
CPSC 532D — STATISTICAL LEARNING THEORY

Danica J. Sutherland

University of British Columbia, Vancouver

This is not written to be read standalone; it’s a reference to look at after class.
This version was compiled on November 16, 2022.

contents

1 Setup 2

2 PAC learning and finite hypothesis classes 3
2.1 Realizable finite hypothesis classes 3
2.2 PAC learning . 5
2.3 Agnostic PAC learning . 5
2.4 Uniform convergence and ERM 6
2.5 ERM agnostically PAC learns finite classes 7

3 Concentration inequalities 8

4 Rademacher complexity 9
4.1 Deriving an expectation bound 9
4.2 Consequences for ERM . 11
4.3 Basic properties of Rademacher complexity 12
4.4 Talagrand’s contraction lemma 12
4.5 From Rad((ℓ ◦ H|)S) to Rad(H|S) 14
4.6 Complexity of linear classes . 14
4.7 Binary classifiers with 0-1 loss 15
4.8 Finite sets . 16

5 No Free Lunch 17

1

1. setup

6 VC dimension 20
6.1 Examples of computing VC dimension 20
6.2 Growth function bounds based on VC dimension (Sauer-Shelah) 23
6.3 VC dimension and generalization 25
6.4 High-probability bounds for generalization 25
6.5 The fundamental theorem of statistical learning 28

7 SRM and Nonuniform Learnability 29
7.1 Structural Risk Minimization 29
7.2 Nonuniform learnability . 31
7.3 SRM based on Rademacher complexity 32
7.4 Singleton Classes . 32
7.5 Minimum Description Length 33

8 Consistency 34

9 Linear classifiers and Margins 34
9.1 Surrogate losses . 35
9.2 Analysis with ramp loss . 36
9.3 Hard SVMs and margin maximization 37
9.4 Hinge loss and Soft SVM . 38
9.5 Hard SVM duality . 41
9.6 Soft SVM duality . 42
9.7 Aside (not in class): margin analysis 44

Large parts of this document are heavily inspired by the books of Shalev-
Shwartz and Ben-David [SSBD] and Mohri, Rostamizadeh, and Talkwalkar
[MRT] as well as the lecture notes of Telgarsky [Tel].

1 setup
Lecture 1
September 7, 2022

Our default learning problem is as follows:

• We have a data distribution D over some domain Z. For supervised
learning, this is often (but not always) actually a product space Z = X ×Y
of (x, y) pairs, where x is an input object (e.g. an image) and y is a label
(e.g. whether the image contains a dog).

• We have n independent and identically distributed samples z1, . . . , zn ∼
D.

• The sequence S = (z1, . . . , zn) ∼ Dn is our training “set.” (The terminol-
ogy is very established, but we want to allow repeats, and occasionally
we might want to look at the order.)

2

• We have a hypothesis class H; in supervised learning, this is often a set
of predictors h : X → Ŷ , a space of predictions. (We might have Ŷ = Y ,
but we also might have binary labels Y = {0,1} but make predictions
with a confidence level in Ŷ = [0, 1].)

• We have a loss function ℓ : H× Z → R. In supervised learning, this often
takes the form ℓ(h, (x, y)) = λ(h(x), y) for some λ : Ŷ × Y → R. Some
common examples:

– Zero-one loss: λ(ŷ, y) = 1(ŷ , y), usually used for Y = Ŷ a discrete
set of labels. This corresponds to one minus the accuracy of a
predictor (A1 Q2b). The function 1 returns one

if its boolean argument is
true, and zero if not.– Logistic loss: λ(ŷ, y) = log(1 + exp(−ŷy)) for Ŷ = R, Y = {−1,1}.

This loss → 0 if ŷ → ∞y (very confident in the right direction),
is log 2 if ŷ = 0 (a totally ambiguous prediction), and → ∞ if
ŷ → −∞y (very confident in the wrong direction).

– Square loss: λ(ŷ, y) = 1
2 (ŷ − y)2. (Sometimes the 1

2 isn’t included.)

– See assignment 1 question 2 for some more options.

• LD(h) = Ez∼D ℓ(h, z) is called the risk, the population loss, the true loss,
etc.

• LS(h) = 1
n

n∑
i=1

ℓ(h, zi) is called the empirical risk, the sample loss, etc.

• A learning algorithm A is a function that takes in a sample S and returns
a hypothesis. Ideally, one with low risk.

• The most common learning algorithm we’ll think about is empirical risk
minimization: ERM(S) ∈ arg minh∈H LS(h). (If there are ties, by default
we think of the algorithm returning an arbitrary choice.) The returned
hypothesis, ERM(S) which we will also often denote ĥS, is called an
empirical risk minimizer (“an ERM”). If H is infinite, there might

be not be a minimizer; we
usually won’t worry about
this explicitly, but basically
everything we talk about
could be generalized to ap-
proximate minimizers.

Choosing an appropriate hypothesis class H is important: if it’s too small,
you’ll never be able to learn the pattern you’re looking for, but if it’s too large,
you’ll overfit and pick one that seems good by chance. Much of this course
will be about knowing when we can expect to overfit.

2 pac learning and finite hypothesis classes

2.1 Realizable finite hypothesis classes

For a nonnegative loss function, a distribution D is realizable by H if there is a
h∗ ∈ H with LD(h∗) = 0.

We’ll begin by showing that ERM succeeds at learning any finite H. Assume Lecture 2
September 14, 2022that 0 ≤ ℓ(h, z) ≤ 1, and that D is realizable by H. Note that this means that

3

2. pac learning and finite hypothesis classes

LS(h∗) = 0, although there might be other h with LS(h) but LD(h) > 0; we’ll
want to prove that if we get some such h, it can’t be too bad. That is,

Pr
S∼Dn

(LD(ĥS) > ε) ≤ Pr
S∼Dn

S ∈
⋃

h∈H : LD(h)>ε

{S : LS(h) = 0}


≤

∑
h∈H : LD(h)>ε

Pr
S∼Dn

(LS(h) = 0) by a union bound

=
∑

h∈H : LD(h)>ε

Pr
S∼Dn

(∀i ∈ [n].ℓ(h, zi) = 0)

=
∑

h∈H : LD(h)>ε

n∏
i=1

Pr
zi∼D

(ℓ(h, zi) = 0)

=
∑

h∈H : LD(h)>ε

(
Pr
z∼D

(ℓ(h, z) = 0)
)n

.

Now, let p0(h) = Prz∼D(ℓ(z, h) = 0). We know that

LD(h) = p0(h) × 0 + (1 − p0(h)) × E
z

[ℓ(z, h) | ℓ(z, h) > 0]︸ ︷︷ ︸
≤1

.

Thus, if LD(h) > ε, we must have p0(h) < 1 − ε, and so

Pr
S∼Dn

(LD(ĥS) > ε) ≤
∑

h∈H : LD(h)>ε

(1 − ε)n

= |h ∈ H : LD(h) > ε| (1 − ε)n

≤ |H| (1 − ε)n

≤ |H| exp(−εn)

where the last line used that 1 − t ≤ 1 − exp(−t).

Thus, we’ve shown that:

• The probability of ERM with n samples having error more than ε is at
most |H| exp(−εn).

• With probability at least 1 − δ, the error of ERM with n samples is at
most 1

n

[
log |H| + log 1

δ

]
.

• If we have at least 1
ε

[
log |H| + log 1

δ

]
samples, the error of any ERM is at

most ε with probability at least 1 − δ.

4

2.2. pac learning

2.2 PAC learning

This last form shows that ERM is probably approximately correct. That is, there
might be some samples S where we just get unlucky and can’t really learn
well; we allow that to happen a δ fraction of the time. Otherwise, though, we
want to be approximately correct, i.e. have a small loss.

2.1 definition. Let the loss ℓ(h, z) be almost surely nonnegative. An algorithm This definition, more or less,
was introduced by Valiant
[Val84].A (realizably) PAC learns H if there exists a function n : (0, 1)2 → N such that,

for every ε, δ ∈ (0,1), for every D over Z which is realizable by H, for any
n ≥ n(ε, δ) we have that

Pr
S∼Dn

(LD(A(S)) > ε) < δ.

If A runs in time polynomial in 1/ε, 1/δ, n, and some notion of the size of h∗,
then we say that A efficiently PAC learns H. We won’t worry much about

computational complexity
in this course, but be aware
that some authors use “PAC
learning” to mean what we
called efficient PAC learn-
ing. Note that there are hy-
pothesis classes which are
PAC learnable but not ef-
ficiently PAC learnable un-
der standard complexity as-
sumptions; the canonical ex-
ample is learning three-term
boolean clauses in disjunc-
tive normal form. Section
8.2 of [SSBD] overviews
this example; Kearns and
Vazirani [KV94, Section
1.4] explain it more fully.

2.2 definition. A hypothesis class H is PAC learnable if there exists an algo-
rithm A which PAC learns H.

Note that this learning should work for any distribution D, with a number of
samples totally independent of what distribution nature has chosen for us
(as long as it’s realizable): a very worst-case kind of notion. We’ll talk about
distribution-dependent notions of learning later in the course.

Finite classes can do interesting things. In class, we talked about an example
of learning Boolean conjunctions on d variables, hypotheses of the form “c
and not d and g,” and defined a natural ERM algorithm (the most restrictive
clause consistent with all the positive samples). There are at most 3d such
conjunctions; so our result above implies that ERM has an error rate at most
d
n log 3

δ
.

In practice, every hypothesis class we can represent on a computer is also
finite. But those classes are really big, so bounds of that form tend to be poor,
but they can be useful to keep in mind. (They do absolutely come up as a
component of proving more advanced types of bounds.)

2.3 Agnostic PAC learning

We may not like the realizability assumption; in particular, it can’t handle any
supervised learning problem where more than y is possible for a given x.

2.3 definition. An algorithm A agnostically PAC learns H if there exists a
function n : (0,1)2 → N such that, for every ε, δ ∈ (0,1), for every D over Z,

5

2. pac learning and finite hypothesis classes

for any n ≥ n(ε, δ) we have that

Pr
S∼Dn

(
LD(A(S)) > inf

h∈H
LD(h) + ε

)
< δ.

That is, A(S) can get arbitrarily close to the best possible error in H.

If A runs in time polynomial in 1/ε, 1/δ, n, and some notion of the size of h∗,
then we say that A efficiently agnostically PAC learns H.

2.4 definition. A hypothesis classH is agnostically PAC learnable if there exists
an algorithm A which agnostically PAC learns H.

The term infh∈H LD(H) depends on your choice of hypothesis class. One thingIf you don’t know what a
measurable function is, just
think “any function”; we’re
not going to be overly con-
cerned with the difference in
this class.

we can say is that it is at least as big as the Bayes error infh measurable LD(h),
which is a measure of the “inherent noise” in the distribution D. See A1 Q3
for more on the Bayes error.

We can also do improper PAC learning, which allows our learning algorithmWe won’t talk about im-
proper learning much in
this course, but it’s good to
know the term.

to select a hypothesis from H′ that competes with the best hypothesis from
H. For example, you might want to show that your neural network learner is
able to learn any quadratic target function.

2.4 Uniform convergence and ERM

In the argument of Section 2.1, we knew that h∗ would achieve the best
possible loss of 0; our only worry was that a bad hypothesis might also have
zero empirical risk. In the agnostic setting, that’s no longer true: there’s noise,
so the best hypothesis h∗ (if there is one. . .) might not get the minimal error.
But, hopefully, LS(h) will be reasonably close to LD(h).

