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Admin

Everyone should be registered now; if not, talk to me
* |f you want to audit, email me a form

Al is up

 Work in pairs if you want

* Cite any sources you use other than the course books (SSBD, MRT, Tel)
* Including talking to people not in your group: say so + what extent

 Gradescope link to submit will be up soon

UBC is closed next Monday for the Queen’s funeral
* S0, class is canceled again...sorry
* Assignment deadline likely to become Tuesday — will update on Piazza

Final is scheduled: Wednesday Dec 14, 2-4:30pm, ICCS 246
 Let me know If there’s a serious problem and we can maybe adapt
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Last time: definitions

(x,y) ~ D, adistributionover Z =X X ¥

Training “set” S = (2, ..+, 2,) = (1, Y1) +ees (X5 3,)) ~ D"

Loss function & : ' X £ — R, e.g. €y_i(h, (x,y)) = l(h(x) # y)

Want to find 4 minimizing Lg,(h) = E__g5[£(h, 2)], e.g. error rate = 1-accuracy for 0-1

e name € {“true”, “population”} X {“risk”, “loss”}

1 n
Have LS(h) - — Z £(h, Zi); name € {“empirical”, “training”} X {“risk”, “loss”}
n
i=1

Empirical risk minimization (ERM): choose /& minimizing L. (/)
from a hypothesis class 7 of functionsh : X — Y
To start with something simple, assume realizability for a nonnegative loss:

there is an ™ € #Z with Ly, (h*) =0
» Implies (a.s.) that L(h*) = 0



Realizable, finite #7

Assume 0 < £(h,7) < 1 for all h, z; also assume realizability
hg € argmin, _., Lg(h) ) )
» Realizable means that L¢(hg) = 0, but maybe L, (hg) > 0

Would like to show Pr (ng(ils) < 8) > 1 —20,ie. Pr(Lg(hg) > ¢€) <0
S

Call Z, the set of “bad” hypotheses, {h e A : Lg(h) > e}
If ERM failed, § must be consistent with a bad hypothesis:

Union bound
N\G

= pe[A) % Pr(8) - Pr (A®)
Pe(Av B)  pelA) +be(8)

Pr(Lo(hg) > &) <Pr[Se | {S: Lymy =0}| < 2, Pr (L) =0)
he. her.



Realizable, finite #

. Pr(L@(ilS) > 8) < Z Pr (LS(h) — O) 0.8 r 1 | o S e—g
Pr(Lg(h) = 0) = Pr(Vi € [n] . £(h, z;) = 0)

Because S is iid, this is just | [ Pr (£(h,2) = 0) = py(h)"

e, If a hypothesis is bad,
i=1 we’re likely to sample
where py(h) = Pr (£(z,h) = 0) at least one data point

i~
Know that Lo,(h) = po(h) X 0 + (1 — py(h)) X E_[£(z, h) | £(z, h) > O]

 So, if Lg,(h) > €, then must have 1 — py(h) > €,i.e.py(h) < 1 —¢

Pr(l@(ils) > ¢) < Z (1 —¢&) Not too likely to get unlucky
heH with any bad hypothesis

= |Z.|(1 —¢e)* <|Z|(1—¢)" < |H|e ™

where it’s wrong




Finite # are (realizable) PAC-learnable

. We showed that Pr (L@(izs) < g) > 1 — |H|e "

1
. Or:if we haven > — (log\?f\ + log %) Lg,(h) < € with prob. at least 1 — 0.
£

1
. Or: error is at most — (logl%\ + log %) with probability at least 1 — 6
n

» / is PAC learnable if there is a function ng, : (0,1)> > N and a learning alg. s.t.:

« Forevery e,0 € (0,1), for every & over X X {0,1} which is realizable by #,
» then running the algorithm on n > ny(€, 0) i.i.d. examples from &

» will return a hypothesis i with Lg,(h) < €
 with probability at least 1 — 0 over the choice of examples S
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Example: Boolean conjunctions

# . conjunctions of the form
aANCAf

Algorithm:

. Startwitha AaA -+ AfAf
* Cross out bits inconsistent with the positives
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Example: Boolean conjunctions

c A J/\f || = 3d. [é (dlog(B) + log %)] samples enough

y

# . conjunctions of the form
- aANCAf

+

Algorithm:

. Startwitha AaA -+ AfAf
* Cross out bits inconsistent with the positives

Assuming realizabillity, this gives an ERM
* Algorithm makes every + example a +

* True function f is only “less specific” than h:
h(x) = - for anything truly -

11



So, are we done with the course?

