcal{H}} 2 \exp\left(-\frac{2}{B^2} n\varepsilon^2\right) = 2|\mathcal{H}| \exp\left(-\frac{2}{B^2} n\varepsilon^2\right)$$

independent,
$$\mathbb{E}[X_i] = \mu$$
, $\Pr(a \le X_i \le b)$
 $X_i - \mu | > \varepsilon) \le 2 \exp\left(\frac{-2n\varepsilon^2}{(b-a)^2}\right)$



Finite \mathcal{H} have the uniform convergence property

 $\Pr_{S} \left(\exists h \in \mathscr{H} . |L_{S}(h) - L_{\mathfrak{D}}(h)| > \varepsilon \right) \quad \text{(we want to show it's < \delta)}$ $= \Pr_{S} \left(S \in \bigcup_{h \in \mathscr{H}} \{S : |L_{S}(h) - L_{\mathfrak{D}}(h)| > \varepsilon \} \right) \leq \sum_{h \in \mathscr{H}} \Pr_{S \sim \mathscr{D}^{n}} \left(|L_{S}(h) - L_{\mathfrak{D}}(h)| > \varepsilon \right)$

assume $A \leq \ell(h, z) \leq A + B$

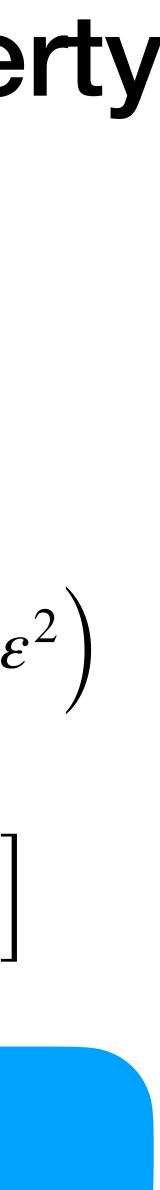
$$2|\mathscr{H}|\exp\left(-\frac{2}{B^2}n\varepsilon^2\right) < \delta \text{ iff } -\frac{2}{B^2}n\varepsilon^2 < \log\frac{\delta}{2|\mathscr{H}|} \text{ iff } n > \frac{B^2}{2\varepsilon^2}\left[\log(2|\mathscr{H}|) + \log\frac{1}{\delta}\right]$$

ERM agnostically PAC-learns *H* with n

$$\leq \sum_{h \in \mathcal{H}} \Pr_{S \sim \mathcal{D}^n} \left(|L_S(h) - L_{\mathcal{D}}(h)| > \varepsilon \right)$$

$$\leq \sum_{h \in \mathcal{H}} 2 \exp\left(-\frac{2}{B^2} n\varepsilon^2\right) = 2|\mathcal{H}| \exp\left(-\frac{2}{B^2} n\varepsilon^2\right)$$

$$a > \frac{2B^2}{\varepsilon^2} \left[\log(2|\mathcal{H}|) + \log \frac{1}{\delta} \right]$$
 samples



Finite \mathscr{H} have the uniform convergence property

$\Pr_{S} \left(\exists h \in \mathscr{H} . |L_{S}(h) - L_{\mathfrak{D}}(h)| > \varepsilon \right) \quad \text{(we want to show it's < \delta)}$ $= \Pr_{S} \left(S \in \bigcup_{h \in \mathscr{H}} \{S : |L_{S}(h) - L_{\mathfrak{D}}(h)| > \varepsilon \} \right) \leq \sum_{h \in \mathscr{H}} \Pr_{S \sim \mathfrak{D}^{n}} \left(|L_{S}(h) - L_{\mathfrak{D}}(h)| > \varepsilon \right)$

assume $A \leq \ell(h, z) \leq A + B$

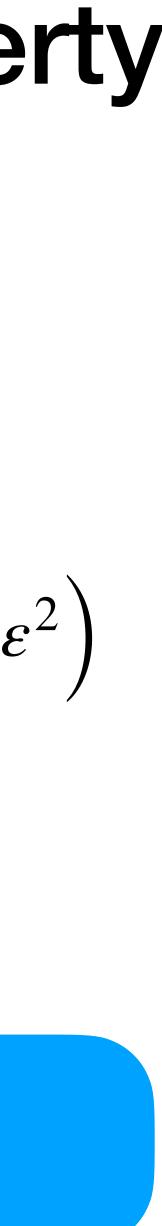
Equivalently: error of ERM over \mathcal{H} is a

$$\leq \sum_{h \in \mathcal{H}} \Pr_{S \sim \mathcal{D}^n} \left(|L_S(h) - L_{\mathcal{D}}(h)| > \varepsilon \right)$$

$$\leq \sum_{h \in \mathcal{H}} 2 \exp\left(-\frac{2}{B^2} n\varepsilon^2\right) = 2|\mathcal{H}| \exp\left(-\frac{2}{B^2} n\varepsilon^2\right)$$

at most
$$\sqrt{\frac{2B^2}{n}} \left[\log(2|\mathcal{H}|) + \log\frac{1}{\delta} \right]$$

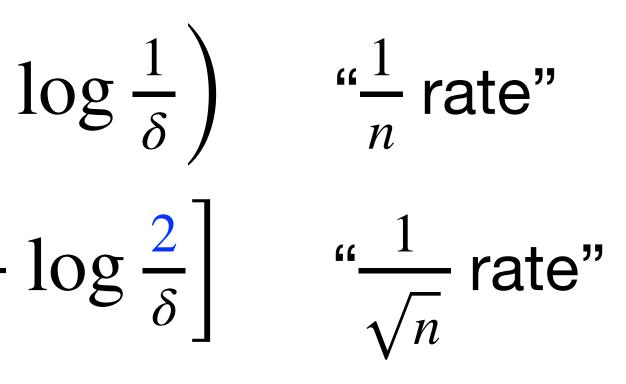
ERM agnostically PAC-learns \mathscr{H} with $n > \frac{2B^2}{\varepsilon^2} \left[\log(2|\mathscr{H}|) + \log \frac{1}{\delta} \right]$ samples



Realizable vs agnostic rates

- ERM for finite hypothesis classes, n to get excess error ε w/ prob. 1δ , for a loss bounded in [0,1]:
 - Realizable: $n \ge \frac{1}{\varepsilon} \left(\log |\mathcal{H}| + \log \frac{1}{\delta} \right)$ " $\frac{1}{n}$ rate" Agnostic: $n > \frac{2}{\varepsilon^2} \left[\log |\mathcal{H}| + \log \frac{2}{\delta} \right]$ " $\frac{1}{\sqrt{n}}$ rate"

• Late in the course, we'll (probably) see "optimistic rates": interpolate between the two regimes based on $\inf L_{\mathscr{D}}(h)$



 $h \in \mathcal{H}$

Summary

- PAC learnability: realizable, agnostic, improper
- - but rate is different
- Uniform convergence of $L_{\mathcal{S}}(h)$ to $L_{\mathcal{D}}(h)$ over \mathscr{H}
 - Key tool: Hoeffding bound (a concentration inequality)
- Next time: choosing \mathscr{H} ; what about infinite hypothesis classes?

• Finite classes are PAC learnable, both in realizable and agnostic settings