In particular, assume that LS(ĥS) ≥ LD(ĥS) − ε (ĥS doesn’t seem way better
than it really is), and also that LS(h∗) ≤ LD(h∗) + ε for any fixed hypothesis h∗.Remember we don’t assume

there exists some best h∗
anymore. This kind of
bound will often take an ar-
bitrary comparator, which –
since it was arbitrary – we
can use to argue that, say,
LD(ĥS) ≤ infh∈H LD(H) +
2ε.

If so, then we have that

LD(ĥS) ≤ LS(ĥS) + ε ≤ LS(h∗) + ε ≤ LD(h∗) + 2ε, (2.1)

so ĥS is not much worse than h∗. The second inequality here used that the
ERM ĥS minimizes the empirical risk, and so by definition LS(ĥS) ≤ LS(h∗).

Let’s think about the requirement LS(h∗) ≤ LD(h∗) + ε first. We can do this
with the following lemma, which we’ll prove shortly:

2.5 lemma. If the loss ℓ(h, z) is almost surely bounded in [a, b], then for any fixed

6

2.5. erm agnostically pac learns finite classes

hypothesis h:

Pr
S∼Dn

LS(h) ≤ LD(h) + (b − a)

√
log(1/δ)

2n

 ≥ 1 − δ

Pr
S∼Dn

LS(h) ≥ LD(h) − (b − a)

√
log(1/δ)

2n

 ≥ 1 − δ

Pr
S∼Dn

|LS(h) − LD(h)| ≤ (b − a)

√
log(2/δ)

2n

 ≥ 1 − δ.

So, that’s no real worry.

But, we can’t just apply this lemma to ĥS, because which hypothesis is the
ERM depends on the whole sample. What we can do, though, is apply it
to every hypothesis h ∈ H. Then it’ll have to hold for ĥS, since it held for
everything. This is called uniform convergence, and while it’s maybe a little
“brute force,” it underpins a lot of statistical learning theory.

Another way to write this, that’s going to be natural for infinite hypothesis
classes as well as finite ones, is to say that

sup
h∈H

LD(h) − LS(h) ≤ ε.

If this holds with high probability, and we apply Lemma 2.5 for the other
direction for h∗, then we can apply the argument of (2.1) to say that LD(ĥS) is
not too much worse than LD(h∗) with high probability.

2.5 ERM agnostically PAC learns finite classes Lecture 3
September 21, 2022

So, to show that ERM agnostically PAC learns a finite H, all we have to do is
plug in Lemma 2.5 for each h ∈ H. There are multiple ways we can do this,
but one way is to divide our error probability δ equally into |H|+ 1 parts, since
we’ll do a lower bound for |H| hypotheses and an upper bound for one more.
Then we have that

∀h ∈ H. LS(h) ≥ LD(h) − (b − a)

√
1

2n
log
|H| + 1

δ

and LS(h∗) ≤ LD(h∗) + (b − a)

√
1

2n
log
|H| + 1

δ
,

which, plugging into (2.1), gives us that with probability at least 1 − δ,

LD(ĥS) ≤ LD(h∗) + (b − a)

√
2
n

log
|H| + 1

δ
.

7

3. concentration inequalities

We can easily convert to the sample complexity form used by PAC learning:

ERM agnostically PAC learns H with n(ε, δ) = 2(b−a)2

ε2 log |H|+1
δ

.

3 concentration inequalities

We’ll now prove Lemma 2.5, and learn a bunch of useful stuff along the way.

3.1 definition. A random variable X with mean µ = E[X] is called sub-
Gaussian with variance parameter σ ≥ 0, written X ∈ SG(σ), if E[eλ(X−µ)] ≤
e

1
2λ

2σ2
for all λ ∈ R.

We motivated this definition by noting that a Gaussian N (µ, σ2) is SG(σ).

Notice that if σ1 < σ2, then anything that’s SG(σ1) is also SG(σ2).

3.2 proposition (Hoeffding’s lemma). A real-valued random variable bounded
in [a, b] is SG

(
b−a

2

)
.

You’d be able to follow the
proof, it’s just a little messy
and I don’t think it’s all
that insightful or interest-
ing. Wainwright [Wai19]
actually has a proof that
only shows SG(b − a) that
I do think is pretty neat,
though – see his Examples
2.3 and 2.4.

We didn’t prove this in class; you can check out a proof in Lemma B.6 of Shalev-
Shwartz and Ben-David [SSBD] or Lemma D.1 of Mohri, Rostamizadeh, and
Talkwalkar [MRT].

3.3 proposition. If X1 ∈ SG(σ1) and X2 ∈ SG(σ2) are independent, X1 + X2 ∈
SG(

√
σ2

1 + σ2
2).

Proof. E[eλ(X1+X2−E[X1+X2])] = E[eλ(X1−E X1)]E[eλ(X2−E X2)] ≤ e
1
2λ

2σ2
1 e

1
2λ

2σ2
2 =

e
1
2λ

2
(√

σ2
1+σ2

2

)2

.

3.4 proposition. If X ∈ SG(σ), then aX ∈ SG(|a| σ) for any a ∈ R.

Proof. E[eλ(aX−E[aX])] = E[e(aλ)(X−E X)] ≤ e
1
2 (aλ)2σ2

= e
1
2λ

2(|a|σ)2
.

3.5 proposition (Markov’s inequality). If X is a nonnegative-valued random
variable, Pr(X ≥ t) ≤ 1

t E X.

Proof. Take expectations of both sides of t1(X ≥ t) ≤ X.

3.6 proposition (Chernoff bound for sub-Gaussians). If X ∈ SG(σ), then
Pr(X ≥ E X + t) ≤ exp

(
− t2

2σ2

)
for t ≥ 0.

Proof. Note that Pr(X ≥ E X + t) = Pr(exp(λ(X−E X)) ≥ exp(λt)) for any λ ∈ R.
Applying Markov’s inequality gives an upper bound of exp(−λt)E exp(λ(X −
E X)) ≤ exp(1

2λ
2σ2 − λt). Plug in λ = t/σ2.This isn’t some magical

choice of λ; it’s just what
minimizes the bound, as you
can see by setting the deriva-
tive λσ2 − t to zero.

8

Since −X is also SG(σ) by Proposition 3.4, the same bound holds for a lower
deviation Pr(X ≤ E X − t). A union bound then immediately gives Pr(

∣∣∣X − µ∣∣∣ ≥
t) ≤ 2 exp

(
− t2

2σ2

)
.

3.7 proposition (Hoeffding). If X1, . . . , Xn are independent and each SG(σi) with
mean µi , for all ε ≥ 0

Pr

1
n

n∑
i=1

Xi ≥
1
n

n∑
i=1

µi + ε

 ≤ exp

−
n2ε2

2
n∑
i=1

σ2
i

 .

Proof. By Propositions 3.3 and 3.4, 1
n

n∑
i=1

Xi ∈ SG
(

1
n

√
n∑
i=1

σ2
i

)
. Then apply

Proposition 3.6.

If the Xi have the same mean µi = µ and parameter σi = σ, this becomes

Pr

1
n

n∑
i=1

Xi ≥ µ + ε

 ≤ exp
(
− nε

2

2σ2

)
, (Hoeffding)

which can also be stated as that, with probability at least 1 − δ,

1
n

n∑
i=1

Xi ≤ µ + σ

√
2
n

log
1
δ
. (Hoeffding’)

Going back now to what we were trying to prove: Lemma 2.5 follows from
combining (Hoeffding’) with Proposition 3.2 to the variables ℓ(h, zi).

4 rademacher complexity
Lecture 4
September 26, 2022

Although everything we do in practice is finite, analyzing it that way both
gives us bad bounds and doesn’t really give us much insight about what’s
going on. So, let’s try to study infinite hypothesis classes.

4.1 Deriving an expectation bound

Specifically, let’s just look at the worst-case generalization gap suph∈H LD(h) −
LS(h) and try to bound that somehow. Although eventually we’ll get a high-
probability bound, let’s start by analyzing its mean.

To start, note that

E
S∼Dn

sup
h∈H

LD(h)−LS(h) = E
S∼Dn

sup
h∈H

E
S′∼Dn

LS′ (h)−LS(h) ≤ E
S∼Dn

S′∼Dn

sup
h∈H

LS′ (h)−LS(h)

9

4. rademacher complexity

where we first used that LS is unbiased (A1 Q2a) to introduce a “ghost sam-
ple” S′ = (z′1, . . . , z

′
n). Then we used the general fact that supy EX fy(X) ≤This inequality should be

intuitive, once you think
about it: if the optimiza-
tion is allowed to see the
particular realization of the
randomness, it can “overfit”
better than if it has to oper-
ate on the average over X.

EX supy fy(X): it’s true for every realization of X and choice of y that fy(x) ≤
supy fy(X), so take the expectation of both sides and then the sup over y.

This last form is a natural notion of generalization: it’s asking, say, how much
it’s possible to overfit to a test set, rather than on the distribution as a whole.

Continuing, we’re going to think about swapping points between the two sets.

Specifically, let ϵi ∈ {−1, 1} for i ∈ [n], and define (ui , u′i) =

(zi , z′i) if εi = 1

(z′i , zi) if εi = −1
.Watch out that ϵi has noth-

ing to do with ε; we’ll call
the vector (ϵ1, . . . , ϵn) by ϵ.
Unfortunate, but no option
is great here.

Then, for any choice of ϵ = (ϵ1, . . . , ϵn), we have

ℓ(h, z′i) − ℓ(h, zi) = ϵi(ℓ(h, u′i) − ℓ(h, ui)).

Because this holds for any arbitrary choice of sign ϵi , it also holds if we pick
them at random from a Rademacher distribution Unif(±1), a distribution
that’s 1 half the time and −1 the other half. Then we have that

E
S,S′∼Dn

sup
h∈H

LS′ (h) − LS(h) = E
S,S′∼Dn

sup
h∈H

1
n

∑
i

[ℓ(h, z′i) − ℓ(h, zi)]

= E
ϵ

E
S,S′∼Dn

E
U,U′

sup
h∈H

1
n

∑
i

ϵi[ℓ(h, u′i) − ℓ(h, ui)]

∣∣∣∣∣∣∣ S, S′ , ϵ

 .
Here we’re writing U = (u1, . . . , un) and U′ = (u′1, . . . , u

′
n) as random variables,

but conditional on S, S′, and ϵ, they’re actually deterministic. Thus, the term
inside the sup is literally identical to what it was before, just written in a more
complicated way.

Now, let’s rearrange the outer expectations to swap S and U. The marginalThis is guaranteed possible
by Fubini’s theorem; for a
nonnegative loss, it’s fine as
long as LD(h) exists. (For a
negative loss, it’s enough for
Ez |ℓ(h, z)| to exist.)

distribution of U and U′ are just exactly Dn, each a sequence of n iid sam-
ples from D, and ϵ | U, U′ is still just random signs. Finally, S and S′ are
deterministic given ϵ and U, U′. This gives us

E
S,S′∼Dn

sup
h∈H

LS′ (h) − LS(h) = E
U,U′∼Dn

E
ϵ
E

S,S′

sup
h∈H

1
n

∑
i

ϵi[ℓ(h, u′i) − ℓ(h, ui)]

∣∣∣∣∣∣∣ U, U′ , ϵ

 .
But. . . S and S′ no longer appear inside the expectation at all, so we can just
drop that expectation, then keep going:This proof technique of in-

troducing a random sign is
called symmetrization.