» Every practical #Z is finite if you put it on a computer
» Total size of weights in a big deep network is typically up to ~1GB

. Say 100MB, 8 * 100 * 2%V bits, so there are 02527 possible networks
. log (225'225) =25 2% log(2) ~ 252 million

 |f we want, say, € = 0.1 (90% accuracy): 2.5 billion training points

* (Plus, we don’t actually do ERM with realizable, fixed hypothesis classes...)
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PAC learnability and computational efficiency

RESEARCH CONTRIBUTIONS

Ar‘ f

« A Theory of the Learnable

e Valiant (1984)’s formulation -
required the algorithm ‘
to run in polynomial time AR

* We're going to mostly not care about runtime g munications of the ACM. 1984 b -

(call poly version “efficient PAC learning”),
but be aware many authors keep that in the definition

* Independent(?), closely related development by Vapnlk and Chervonenkls
in the USSR; much more on their work soon -
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PAC learnability and computational efficiency

(Sec 1.4-1.5
PDF through UBC: log in here)

A class that can be PAC-learned but not in polynomial time
(assuming P = BPP and P # NP): b ~

e . A FFRRNEA BN

3-DNF: 3-term clauses in disjunctive normal form ” ﬁ?\ ﬁu:%f,ﬂ

T\ VT,V T; (et kAl |
terms are conjunctions: Iy =a AC A -+

* Graph 3-coloring reduces to learning 3-DNFs

%( g ] f% {
| o . b2 .

COMPUTATIONAL

LEARNING THEORY

But: 3-DNF C 3-CNF, /\ (aVbVec),

uel,,vel,wel; e . -
University of Hllinois, Urbana-Champaign, Urbana, Illinois

and 3-CNF can be efficiently PAC-learned

LESLIE G. VALIANT

LEONARD PITT (1 988)

Harvard University, Cambridge, Massachusetts
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https://direct-mit-edu.eu1.proxy.openathens.net/books/book/2604/An-Introduction-to-Computational-Learning-Theory

(pause)
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Non-realizable (agnostic) learning

e What if we don’t know that # can realize ?
e (Does the class of ResNet-101s realize ImageNet? %)

» What if we know that Z can’t realize &7
* |f one x can have two possible ys, no function can get zero loss”
o *if there’s a positive probability of getting such an x
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Agnostic PAC

o # is agnostically PAC learnable foraset Z andloss ¢ : ' X £ — |
if there is a function ngy, : (0,1)> = N and a learning algorithm such that:

For every €,0 € (0,1) and every distribution & over Z£,
then running the algorithm on n > ng(¢, 0) i.i.d. examples from &

will return a hypothesis 1 € Z with Lg,(h) < + €

with probability at least 1 — 6 over the choice of examples

 \We don’t (nhecessarily) get error arbitrarily close to 0 anymore!

. Realizable means 1nt Lg(A") = 0: then, this is same as realizable PAC
h'eAx
. Otherwise, 1nf Lg(h') is the best loss achievable in #
h'eA
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Improper Agnostic PAC

o /A is agnostically PAC learnable in #7 ' for £,loss ¢ : Z' X £ — |
if there is a function ngy, : (0,1)> = N and a learning algorithm such that:

For every €,0 € (0,1) and every distribution & over Z£,
then running the algorithm on n > ng(¢, 0) i.i.d. examples from &

will return a hypothesis with Lg,(h) < int Lg(h') + ¢
h'eA

with probability at least 1 — 6 over the choice of examples

* e.g.: learn a polynomial classifier almost as good as the best linear classifier,
or learn a 3-DNF function with a 3-CNF

e Shai+Shai: “there is nothing improper about representation-independent learning”
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Bayes error rate