10

4.2. consequences for erm

E
S,S′∼Dn

sup
h∈H

LS′ (h) − LS(h) = E
U,U′∼Dn

E
ϵ

sup
h∈H

1
n

∑
i

ϵi[ℓ(h, u′i) − ℓ(h, ui)]

≤ E
U,U′∼Dn

E
ϵ

sup
h∈H

1
n

∑
i

ϵiℓ(h, u′i) + sup
h′∈H

1
n

∑
i

(−ϵi)ℓ(h, ui)


= E

U,U′∼Dn
E
ϵ

sup
h∈H

1
n

∑
i

ϵiℓ(h, u′i) + E
U,U′∼Dn

E
ϵ

sup
h′∈H

1
n

∑
i

ϵiℓ(h, ui)

= 2 E
S,S′∼Dn

E
ϵ

sup
h∈H

1
n

∑
i

ϵiℓ(h, zi)

=: 2 E
S,S′∼Dn

Rad ((ℓ ◦ H)|S)

using that supx f (x) + g(x) ≤ supx f (x) + supx′ g(x′), that −ϵi has the same
distribution as ϵi , and then renaming U to S at the end for comfort.

We’ve bounded the expected generalization gap by twice the expected Rademacher
complexity of the set (ℓ ◦ H)|S = {(ℓ(h, z1), . . . , ℓ(h, zn)) : h ∈ H} ⊆ Rn. The nota-
tion F |S denotes {(f (z1), . . . , f (zn)) : f ∈ F }, and ℓ ◦ H = {z 7→ ℓ(h, z) : h ∈ H}
is a set of functions from Z to R.

4.1 definition. The Rademacher complexity of a set A ⊆ Rn is given by

Rad(A) = E
ϵ∼Unif(±1)n

sup
a∈A

1
n

n∑
i=1

ϵiai = E
ϵ∼Unif(±1)n

sup
a∈A

ϵ · a
n

.

One way to think of it is a measure of how much a set A extends in the
direction of a random binary vector. Rad(F |S) measures how well F can align
with random signs on the particular set S, or equivalently how well it can
separate a random subset of S from the rest.

Nothing in this derivation depended on the particular choice of ℓ ◦ H, and so
we’ve proved:

4.2 theorem. For any function class F of functions f : Z → R, and any distribu-
tion D over Z with S = (z1, . . . , zn) ∼ Dn, we have

E
S∼Dn

sup
f ∈F

 E
z∼D

[f (z)] − 1
n

n∑
i=1

f (zi)

 ≤ 2 E
S∼Dn

Rad(F |S).

4.2 Consequences for ERM

Since ES suph LD(h) − LS(h) ≤ 2ES Rad((ℓ ◦ H)|S), it holds in particular that

E
S

[
LD(ĥS) − LS(ĥS)

]
≤ 2E

S
Rad((ℓ ◦ H)|S).

11

4. rademacher complexity

We also have that LS(ĥS) ≤ LS(h∗), so ES LS(ĥS) ≤ ES LS(h∗) = LD(h∗); plugging
this in gives

E
S

LD(ĥS) ≤ LD(h∗) + 2E
S

Rad((ℓ ◦ H)|S).

If we have for some D, nonnegative loss ℓ, andH that ES∼Dn Rad((ℓ◦H)|S)→ 0
as n→∞, this then implies that ERM gets probably approximately the best
hypothesis from H on D; see A2 Q1(b).

4.3 Basic properties of Rademacher complexity

First, note that

Rad({a}) =
1
n
E
ϵ
ϵ ◦ a = 0 :

no matter the vector, a singleton set has no complexity. (In terms of general-
ization, this makes sense: any given hypothesis is equally likely to over- or
under-estimate the risk.)

On the other extreme, for the vertices of the hypercube

Rad({−1, 1}n) =
1
n
E
ϵ

sup
a

ϵ · a =
1
n
E
ϵ
ϵ · ϵ = 1.

This is also the complexity of the function class of all possible {−1, 1}-valued
functions, as long as S has no duplicates. This also makes sense: it’s the
maximally complex bounded set.

Letting cA = {ca : a ∈ A} for any c ∈ R, we have that

Rad(cA) =
1
n
E
ϵ

sup
a∈A

ϵ · (ca) =
1
n
E
ϵ

sup
a∈A
|c| (sign(c)ϵ) · a = |c|Rad(A)

since sign(c)ϵ has the same distribution as ϵ.

For A + B = {a + b : a ∈ A, b ∈ B} we get

Rad(A+B) =
1
n
E
ϵ

sup
a∈A
b∈B

ϵ ·(a+b) =
1
n
E
ϵ

sup
a∈A

ϵ ·a+
1
n
E
ϵ

sup
b∈B

ϵ ·b = Rad(A)+Rad(B).

Combined with the fact that Rad({a}) = 0, this means that translating a set by
a constant vector does not change its complexity.

4.4 Talagrand’s contraction lemma

The following lemma is very useful for relating the complexity of ℓ ◦ H to that
of H, as well as for bounding the complexity of hypothesis classes that are
based on compositions (like neural networks).A 1-Lipschitz function is

sometimes called a contrac-
tion, because it doesn’t in-
crease the distance between
any points, but instead
(usually) contracts at least
some of those distances.

4.3 definition. A function f : X → Y is ρ-Lipschitz with respect to the ∥·∥X
and ∥·∥Y norms if for all x, y ∈ X ,

∥∥∥f (x) − f (y)
∥∥∥X ≤ ρ

∥∥∥x − y∥∥∥Y . The smallest ρ

12

4.4. talagrand’s contraction lemma

for which this inequality holds is the Lipschitz constant, denoted ∥f ∥Lip.

The condition for a function from R to R is
∣∣∣f (x) − f (y)

∣∣∣ ≤ ρ
∣∣∣x − y∣∣∣. If f is

differentiable, then ∥f ∥Lip = supx∈R |f ′(x)|. The canonical example of a non-
differentiable function that is still Lipschitz is the absolute value function.

4.4 lemma (Talagrand). Let φ : Rn → Rn be given by φ(a) = (ϕ1(a1), . . . ,ϕn(an)),
where each φi is ρ-Lipschitz. Then

Rad(φ ◦ A) = Rad({φ(a) : a ∈ A}) ≤ ρRad(A).
Lecture 5
September 28, 2022

We’ll prove this by proving the following special case:

4.5 lemma. Let ϕ : R → R be 1-Lipschitz. Then Rad({(ϕ(a1), a2, . . . , an) : a ∈
A}) ≤ Rad(A).

To reduce to this case: first, we can change from ρ-Lipschitz to 1-Lipschitz
with the function φ′(a) = 1

ρ
φ(a). Then, apply Lemma 4.5 n times in order to

apply ϕ1, ϕ2, . . . , ϕn. Because ρ = 1, this doesn’t blow up the right-hand side.

Proof of Lemma 4.5. We have

Rad({(ϕ(a1), a2, . . . , an) : a ∈ A}) =
1
n
E
ϵ

sup
a

ϵ1ϕ(a1) + ϵ2: · a2:

=
1
2
E
ϵ2:

sup
a∈A

ϕ(a1) + ϵ2: · a2: +
1
2
E
ϵ2:

sup
a′∈A
−ϕ(a′1) + ϵ2: · a′2:

=
1
2
E
ϵ2:

sup
a,a′∈A

ϕ(a1) − ϕ(a′1) + ϵ2: · (a2: + a′2:).

Now, ϕ(a1) − ϕ(a′1) will always be nonnegative at or near the supremum: if it
were negative, we could simply swap a and a′ to make that term positive and
not affect the rest of the function. Thus we can write

Rad({(ϕ(a1), a2, . . . , an) : a ∈ A}) =
1
2
E
ϵ2:

sup
a,a′∈A

∣∣∣ϕ(a1) − ϕ(a′1)
∣∣∣ + ϵ2: · (a2: + a′2:)

≤ 1
2
E
ϵ2:

sup
a,a′∈A

∣∣∣a1 − a′1
∣∣∣ + ϵ2: · (a2: + a′2:)

=
1
2
E
ϵ2:

sup
a,a′∈A

a1 − a′1 + ϵ2: · (a2: + a′2:),

using that ϕ is 1-Lipschitz and then the same argument again to remove the
absolute value. Then, split up the supremum again and turn it back into

Rad({(ϕ(a1), a2, . . . , an) : a ∈ A}) ≤ Rad(A).

13

4. rademacher complexity

4.5 From Rad((ℓ ◦ H|)S) to Rad(H|S)

Note: If S = (z1, . . . , zn) = ((x1, y1), . . . , (xn, yn)), then I’m using Sx to denote
(x1, . . . , xn).

Suppose that ℓ is of a form such that ℓ(h, (x, y)) = λy(h(x)), where now I’m
using a subscript for y instead of two arguments for reasons that’ll be clear
in a second. We can think of (ℓ ◦ H)|S as applying φ(a) = (λy1

(a1), . . . , λyn(an))
to the vector (h(x1), . . . , h(xn)) = h|Sx

. Thus, if λy is ρ-Lipschitz for each y,
Talagrand’s lemma implies that Rad((ℓ ◦ H)|S) ≤ ρRad(H|Sx

).

Dealing with the complexity of the hypothesis class directly, rather than of
the loss function class, is often more intuitive: “how well can my hypothesis
class fit random signs”?

Many loss functions for continuous predictions are just “naturally” Lipschitz.
For example, absolute value loss (as in mean absolute error regression) λy(ŷ) =∣∣∣y − ŷ∣∣∣, or logistic loss λy(ŷ) = log(1 + exp(−yŷ)), are each 1-Lipschitz:

∣∣∣∣∣ d
dŷ

log(1 + exp(−yŷ))
∣∣∣∣∣ =

∣∣∣∣∣ 1
1 + exp(−yŷ)

exp(−yŷ)(−y)
∣∣∣∣∣

=
∣∣∣∣∣ exp(−yŷ)
1 + exp(−yŷ)

×
exp(yŷ)
exp(yŷ)

∣∣∣∣∣ ∣∣∣−y∣∣∣ =
∣∣∣∣∣ 1
1 + exp(yŷ)

∣∣∣∣∣ ≤ 1

This means that, for example, we can get a generalization bound for the loss
of logistic regression if we can bound ES Rad(H|Sx

). We’ll do this next.

4.6 Complexity of linear classes

If you do classic, unregularized linear regression, you often overfit, but if you
regularize the regression so that ∥w∥ is not too big, you generally do much
better. The usual form of regularization doesn’t quite fit into our hypothesis
class framework – we’ll do some more direct regularization-based analyses
soon in the course – but it turns out to be essentially equivalent to doing ERM
with the logistic loss and a hypothesis class like

HB = {x 7→ ⟨w, x⟩ : ∥w∥ ≤ B},

the set of linear functions with bounded norm. We can bound that complexity
directly as follows:

n · Rad(H|Sx
) = E

ϵ
sup
∥w∥≤B

∑
i

ϵi⟨w, xi⟩

= E
ϵ

sup
∥w∥≤B

⟨w,
∑
i

ϵixi⟩

14

4.7. binary classifiers with 0-1 loss

≤ E
ϵ

sup
∥w∥≤B

∥w∥

∥∥∥∥∥∥∥∑i

ϵixi

∥∥∥∥∥∥∥ (Cauchy-Shwartz)

= BE
ϵ

∥∥∥∥∥∥∥∑i

ϵixi

∥∥∥∥∥∥∥
≤ B

√√√√
E
ϵ

∥∥∥∥∥∥∥∑i

ϵixi

∥∥∥∥∥∥∥
2

((E T)2 ≤ E T2)

= B
√
E
ϵ

∑
ij

ϵiϵj⟨xi , xj⟩

= B
√√√√√∑

i

E[ϵ2
i︸︷︷︸

1

] ∥xi∥2 +
∑
i,j

E
ϵ

[ϵiϵj]︸ ︷︷ ︸
0

⟨xi , xj⟩.

We can rewrite this final inequality as

Rad(H|Sx
) ≤ B
√
n

√
1
n

∑
i

∥xi∥2,

which depends on the particular S that you see. To avoid dealing with that,
there are two typical routes.

One is to assume that D is such that ∥x∥ ≤ M almost surely, something often
true in practice. This would imply that Rad(H|Sx

) ≤ BM/
√
n almost surely.

The other is to write This only works for the av-
erage Rademacher complex-
ity, which is the only thing
we’ve seen to care about yet,
but in some settings you
do want a high-probability
bound on Rad(H|Sx) rather
than an average-case one.

E
S

Rad(H|Sx
) ≤ B
√
n
E
S

√
1
n

∑
i

∥xi∥2 ≤
B
√
n

√
E
x
∥x∥2. (4.1)

This allows for broader data distributions, as long as you can bound E ∥x∥2:
e.g. you can handle Gaussians much more easily.

In either case, this means we’ve shown an average excess error bound for
logistic regression and mean-absolute-error regression with a rate of O(1/

√
n),

4.7 Binary classifiers with 0-1 loss

It’s not yet obvious how to handle binary classifiers, though. It turns out you
can do this with Talagrand’s lemma in the same way: if h(x) ∈ {−1,1} and
y ∈ {−1, 1}, then the 0-1 loss is

λy(ŷ) =

0 ŷ = y

1 ŷ , y.

15

4. rademacher complexity

The trick is: we don’t actually care, for computing the loss, what the function
λy does for other values of ŷ. So, let’s just pick a Lipschitz function that agrees
at these points, by linear interpolation:

λy(ŷ) =


0 yŷ ≥ 1
1
2 −

1
2yŷ 0 ≤ yŷ ≤ 1

1 yŷ ≤ 1.

This has
∥∥∥λy∥∥∥Lip

= 1
2

∣∣∣y∣∣∣ = 1
2 . So, for H−1,1 of binary classifiers mapping to

{−1, 1},
Rad((ℓ0−1 ◦ H−1,1)|S) ≤ 1

2
Rad(H−1,1|Sx

). (4.2)

Note that, since Rad is “scale-sensitive”, this very much depended on the
choice to do {−1, 1} classifiers. If we have {0, 1} classifiers, we can either choose
a slightly different function which would be 1-Lipschitz, or note that we can
convert from a {0,1} classifier to a {−1,1} classifier by taking 2h − 1 and use
properties from Section 4.3 to see

Rad(H−1,1|Sx
) = Rad((2H0,1 − 1)|Sx

) = 2 Rad(H0,1|Sx
),

so that
Rad((ℓ0−1 ◦ H0,1)|S) ≤ Rad(H0,1|Sx

).

4.8 Finite sets

Notice that when we’re doing a binary classifier in particular,HSx
= {(h(x1), . . . , h(xn)) :

h ∈ H} can’t be too big: even if H is infinite, there aren’t infinitely many pos-
sible behaviours on the set Sx: there are only 2n possible bit vectors of length
n, and in fact there may be many fewer possible things that H can do on
this particular Sx. So, let’s try bounding the Rademacher complexity of an
arbitrary finite set based on its size. This is going to turn out to be a very
useful thing to do, and will form the basis of the next chunk of the course.

4.6 lemma. Let T1, . . . , Tm be zero-mean random variables that are each SG(σ),
which are not necessarily independent. Then

E
[

max
i=1,...,m

Ti

]
≤ σ

√
2 log(m).

Proof. This is exactly A2 Q2(d), with variable names changed.

4.7 lemma. If A is finite and ∥a∥ ≤ B for all a ∈ A, then

Rad(A) ≤ B
n

√
2 log |A|.

16

Proof. We have

Rad(A) =
1
n
E
ϵ

max
a∈A

n∑
i=1

ϵiai .

Each of those
n∑
i=1

ϵiai for a different a is some random variable, which all

depend on the same ϵ, but that’s fine. They each have mean zero, and since
ϵi is SG(1−(−1)

2) = SG(1) by Hoeffding’s lemma, aiϵi/n is SG(|ai | /n). These
sub-terms are independent of one another, so applying Proposition 3.3 shows
that

∑
i
aiϵi ∈ SG(∥a∥) ⊆ SG(B). Use Lemma 4.6 and divide by n.

For binary classifiers, |h(x)| ≤ 1, and so
∥∥∥h|Sx

∥∥∥ ≤ √n. Thus we get that

4.8 corollary. For binary classifiers mapping to {−1, 1},

Rad(H|Sx
) ≤

√
2
n

log
∣∣∣H|Sx

∣∣∣.
(For binary classifiers mapping to {0, 1}, it’s half that, by the scaling property
from Section 4.3.)

Plugging in the 2n bound would only get us that Rad(H|Sx
) ≤

√
2 log 2 ≈ 1.18,

which is not very interesting since the generalization gap is trivially at most 1!
But, when

∣∣∣H|Sx

∣∣∣ = o(2n), this is far more interesting; we’ll talk about this case
next week.

As an aside, if we just use that
∣∣∣H|Sx

∣∣∣ ≤ |H|, we’d get for ρ-Lipschitz losses that

E sup
h∈H

[LD(H) − LS(H)] ≤ 2ρ

√
2
n

log |H|,

which is interesting to compare to the direct (high-probability) finite-class
bound we showed in Section 2.5.

5 no free lunch
Lecture 6
October 3, 2022
Nick Harvey did this (and
the next) lecture. (Note to
self: next time I’ll switch the
order around a bit!)

So far we’ve been taking some fixed hypothesis class H, and proving upper
bounds on generalization for that class. There’s a fundamental tension in
choosing your H: too small and infh∈H LD(h) will be much bigger than the
Bayes error, so even if you generalize you “fail” because your predictor’s a
lot worse than it could be (the approximation error is large). Too large of a
H, though, and you can’t generalize: your estimation error is large. But we
haven’t yet shown any lower bounds saying that you can’t learn in certain
classes – just bounds where an upper bound doesn’t show you can learn. But Here’s one of these dumb up-

per bounds: using 0-1 loss,
LD(A(S)) ≤ 1 for any algo-
rithm A. Congrats. But this
doesn’t mean that no algo-
rithm can learn!

this doesn’t necessarily mean anything: you can always just prove some dumb
upper bound that doesn’t account for your algorithm actually working. The

17

5. no free lunch

no free lunch theorem is a lower bound establishing that no algorithm can learn
certain hypothesis classes.

For this theorem, we’re going to use the 0-1 loss for binary classifiers, Y =
{0,1}. We’re going to use slightly different notation than we did before (as
Nick did in class, and as [SSBD] does some of the time): for this proof it’s
a little more convenient to think of having a distribution Dx over X and a
deterministic labeling function f : X → Y . This implies one of our usual
joint distributions D over X × Y by just sampling x ∼ Dx and then choosing
(x, f (x)); I’ll abbreviate the loss LD(h) you’d get by constructing this joint
distribution as LDx ,f (h); note that LDx ,f (f) = 0, so if f ∈ H then this problem
is realizable.

We’d like to find a hypothesis class that is not PAC learnable (recall Defini-
tions 2.1 and 2.2). Specifically, we’re going to use the set of all functions from
X to Y , and show that no algorithm can PAC-learn this class: no matter what
number of samples you see, there is some realizable distribution D such that
LD(A(S)) is still at least 1

8 . Thus the sample complexity function n(ε, δ) can’t
be finite.

5.1 theorem (No Free Lunch). Let A be any learning algorithm based on a sample
S of n training examples, and suppose n ≤ |X | /2. Then there exists a distribution
Dx over X and a labeling function f : X → Y for which the 0-1 loss satisfies

Pr
S∼Dn

x

(LDx ,f (A(S)) ≥ 1
8) ≥ 1

7 .

Proof. To achieve this, we’re first going to pick a finite subset X̃ ⊆ X of size∣∣∣X̃ ∣∣∣ = 2n. We can pick that subset arbitrarily; at least one certainly exists, since
n ≤ |X | /2. Then we’ll pick Dx to be a discrete uniform distribution on X̃ .

Next, we’re at first going to pick a random distribution of possible labeling
functions f ; we’ll settle on a particular one later. We’ll let f : X̃ → Y assign
its labels uniformly at random: for any x ∈ X̃ , we flip an independent coin to
decide if f (x) = 0 or f (x) = 1, with equal probability.

(We can let f do whatever we like on X \ X̃ , e.g. always return 0; it doesn’t
matter to us, since Dx never samples there. We could let it be uniformly
random there too, but if X is uncountable, that way lies danger, since f won’t
be measurable.)

Now, for any sample of inputs Sx = (x1, . . . , xn), we can implicitly construct a
sample of pairs S = ((x1, f (x1)), . . . , (xn, f (xn))); call the result of the algorithm
ĥS = A(S). Its expected loss is

E
f ∼Unif(X̃→Y)

E
Sx∼Dn

x

LDx ,f (ĥS) = E
f ,SX

E
x∼Dx

1(ĥS(x) , f (x)).

Using the law of total expectation, let’s break this expectation up based on

18

whether the test x is in the training data S or not:

E
f ,S,x

1(ĥS(x) , f (x)) = E
f ,Sx

[
Pr(x < Sx)E[1(ĥS(x) , f (x)) | x < Sx]

+ Pr(x ∈ Sx)E[1(ĥS(x) , f (x)) | x ∈ Sx]
]
.

For the second term, we’re not going to worry about what the algorithm does
on the data it’s actually seen: we’ll just bound this as being at least zero.

For the first term, we know since Dx is uniform and |Sx| ≤ n that

Pr(x < Sx) =

∣∣∣X̃ \ Sx

∣∣∣∣∣∣X̃ ∣∣∣ ≥ n
2n

=
1
2
.

Also, since our labels f (x) are uniformly random and totally independent
of one another, and ĥS has no information about it, it’s just a random guess:
E[1(ĥS(x) , f (x)) | x < Sx] = 1

2 .

Combining, we know that

E
f ∼Unif(X→Y)

E
Sx∼Dn

x

LDx ,f (ĥS) ≥ 1
4 .

But, if the average over functions f of the expected loss ESx∼Dn
x

LDx ,f (ĥS) is at
least 1

4 , then there must be at least one particular function f such that the This proof technique is
known as the probabilis-
tic method, and often at-
tributed to Paul Erdős.

expected loss is at least 1
4 ! Pick one such f ; this will be the labeling function

claimed by the theorem.