What can we say about int Lg(h)?
heX

It’s at least as big as the Bayes error: error of the Bayes-optimal predictor

. 1
— > —
e.g. for 0-1 loss, fg(x) = Lif Pry=11x) 2 2

0O otherwise

The best predictor in # might be as good as this, or it might be worse

Gap between Bayes error and int Lg(h) called approximation error
hex
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ERM on finite classes, agnostic edition

o Want izS to compete with best predictor in Z with high probability

» First step: “good” § are e-representative, |L¢(h) — Lg(h)| < € for all h
e The generalization gap is small, for all A
« Lemma: If § is e-representative, then for any comparator h' € A,

L, (hy) < Ly(hg) + & < Ly(h) + & < Ly (h) +2¢  and so Lg(ilS) < it Lg(h) + 2¢
hex

o # has the uniform convergence property w.r.t. # and ¢ if,
with n > ngfc(e, 0) samples from any distribution & over £,

S ~ D" is e representative with probability at least 1 — 6

» So: sufficient to show that finite # have the uniform convergence property



Finite # have the uniform convergence property

Pr ( dh € A . |Ly(h) — Lg(h)| > 8) (we want to show it’s < 0)
S

= Pr (S = U (S :|Lg(h) — Loy (h)| > e}> < Z Pr (1Lg(h) — Lgy(h)| > €)
> he# he%SN@
assume A < 7(h,2) <A+ B < 2 2 exp (—%nez) = 2| |exp (—%nez)
he#

Hoeffding

Bound
(1963)

If X, ....,X € Rindependent, E[X.] = u, Pr(a < X. < b) =1,

/. then P ( ) X ‘ > ) <2 —2ne”
e \o-a

Wassily Hoeffding




Finite # have the uniform convergence property

Pr ( dh € Z . |L(h) — Lg(h)| > 8) (we want to show it’s < 0)
S

— };r (S = U (S : |Ly(h) — Lo,(h)| > g}) < Z nggn (1Lg(h) — Lgy(h)| > €)

he# heH
2 2 2 9
assume A <?¢(h,z7) <A+ B < Z 2 exp (—Ene ) = 2|# |exp (—Ene )
heH
0 B2
2 ) . 2 9) .
21 lexp (~gne?) <6 it —gone® <log s iff n> 2 [log2I]) +log 4

2B?

ERM agnostically PAC-learns # with n > — [log(Z\%D + log %] samples
£
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Finite # have the uniform convergence property

Pr ( dh € Z . |L(h) — Lg(h)| > 8) (we want to show it’s < 0)
S

— };r (S = U (S : |Ly(h) — Lo,(h)| > g}> < Z nggn (1Lg(h) — Lgy(h)| > €)

hed heZ

assume A <?¢(h,z7) <A+ B < Z 2 exp (—%ngﬂ) = 2| A |exp (_%HSZ)
hex

2B? 1
Equivalently: error of ERM over # is at most 4 | —— [log(Z\% ) + log g]
n

2B?

ERM agnostically PAC-learns # with n > — [log(Z\%D + log %] samples
£
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Realizable vs agnostic rates

« ERM for finite hypothesis classes, n to get excess error € w/ prob. 1 — 0,
for a loss bounded in [0,1]:

1
. Realizable: n > — (log\?f\ + log %) «L rate”
£ n

2
. Agnostic: n > — llog\%l + log %] «L_ rate”
E n

* Late in the course, we’ll (probably) see “optimistic rates”:

interpolate between the two regimes based on 1nt Lg(h)
hex
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Summary

PAC learnability: realizable, agnostic, improper
Finite classes are PAC learnable, both in realizable and agnostic settings
e but rate is different

Uniform convergence of L¢(h) to Lg,(h) over Z
» Key tool: Hoeffding bound (a concentration inequality)

Next time: choosing # ; what about infinite hypothesis classes?
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