We’ve shown the average loss is large, but we want to show that the loss has
high probability of being large. Now, LDx ,f (ĥS) is a random variable bounded
in [0,1], and we already know one way to bound those variables in terms
of their means: Markov’s inequality (Proposition 3.5). But, unfortunately,
Markov’s inequality bounds the probability of things being big, and we want
to bound the probability of this being small. So we’ll need to switch it around:

5.2 proposition (Reverse Markov). If Pr(X ≤ b) = 1, then Pr(X ≤ t) ≤ E[b−X]
b−t .

Proof. Apply Markov’s inequality to the random variable b − X.

Since our expected loss is bounded in [0, 1], reverse Markov gives us

Pr(LDx ,f (ĥS) ≤ 1
8) ≤

1 − E LDx ,f (ĥS)

1 − 1
8

≤
1 − 1

4
7
8

=
3
4
· 8

7
=

6
7
.

Thus, for the f and Dx we picked above,

Pr
S∼Dn

x

(
LDx ,f (ĥS) > 1

8

)
≥ 1

7
.

19

6. vc dimension

5.3 corollary. If |X | = ∞, the set of all functions from X to {0,1} is not PAC
learnable with 0-1 loss.

Proof. Suppose it were PAC learnable. Then there would be a sample complex-I used 0.1 here as an arbi-
trary number smaller than
1
8 and 1

7 , just to avoid wor-
rying about ≤ versus <. . . .

ity function n(ε, δ) such that if n ≥ n(0.1, 0.1), for any realizable D, we would
have PrS∼Dn(LD(A(S)) > 0.1) < 0.1. But this contradicts Theorem 5.1.

6 vc dimension

The space of all functions from X to {0, 1} that we were just talking about is
pretty big (2|X |, and we assumed |X | is infinite. . .). But, as we saw in the proof
of Theorem 5.1, we don’t actually care about the behaviour of f everywhere in
X ; we just need a subset of size 2n. So, we can refine this a bit.

6.1 definition. For any hypothesis class H, we say a set C ⊆ X is lunchableNick made up the name
lunchable (sort of); shat-
tered is the usual name, I
think because H can sepa-
rate anything from anything
else, i.e. it shatters it into
many pieces.

shattered by H if functions from H can achieve any labeling of C.

6.2 corollary (to Theorem 5.1). Let H be a hypothesis class shattering a set of
size |C|, and suppose that n ≤ |C| /2. Then there exists a distribution Dx over X
and a labeling function f : X → Y for which the 0-1 loss satisfies

Pr
S∼Dn

x

(LDx ,f (A(S)) ≥ 1
8) ≥ 1

7 .

Slightly generalizing the notation F |Sx
used in Section 4, we can write H|C to

represent the set of possible labelings of a finite set C ⊆ X :

H|C = {(h(c1), . . . , h(c|C|)) : h ∈ H}.

Here we’ve assumed some implicit order on C = {c1, . . . , c|C|}. A set C being

shattered by H means exactly that
∣∣∣∣H|C∣∣∣∣ = 2|C|, since there are 2|C| possible

binary labelings of C.

6.3 definition. The VC dimension of a hypothesis class H is the size of theThe letters VC are af-
ter Vladimir Vapnik and
Alexey Chervonenkis, who
developed this theory start-
ing in the 60s in the Soviet
Union (well before the defi-
nition of PAC learning); the
English translation of the
first key paper is [VC71].

largest set that can be shattered by H. If H can shatter sets of arbitrary size,
we say it has infinite VC dimension.

6.4 corollary. Learning a hypothesis class such that it achieves 0-1 error below
1/8 on every possible D requires Ω(VCdim(H)) samples.

6.1 Examples of computing VC dimensionLecture 7
October 5, 2022

It will be useful for all of our examples below to note that if you can’t shatter
any set of size n, you also can’t shatter any set of size n′ > n: if you could, then
by definition you could shatter any size-n subset of the larger set.

20

https://www.google.com/search?q=lunchables

6.1. examples of computing vc dimension

6.1.1 Threshold functions

Let ha : R → {0,1} denote a threshold function ha(x) = 1(x ≥ a), and let
H = {ha : a ∈ R}.

To start: we can shatter, say, C = {0}, because h−1(0) = 1 and h1(0) = 0. Thus We can shatter any set of
size 1, but for VC dimension
we only have to show that
we can shatter one particu-
lar set of that size.

VCdim(H) ≥ |C| = 1.

But we can’t shatter any set C of size |C| ≥ 2. Let a, b ∈ C with a < b. We
can’t get h(a) = 1 and h(b) = 0 with the same h ∈ H, since all h ∈ H are
nondecreasing. Thus C cannot be shattered, and so VCdim(H) < 2.

Thus VCdim(H) = 1.

6.1.2 Circles

For X = R2, consider H = {hr,c : r > 0, c ∈ R2} with hr,c(x) = 1(∥x − c∥ ≤ r}, the This is like the problem from
A1 Q1, but not necessarily
centred at the origin.set of indicator functions of circles.

We can shatter any set of size two, since we can draw a circle that includes
both points, one that includes either point, or one that includes neither point.

We can also shatter some sets of size three, since if we put them in an equilateral A bunch of these examples
are easier to see if you draw
them out! But I’m not tak-
ing the time to draw the
diagrams with TikZ this
time – sorry. Try drawing
them yourself, or watch the
recordings.

triangle we can pick out none, or any one, two, or all three points. (If we put
the three points in a line, we can’t pick out the two edges but not the middle –
but that’s okay, VC dimension is about the largest set you can shatter.)

Claim: we cannot shatter any set of size four, and so VCdim(H) = 3. If we
think of the points as lying roughly in a rectangle, then we can’t pick out
opposite corners without including at least one of the other points, but we
didn’t formalize this argument in class.

6.1.3 Homogeneous linear threshold functions in R2

Let X = R2 and consider H = {x 7→ sgn(wTx) : w ∈ R2}: hyperplanes passing
through the origin. We’re now using Y = {−1,1}, because it’s more natural
for linear classifiers, and we’re going to define a function sgn which is like
the sign except that sgn(0) = 1 – yeah, yeah, that’s gross but that’s what we’re
doing in this context. If you want to stick to Y = {0,1}, then instead use
1(wTx ≥ 0); that’s much nicer to write down, but more annoying to work with.

We can shatter at least some sets of size 2: e.g. {(−1, 1), (1, 1)}, we can put the
hyperplane along the x-axis to get both the same sign, or put it in along the
y-axis to get them with opposite signs.

We can’t shatter any sets of size 3. If the convex hull of the points contains Reminder: a convex hull of
a set is the smallest convex
set containing the original
set: conv(A) = {αa + (1 −
α)a′ : a, a′ ∈ A, α ∈ [0,1]}.
If you have some points
in R2, you draw straight
lines connecting the “out-
side” points to include all
the points.

the origin, then we can’t get them all with the same sign; if the hull doesn’t
contain the origin, then we can’t label them like (1, 0, 1).

So homogenous 2-d linear threshold functions have VC dimension 2.

21

6. vc dimension

6.1.4 Homogeneous linear threshold functions in Rd

6.5 proposition. Let H = {x 7→ sgn(wTx) : w ∈ Rd}. Then VCdim(H) = d.

Proof. We can shatter a set of size d: take the set {e1, . . . , ed} for ei the ith
standard basis vector, i.e. the “one-hot” vector with a 1 in the ith position and
0 everywhere else. Then we can achieve an arbitrary labeling (y1, . . . , yd) ∈
{0, 1}d by setting wi = yi : we get wTei = yi .

Now, let x1, . . . , xd+1 be a set of d + 1 points in Rd . Then they can’t be linearly

independent: there must be some β1, . . . , βd+1 such that
d+1∑
i=1

αixi = 0, with not

all the αi zero. Let I+ = {i ∈ [d + 1] : βi > 0}, I0 = {i ∈ [d + 1] : βi = 0}, and
I− = {i ∈ [d + 1] : βj < 0}.

Now, if H can shatter {x1, . . . , xd+1}, we can ask it to assign 1 to the xi with
i ∈ I+ ∪ I0, and −1 to the xi with i ∈ I−. Then we’d have

0 = wT0 = wT
d+1∑
i=1

(βixi) =
∑
i∈I+

βi︸︷︷︸
>0

wTxi︸︷︷︸
≥0

+
∑
i∈I−

βi︸︷︷︸
<0

wTxi︸︷︷︸
<0

.

I claim that the sum on the right-hand side is strictly positive, meaning we’ve
shown 0 < 0, a contradiction; thus H cannot shatter {x1, . . . , xd+1}. This is
easiest to see if I− is nonempty: those terms will all be strictly positive. It
will also be positive if there are any points in I+ with wTxi > 0. Otherwise,
the only case left is if wTxi = 0 for all i ∈ I+ and I− = {}, meaning that this wThis is the case I was com-

plaining about to Nick that
[SSBD] doesn’t touch; he
didn’t either! :(

labels all of the data points as positive. Recall that, if I− = {}, we must have∑
i∈I+

βixi = 0. Now, suppose that w̃ is some weight vector that labels all these

points as negative, w̃Txi < 0 for all i ∈ I+; this must be possible if the set is
shattered. Then we’d have

0 = w̃T0 = w̃T

∑
i∈I+

βixi

 =
∑
i∈I+

βi︸︷︷︸
>0

w̃Txi︸︷︷︸
<0

< 0,

a contradiction. Thus H cannot shatter {x1, . . . , xd+1}.

6.1.5 Inhomogeneous linear threshold functions in Rd
Nick didn’t do this in class;
I’ll come back to it soon, but
it makes more sense here in
the notes.

What about if we don’t enforce that the hyperplane passes through the origin,
H = {x 7→ sgn(wTx + b) : w ∈ Rd , b ∈ R}?

We could analyze this directly; Mohri, Rostamizadeh, and Talkwalkar [MRT,
Example 3.12] do this if you want to see it, proving something called Radon’s
Theorem that’s similar to what we showed above but a little cleaner and a
standard theorem.

But we can also reduce to the set of homogeneous linear classifiers: if we have

22

6.2. growth function bounds based on vc dimension (sauer-shelah)

d-dimensional data, we can model that as homogeneous linear classifiers on
(d + 1)-dimensional data with an extra “dummy feature” that’s always 1. The
weight w0 corresponding to that feature will just be the offset b.

Using this reduction, we can see:

6.6 proposition. For x ∈ Rd , VCdim
({
x 7→ wTx + b : w ∈ Rd , b ∈ R

})
= d + 1.

Proof. First, we can shatter the set {0, e1, . . . , ed}, which has size d + 1, like
before. We set w0 = y0/2 and wi = yi ; the y0/2 only affects the sign if all the
other weights are “off”, i.e. only on the 0 vector.

Also, we can’t shatter any set of size d + 2. If we could, then there would be
d + 2 vectors in Rd+1 shattered by the class of homogeneous thresholds; but
that class has VC dimension d + 1 by Proposition 6.5, so that’s not possible.

6.2 Growth function bounds based on VC dimension (Sauer-Shelah)

The VC dimension only talks about exact shattering, i.e.
∣∣∣∣H|S∣∣∣∣ = 2|S|. We could I’m using S instead of Sx

now just for laziness; it
should be unambiguous be-
low anyway.

imagine that there are sets that aren’t shattered, but are nearly shattered, say

e.g.
∣∣∣∣H|S∣∣∣∣ = 2|S| − 1; then the argument of a very slightly weaker no free lunch

theorem would apply, and we’d still get big sample complexity. Let’s give a
name to the worst-case number of labelings:

6.7 definition. The growth function of a hypothesis classH is ΠH(n) = maxS⊆X :|S|=n

∣∣∣∣H|S∣∣∣∣.
It turns out that the “almost 2n” growth we were worrying about doesn’t
happen: if VCdim(H) = d, then ΠH(n) = O(nd).

This is weird: the growth function is exponential for a while, being exactly 2n

up to n = d, but then it drops off to just polynomial growth.

6.8 lemma (Sauer-Shelah). Let VCdim(H) ≤ d < ∞. Then ΠH(n) ≤
d∑
i=0

(n
i

)
.

6.9 corollary. If n ≥ d = VCdim(H), then ΠH(n) ≤
(
en
d

)d
. This e is exp(1) ≈ 2.718.

We’re going to prove Lemma 6.8 as a corollary to Lemma 6.10 below, and then
finally come back to prove Corollary 6.9 by bounding binomial coefficients.

6.10 lemma (Pajor). For all finite S ⊆ X ,
∣∣∣H|S∣∣∣ ≤ ∣∣∣{T ⊆ S : T is shattered by H}

∣∣∣.
If S is shattered, both sides of the inequality are 2|S|, but otherwise it’s not
obvious that these things should be related.

23

6. vc dimension

Proof of Lemma 6.10. We’ll proceed by induction on
∣∣∣H|S∣∣∣.

Base case:
∣∣∣H|S∣∣∣ = 1. For the right-hand side, the empty set is trivially shattered

by any H, so the RHS is always at least 1 as well, and the inequality holds.

Inductive case:
∣∣∣H|S∣∣∣ ≥ 2 and the inequality holds for any T with

∣∣∣H|T∣∣∣ < ∣∣∣H|S∣∣∣.
Then, since there two distinct labelings, there must be at least one point x ∈ S
that achieves both h(x) = 1 and h′(x) = 0 for some h, h′ ∈ H. Partition H into
H+ = {h ∈ H : h(x) = 1} and H− = {h ∈ H : h(x) = 0}. Now,∣∣∣H|S∣∣∣ =

∣∣∣H+|S
∣∣∣ +

∣∣∣H−|S∣∣∣,
since the two produce disjoint labelings on S (they always disagree on x). They
also produce fewer labelings than H|S itself (there’s at least one labeling in
each), so we can apply the inductive hypothesis to each.

Defining ShatH(S) = {T ⊆ S : T is shattered by H}, we’ve shown that∣∣∣H|S∣∣∣ ≤ ∣∣∣ShatH+
(S)

∣∣∣ +
∣∣∣ShatH−(S)

∣∣∣ .
Note the right-hand side is exactly, counting up the “double-counted” sets,∣∣∣ShatH+

(S) ∪ ShatH−(S)
∣∣∣ +

∣∣∣ShatH+
(S) ∩ ShatH−(S)

∣∣∣ ;

it remains to argue that this is at most |ShatH(S)|. To see this, first note that
ShatH+

(S) ∪ ShatH−(S) ⊆ ShatH(S).

Now, consider a set T ∈ ShatH+
(S)∩ShatH−(S), so that it’s been double-counted.

Then note that T′ = T ∪ {x} is not in either ShatH+
(S) or ShatH−(S), since these

classes cannot shatter {x} and so can’t shatter a superset of {x} either. But H
can shatter T′: there’s a hypothesis in H− to achieve any desired labeling with
h(x) = 0 (since T ∈ ShatH−(S)), and likewise there’s a hypothesis in H+ for any
labeling with h(x) = 1. So T′ ∈ ShatH(S). Also, each such double-counted T
corresponds to a different T′, since we’re adding the same x to each. Thus∣∣∣ShatH+

(S) ∩ ShatH−(S)
∣∣∣ ≤ ∣∣∣∣ShatH(S) \

(
ShatH+

(S) ∪ ShatH−(S)
)∣∣∣∣ ,

and so
∣∣∣H|S∣∣∣ ≤ |ShatH(S)| as desired.

Proof of Sauer-Shelah, Lemma 6.8. To bound the number of shattered subsetsLecture 8
October 12, 2022 of S in Lemma 6.10, recall there can’t possibly be any with size larger than

d = VCdim(H); the number of sets it can shatter is thus upper-bounded by the

number of subsets of S of size at most d, which is just
d∑
i=0

(n
i

)
for n = |S|.

Proof of Corollary 6.9. We need to show that
d∑
i=0

(n
i

)
≤

(
en
d

)d
for n ≥ d. We can

24

6.3. vc dimension and generalization

do this by

d∑
i=0

(
n
i

)
≤

d∑
i=0

(
n
i

) (n
d

)d−i
multiply each term by ≥ 1

≤
n∑
i=0

(
n
i

) (n
d

)d−i
add nonnegative terms

=
(n
d

)d n∑
i=0

(
n
i

) (
d
n

)i

=
(n
d

)d (
1 +

d
n

)n
binomial theorem

≤
(n
d

)d
ed 1 + x ≤ exp(x).

6.3 VC dimension and generalization

Remember way back to (4.8), where we showed that for ±1 binary classifiers,

Rad(H|Sx
) ≤

√
2
n

log
∣∣∣H|Sx

∣∣∣.
Thus using (4.2) for the Rademacher complexity of binary classifiers and the
symmetrization result from Section 4.1,

E
S∼Dn

sup
h∈H

LD(h) − LS(h) ≤ E
√

2
n

∣∣∣H|Sx

∣∣∣.
By definition, we can bound this with the growth function:

∣∣∣H|Sx

∣∣∣ ≤ ΠH(n),
and then bound that based on the VC dimension with Corollary 6.9: if
VCdim(H) = d,

E
S∼Dn

sup
h∈H

LD(h) − LS(h) ≤
√

2d
n

[1 + log n − log d]. (6.1)

Now we’ve dropped the distribution dependence completely on the right-
hand side. To show that ERM PAC-learns H with finite VC dimension, the
only thing left to do is to turn this expectation bound into a high-probability
bound.

6.4 High-probability bounds for generalization

It turns out that, for bounded losses, any expectation bound implies a high-
probability bound. Let Φ(S) = suph∈H LD(h) − LS(h) be the worst-case general-
ization gap.

25

6. vc dimension

If we could argue that PrS(Φ(S) ≥ 0) = 1, then we could use Markov’s inequal-
ity (Proposition 3.5) to say that Φ(S) ≤ 1

δ
EΦ(S) with probability at least 1 − δ.

That condition will be true in many cases (e.g. for 0-1 loss binary classification
if H is symmetric), but the 1

δ
multiplicative rate is really bad anyway. We can

instead show a sub-Gaussian type rate, as we’ll do now, based on a new tool:
McDiarmid’s inequality.

6.11 definition. We say a function f : X n → R has bounded differences with
parameters (c1, . . . , cn) if for all i ∈ [n], we have

sup
x∈X n

sup
x(k)∈X n:∀j,i,xj=x

(i)
j

∣∣∣f (x) − f (x(i))
∣∣∣ ≤ ci .

That is, changing the ith x to something totally different can’t change the
output of f by more than ci .

6.12 proposition (McDiarmid). Let X = (X1, . . . , Xn) have independent compo-
nents, and let f have bounded differences with parameters (c1, . . . , cn). Then

Pr (f (X) ≥ E f (X) + ε) ≤ exp


−2ε2

n∑
i=1

c2
i

 Pr (f (X) ≤ E f (X) − ε) ≤ exp


−2ε2

n∑
i=1

c2
i

 .

For a proof, see Nick’s randomized algorithms class, or [MRT, Sections D.6-
D.7], or [Wai19, Section 2.2].

Solving for ε, we get that with probability at least 1− δ the deviation is at most√
1
2

n∑
i=1

c2
i log 1

δ
. In the common case where ci = c/n, this becomes c

√
1

2n log 1
δ
.

Note that if f (x) = 1
n

∑
i
xi for xi ∈ [a, b], we have bounded differences with

ci = (b − a)/n, in which case the bound becomes identical to the classical
version of Hoeffding’s inequality (Proposition 3.7 with Proposition 3.2).

For the generalization gap Φ(S),∣∣∣Φ(S) − Φ(S(i))
∣∣∣ =

∣∣∣∣∣∣sup
h∈H

[LD(h) − LS(h)] − sup
h′∈H

[LD(h′) − LS(i)(h′)]

∣∣∣∣∣∣
≤ sup

h∈H
|LS(i)(h) − LS(h)|

=
1
n

sup
h∈H

∣∣∣ℓ(h, zi) − ℓ(h, z′i)
∣∣∣

≤ b − a
n

if a ≤ ℓ(h, z) ≤ b.

26

6.4. high-probability bounds for generalization

Thus

6.13 theorem. If ℓ(h, z) ∈ [a, b], then with probability at least 1 − δ over S ∼ Dn,

sup
h∈H

LD(h) − LS(h) ≤ E
S′∼Dn

sup
h∈H

[LD(h) − LS′ (h)] + (b − a)
√

1
2n log 1

δ
. (6.2)

Thus any ERM ĥS has with probability at least 1 − δ that

LD(ĥS) − inf
h∈H

LD(h) ≤ E
S′∼Dn

sup
h∈H

[LD(h) − LS′ (h)] + (b − a)
√

2
n log 2

δ
.

Proof. We just proved the first part above. The ERM part follows from

LD(ĥS) ≤ LS(ĥS) + E
S′

sup
h∈H

[LD(h) − LS′ (h)] + (b − a)
√

1
2n log 2

δ

≤ LS(h∗) + E
S′

sup
h∈H

[LD(h) − LS′ (h)] + (b − a)
√

1
2n log 2

δ

≤ LD(h∗) + (b − a)
√

1
2n log 2

δ
+ E

S′
sup
h∈H

[LD(h) − LS′ (h)] + (b − a)
√

1
2n log 2

δ
,

using uniform convergence, the definition of ERM, and Lemma 2.5.

Plugging in Theorem 4.2 to bound the expected worst-case gap:

6.14 corollary. If ℓ(h, z) ∈ [a, b], then with probability at least 1−δ over S ∼ Dn,

sup
h∈H

LD(h) − LS(h) ≤ 2 E
S′∼Dn

Rad
(
(ℓ ◦ H)|S′x

)
+ (b − a)

√
1

2n log 1
δ
,

and any ERM ĥS has with probability at least 1 − δ that

LD(ĥS) − inf
h∈H

LD(h) ≤ 2 E
S′∼Dn

Rad
(
(ℓ ◦ H)|S′x

)
+ (b − a)

√
2
n log 2

δ
.

Plugging this together with Equations (4.2) and (6.1) gives:

6.15 corollary. For a class H of binary classifiers mapping to {−1,1} with
VCdim(H) = d and ℓ the 0-1 loss, with probability at least 1 − δ over the choice of
S ∼ Dn,

sup
h∈H

LD(h) − LS(h) ≤ E
S′∼Dn

Rad
(
H|S′x

)
+

√
1

2n log 1
δ

≤
√

2d
n

[log n + 1 − log d] +
√

1
2n log 1

δ
,

27

6. vc dimension

and hence any ERM ĥS has with probability at least 1 − δ that

LD(ĥS) − inf
h∈H

LD(h) ≤ E
S′∼Dn

Rad
(
H|S′x

)
+

√
2
n log 2

δ

≤
√

2d
n

[log n + 1 − log d] +
√

2
n log 2

δ
.

6.5 The fundamental theorem of statistical learning

For any loss function bounded in [a, b] and hypothesis classHwith VCdim(H) =
d, plugging (6.1) into (6.2) gives that with probability at least 1 − δ,Note that 1 − log d ≤ 0 for

d ≥ 3, so we can replace
that term in brackets with
just log n when d ≥ 3. sup

h∈H
LD(h) − LS(h) ≤

√
2d
n

[log n + 1 − log d] + (b − a)
√

1
2n log 1

δ
. (6.3)

As long as n
log n+1−log d > d

2ε2 and n > (b−a)2 log(2/δ)
4ε2 , we can see that the general-This log n is kind of an-

noying; you can find a big
enough n using an argu-
ment like Lemma A.1 of
[SSBD]. Better yet, you can
drop the log n using a more
advanced kind of argument
called chaining; we might
cover this later in the course.

ization gap is bounded as suph∈H LD(h) − LS(h) ≤ ε/2 with probability at least
δ/2. This n will also be large enough to get Pr(LS(h∗) ≤ LD(h∗) + ε/2) ≥ 1 − δ/2
with standard Hoeffding, giving like in Section 2.4 that an ERM ĥS satisfies

LD(ĥS) ≤ LS(ĥS) + ε
2 ≤ LS(h∗) + ε

2 ≤ LD(h∗) + ε

with probability at least 1 − δ: any ERM algorithm agnostically PAC-learns H.

6.16 theorem (Fundamental Theorem of Statistical Learning). For H a class of
functions h : X → {0, 1} and with the 0-1 loss, the following are equivalent:This name is only, as far as

I know, used by [SSBD].
1. Uniform convergence: for all ε, δ ∈ (0,1), we have that suph∈H LD(h) −

LS(h) < ε with probability at least 1 − δ as long as n ≥ nUC(ε, δ) < ∞.[SSBD] use two-sided
uniform convergence: in the
setting of the theorem here,
one-sided bounds imply
two-sided ones, but (a)
one-sided is what we really
use, and (b) in more general
settings the distinction can
matter.

2. Any ERM rule agnostically PAC-learns H.
3. H is agnostically PAC learnable.
4. Any ERM rule PAC-learns H.
5. H is PAC learnable.
6. VCdim(H) < ∞.

Proof. We just showed in (6.3) that 6 implies 1.

1 implying 2 is by Section 2.4, with the argument just repeated above.

2 implying 3, and 4 implying 5, are immediate.

2 implying 4, and 3 implying 5, is A2 Q1a (which should be straightforward).

Finally, Corollary 5.3 shows that 5 implies 6.

It’s worth emphasizing that this theorem is only for 0-1 loss on binary classifi-
cation, but various parts of it still hold more broadly.

28

7 srm and nonuniform learnability

We now understand the (agnostic) PAC learnability of a fixed hypothesis class Lecture 9
October 17, 2022H pretty well, at least for 0-1 loss binary classification, which says that e.g.

ERM will do not too much worse than the best thing inHwith enough samples.
This lets us control the estimation error in the following decomposition, which
we need to trade off against the hard-to-understand approximation error of
how close the class can get to the best-possible irreducible Bayes error L∗:

LD(ĥ) − L∗D︸ ︷︷ ︸
excess error

=

LD(ĥ) − inf
h∈H

LD(h)

︸ ︷︷ ︸
estimation error

−
 inf
h∈H

LD(h) − L∗D

︸ ︷︷ ︸
approximation error

.

Although we can analyze this approximation error gap in some cases if we
assume things about the form of D, it’s generally hard to know for any specific
problem, and there’s not usually a clear way to estimate it (or just infh∈H LD(h))
from data, either.

The practical solution is generally to just try a bunch of different H and/or a
bunch of different learning algorithms, then pick the best based on a validation
set V. This is a good idea in practice, and we can make some theoretical
guarantees on its generalization based on LV being close to LD; more in the
homework. But it’s still hard to use that approach to handle the approximation
error.

7.1 Structural Risk Minimization

SRM says: let’s use a huge H, one where the approximation error is going to
be small or maybe even zero. This will probably mean we have infinite VC
dimension, bad Rademacher complexity, etc. in H. But let’s decompose

H = H1 ∪ H2 ∪ · · · =
⋃
k∈N
Hk .

For instance, we might have Hk the set of decision trees of depth k, the set
of degree-k polynomials, or the set of linear classifiers with ∥w∥ ≤ 2k. We’re
going to assume that each Hk has uniform convergence:

∀k ∈ N. Pr
S∼Dn

sup
h∈Hk

LD(h) − LS(h) ≤ εk(n, δ)

 ≥ 1 − δ (7.1)

for functions εk satisfying that for all k and all δ ∈ (0, 1), limn→∞ εk(n, δ) = 0.

We’ll also need a set of weights wk ≥ 0 such that
∞∑
k=1

wk ≤ 1; a typical choice is

6/(π2k2) ≈ 0.61/k2, since
∞∑
k=1

1
k2 = π2

6 . This is the problem that
made Euler famous.

29

https://en.wikipedia.org/wiki/Basel_problem

7. srm and nonuniform learnability

7.1 proposition. Let H = H1 ∪ H2 ∪ . . . satisfy (7.1), and let wk ≥ 0 have
∞∑
k=1

wk ≤ 1. Then for any D, with probability at least 1 − δ over the choice of

S ∼ Dn, we have

∀h ∈ H. LD(h) ≤ LS(h) + min
k:h∈Hk

εk(n, δwk).

Proof. Similarly to A2 Q1c, we just allocate a failure probability of δwk to each
class, giving total failure probability of at most δ

∑
k
wk ≤ δ.

SRM is then the algorithm that minimizes this upper bound LD(h):

7.2 definition. Given bounds on a decomposition ofH as in (7.1), and weights
wk ≥ 0 with

∑
wk ≤ 1 and

⋃
k:wk>0

Hk = H, structural risk minimization is given

by

SRMH(S) ∈ arg min
h∈H

[
LS(h) + εkh(n, δwkh)

]
where kh ∈ arg min

k:h∈Hk

εk(n, wkδ).

Typically, kh = min{k : h ∈ Hk}.

We can implement this potentially-infinite minimization by a finite number
of calls to an “ERM oracle”, as long as our loss is lower-bounded by a ≤ ℓ(h, z)
(typically a = 0):

function SRMH(S)
best←∞
for k = 1, 2, . . . do

hk ← ERMHk
(S)

cand← LS(hk) + εk(n, wkδ)
if cand < best then

ĥ← hk
best← cand

if mink′>k a + εk′ (n, wk′δ) > best then
break

return ĥ

Note that if we “decompose” as H1 = H, then SRM becomes just ERMH.

7.3 theorem. Let h∗ ∈ H be any fixed hypothesis in the setup of Definition 7.2,
and let a ≤ ℓ(h, z) ≤ b for all h ∈ H, z ∈ Z. Then, with probability at least 1 − δ,
SRM based on n samples satisfies

LD(SRMH(S)) ≤ LD(h∗) + εkh∗

(
n, 1

2wkh∗ δ
)

+ (b − a)
√

1
2n log 2

δ
.

30

7.2. nonuniform learnability

Proof. Let ĥS = SRMH(S). We have that

LD(ĥS) ≤ LS(ĥ) + εkĥS
(n, wkĥS

δ/2) by Proposition 7.1, prob ≥ δ

2

≤ LS(h∗) + εkh∗ (n, wkh∗ δ/2) by def of SRM;

the conclusion follows by applying Lemma 2.5 with probability δ/2 to upper-
bound LS(h∗).

Note that the number of samples n required to achieve a particular error ε

depends on the choice of h∗, unlike in PAC learning!

7.2 Nonuniform learnability

7.4 definition. An algorithm A(S) (ε, δ)-competes with a hypothesis h if it
satisfies PrS∼Dn(LD(A(S)) ≤ LD(h) + ε) ≥ 1 − δ.

7.5 definition. An algorithm A nonuniformly learns H there is a finite sample
complexity function n(ε, δ, h) such that for all ε, δ ∈ (0,1) and h ∈ H and any
D, A(S) (ε, δ)-competes with h.

7.6 definition. A hypothesis class H is nonuniformly learnable if there exists
an algorithm A which nonuniformly learns H.

Theorem 7.3 establishes that SRM nonuniformly learns any H which we
can decompose into a countable union of Hk which each allow for uniform
convergence.

In fact, for binary classifiers with 0-1 loss, SRM nonuniformly learns any H
which is nonuniformly learnable:

7.7 proposition. If H of binary classifiers is nonuniformly learnable under the
0-1 loss, it can be written as a countable union of Hk with finite VC dimension.

Proof. Define
Hk =

{
h ∈ H : n

(
1
8 ,

1
7 , h

)
≤ k

}
,

where n(ε, δ, h) is the sample complexity function of an algorithm A that
nonuniformly learns H. Then H =

⋃
k≥1
Hk .

For any k, consider a D which is realizable under Hk. If Hk is nonempty,
there must be some such distribution (and otherwise VCdim(Hk) = 0). Then
there exists an h∗ ∈ Hk with zero loss, and since A(S) competes with that h∗,
PrS∼Dn(LD(A(S)) ≤ 1

8) ≥ 6
7 . But by the No Free Lunch theorem (in particular

Corollary 6.2), the fact that we can do this for every realizable D implies that
Hk has finite VC dimenison.

31

7. srm and nonuniform learnability

Note that the set of all measurable H is not a countable union of finite-VC
classes.

7.3 SRM based on Rademacher complexity

Plugging Corollary 6.15 into (7.1), we have that, for 0-1 loss on Hmapping to
{−1, 1},

LD(h) ≤ LS(h) + E
S′

Rad
(
Hkh |S′x

)
+

√
1

2n
log

1
wkhδ

.

Let’s choose the concrete set of weights wk = 6/(π2k2). We can make things
look a little nicer by noticing that

log
1

wkhδ
= log

1
2wkh

+ log
2
δ

= log
π2k2

h

12
+ log

2
δ
≤ 2 log k + log

2
δ√

1
2n

log
1

wkhδ
≤

√
1
n

log kh +
1

2n
log

2
δ
≤

√
1
n

log kh +

√
1

2n
log

2
δ
.

Thus, with probability at least 1 − δ,

∀h ∈ H. LD(h) ≤ LS(h) + E
S′

Rad
(
Hkh |S′x

)
+

√
1
n

log kh +

√
1

2n
log

2
δ
.

Using this upper bound in SRM gives a nice version that doesn’t depend on δ:

ĥS ∈ arg min
h∈H

LS(h) + E
S′

Rad
(
Hkh |S′x

)
+

√
1
n

log kh. (7.2)

The proof of Theorem 7.3 then establishes that

LD(ĥS) ≤ LD(h∗) + E
S′

Rad
(
Hkh |S′x

)
+

√
1
n

log kh +

√
2
n

log
2
δ
.

Comparing to the bound Corollary 6.15 for running ERM on the “right” Hkh

in the first place, it’s only worse by a factor of
√

1
n log kh – usually not a big

deal, if we’ve picked our Hk appropriately!

7.4 Singleton Classes

Suppose we have a countable H = {h1, h2, . . . }. Then we could partition it intoLecture 10
October 19, 2022 singleton sub-classes, Hk = {hk}. Denoting the weight for the class consisting

of the hypothesis h by wh, each of these Hk have “uniform convergence” via a
simple Hoeffding bound with

εk(n, whδ) ≤ (b − a)

√
2
n

log
1

whδ
≤ (b − a)

√
2
n

log
1
wh

+ (b − a)

√
2
n

log
1
δ
,

32

7.5. minimum description length

splitting out the dependence on δ for simplicity as in the previous section.
SRM then becomes

SRMH(S) ∈ arg min
h∈H

LS(h) +

√
2
n

log
1
wh

,

and this has the guarantee by Theorem 7.3 that

LD(SRMH(S)) ≤ LD(h∗) + (b − a)

√
2
n

log
1
wh∗

+ 2(b − a)

√
2
n

log
2
δ
.

This is interesting to compare to A2 Q1(c).

But. . . how should we set wh?

7.5 Minimum Description Length

One popular way to decide on weights is based on choosing some prefix-
free binary language to determine the hypotheses: for example, the binary
representation of a gziped Python program implementing that hypothesis.
Then we can choose a weight according to the following result:

7.8 proposition (Kraft’s inequality). If S ⊆ {0,1}∗ is prefix-free (there are no
σ , σ′ ∈ S such that σ is a prefix of σ′), then∑

σ∈S
2−|σ| ≤ 1.

Proof. Define the following random process: starting with the empty string,
add either a 0 or a 1 with equal probability. If the current string is in S ,
terminate; if no element of S begins with the current string, also terminate;
otherwise, repeat. Since S is prefix-free, this process hits any string σ ∈ S
with probability 2−|σ|; these probabilities must sum to at most one.

Thus, we can choose a representation for H and assign wh = 2−|h|. This gives

MDLH(S) ∈ arg min
h∈H

LS(h) +

√
2 log 2

n
|h|

LD(MDLH(S)) ≤ LD(h∗) + (b − a)

√
2 log 2

n
|h∗| + 2(b − a)

√
2
n

log
2
δ
.

This is one formalization of Occam’s razor: if there are multiple explanations
of the data (LS(h1) = 0 = LS(h2)), prefer the simplest one (the one with shortest
explanation).

But we need to pre-commit to a notion of description length before seeing
the data. A nice analogy: codegolf.stackexchange.com, a site where people

33

9. linear classifiers and margins

compete to find the shortest implementation of a program doing some task,
prohibits by default any language written after the contest was started.

8 consistency

So far we’ve studied:

• (Realizable) PAC learning.
A competes with any h∗ on any realizable D with n(ε, δ) samples.
Binary 0-1 loss: ERM works iff VCdim(H) < ∞.

• Agnostic PAC learning.
A competes with any h∗ on any D with n(ε, δ) samples.
Binary 0-1 loss: ERM works iff VCdim(H) < ∞.

• Nonuniform learning.
A competes with h∗ on any D with n(ε, δ, h∗) samples.
Binary 0-1 loss: SRM can work iff H is countable union of finite-VC Hk .

Now we’re going to add a new one: consistency, where A competes with h∗

with n(ε, δ, h∗,D) samples.

Sorry, I’m going to come back and fill this in soon!

9 linear classifiers and margins

Remember that a linear classifier is given by h(x) = sgn(wTx + b ≥ 0); a
homogeneous linear classifier is h(x) = sgn(wTx). You can reduce from a
general linear classifier to a homogeneous one by changing the data: use
x̃ =

[
1 x

]
∈ Rd+1 and w̃ =

[
b w

]
. So, for now, we’re only going to worry

about homogeneous classifiers. (Sometimes adding an intercept back in ends
up being nontrivial, though – pay attention to that step!)

Letting H = {x 7→ sgn(wTx) : w ∈ Rd}, we know from Proposition 6.5 thatLecture 11
October 24, 2022
Lecture 12
October 26, 2022
(These two lectures were
pretty intermixed, because I
was pretty disorganized the
first time!)

VCdim (H) = d, and hence for the 0-1 loss, Corollary 6.15 gives each of the
following with probability at least 1 − δ:

sup
h∈H

LD(h) − LS(h) ≤
√

2d
n

[log n + 1 − log d] +

√
1

2n
log

1
δ

LD(ĥS) − inf
h∈H

LD(h) ≤
√

2d
n

[log n + 1 − log d] +

√
2
n

log
2
δ

where ĥS is an ERM.

So, for any fixed d, this means that ERM will work once n is big enough. But
sometimes we have a really big d, and this only gives us very slow convergence
in n. Sometimes we even have an infinite d, and then this doesn’t tell us
anything at all; this is often the case with kernel methods, as we’ll see later.

34

https://codegolf.meta.stackexchange.com/questions/1061/loopholes-that-are-forbidden-by-default/1071#comment4646_1071

9.1. surrogate losses

Often, though, when d is big we end up with a hypothesis h that has small
norm. This might be because we explicitly try to find a small-norm solution,
and/or because our optimization algorithm implicitly prefers small-norm
solutions; more on both situations later in the course.

To analyze that, let’s define HB = {x 7→ wTx : ∥w∥ ≤ B} – note this is a class
that outputs continuous real numbers, not “hard” classifications, but we can
get a class of binary classifiers out with sgn ◦HB.

But note that VCdim(sgn ◦HB) = d for any B: since VC dimension is worst-
case over all possible input distributions, we can take any set that the full H
can shatter and just scale it up so that we can still shatter it with a small-norm
predictor. So we’ll need a distribution-dependent notion of complexity to do
better than this; something like Rademacher complexity.

Now, recall from (4.1) that ES Rad
(
HB

∣∣∣
Sx

)
≤ B√

n

√
E ∥x∥2. To use this in a gen-

eralization bound for the 0-1 loss, though, we’d need to bound ES Rad
(
(ℓ0−1 ◦

sgn ◦HB)
∣∣∣
Sx

)
. The only way we really know how to deal with “peeling” off

functions like that is Lipschitz functions, with Lemma 4.4. But ℓ0−1 ◦ sgn isn’t
Lipschitz. (In Section 4.7 we pretended ℓ0−1 was Lipschitz, but we could only
do that because our Hmapped to {−1, 1}; we can’t play any similar trick with
sgn for HB mapping to R.)

Another problem is that computing the ERM with respect to 0-1 loss, in the
case where LD(h∗) > 0, is actually NP-hard [BS00]! (You can reduce a SAT
variant to it.)

9.1 Surrogate losses

We can work around both problems with surrogate losses.

One version we’ve already talked about is by using the logistic loss, which is
1-Lipschitz, so we can apply Lemma 4.4. But then we’d be bounding things The logistic loss isn’t “nat-

urally” bounded, but if we
assume a hard bound on ∥x∥
then we can upper-bound
the possible logistic loss for
anything in HB.

only in terms of the logistic loss, which is hard to relate directly to accuracy;
if we care more about accuracy, it’s difficult to say anything.

Instead, suppose that we have some loss ℓsurr such that ℓsurr(h, z) ≥ ℓ0−1(h, z)
for all h, z. Then Lsurr

D (h) = Ez ℓsurr(h, z) ≥ Ez ℓ0−1(h, z) = L0−1
D (h). Thus, if we

pick such a surrogate loss that’s also ρ-Lipschitz and bounded in [a, b], we get
by combining Theorems 4.2 and 6.13 and Lemma 4.4 that

L0−1
D (h) ≤ Lsurr

D (h) ≤ Lsurr
S (h) + 2ρE

S
Rad(H|Sx

) + (b − a)

√
1

2n
log

1
δ
.

Ideally, we’d have a surrogate loss that also makes ERM easy to solve with
respect to that loss; if Lsurr

S (h) is small, this would give small 0-1 loss as well.
We’ll hold off on that problem for a bit, though, and just worry about uniform
convergence for now.

35

9. linear classifiers and margins

9.2 Analysis with ramp loss

One natural way to get a bounded, 1-Lipschitz upper bound on the 0-1 loss is
with the ramp loss

ℓramp(h, (x, y)) = λ
ramp
y (h(x)) =


1 yh(x) ≤ 0

1 − yh(x) 0 ≤ yh(x) ≤ 1

0 1 ≤ yh(x)

.

That is, if we make an incorrect prediction sgn(h(x)) , y, we get 1 loss. If we
make a correct prediction and are confident enough in it, |h(x)| ≥ 1, we get 0
loss. But in between, we incur some partial loss even if we’re right if we’re
not confident enough. This is indeed an upper bound on the 0-1 loss, λramp

y

is 1-Lipschitz, and it’s bounded in [0, 1], so we have with probability at least
1 − δ for all h in a real-valued H that

L0−1
D (h) ≤ Lramp

D (h) ≤ Lramp
S (h) + 2E

S
Rad(H|Sx

) +

√
1

2n
log

1
δ
. (9.1)

Now let’s look at linear classifiers, and assume E ∥x∥2 ≤ R2. For predictors
from HB = {x 7→ wTx : ∥w∥ ≤ B}, we have

L0−1
D (h) ≤ Lramp

S (h) +
2RB
√
n

+

√
1

2n
log

1
δ
. (9.2)

What about that ramp loss term?

One nice special case when the distribution is separable with margin 1, mean-
ing that there’s a w∗ such that Pr(x,y)∼D

(
yxTw∗ ≥ 1

)
= 1. Then we know that

infh∈H∥w∗∥ Lramp
D (h) = 0. This tells us that any predictor ĥ = hŵ = sgn(ŵTx) with

Lramp
S (ĥ) = 0 and ∥ŵ∥ ≤ ∥w∗∥ has

L0−1
D (ĥ) ≤ 2R ∥w∗∥√

n
+

√
1

2n
log

1
δ
.

Since Lramp
S (h∗) = 0 in the separable case, the minimum-norm interpolator

ŵ = arg minw:Lramp
S (hw)=0 ∥w∥ will have ∥ŵ∥ ≤ ∥w∗∥ and so satisfies this bound

for separable data, meaning it’s a decent learning algorithm on separable data.
We’ll think about this algorithm more in a moment.

The actual value of the bound, though, depends on ∥w∗∥, which we don’t
know. We can use an argument like we used for SRM to get a bound that only
depends on ∥ŵ∥:

9.1 proposition. Let E(x,y)∼D ∥x∥2 ≤ R2, and hw(x) = sgn(ŵTx). Then for anyYou can think of either r =
1 or r small; it’s an an-
noying technicality. (The
best choice is r = ∥ŵ∥, but
we can’t choose it based on
data.) Theorem 26.14 of
[SSBD] doesn’t have it, but
that’s because that theorem
is wrong.

δ ∈ (0, 1) and r > 0 fixed before seeing the data, we have with probability at least

36

9.3. hard svms and margin maximization

1 − δ over the choice of sample S ∼ Dn that for all w ∈ Rd ,

L0−1
D (hw) ≤ Lramp

S (hw)+
1
√
n

4R max{r, ∥w∥} + max

0,

√
log log2

2 ∥w∥
r

 +

√
1
2

log
2
δ

 .
Proof. Define Bi = r2i and δi = 6δ

π2i2 for all i ≥ 1, noting
∞∑
i=1

δi = δ. For each i,

it holds with probability at least 1 − δi that

∀h ∈ HBi
. L0−1

D (h) ≤ Lramp
S (h) +

2BiR√
n

+

√
1

2n
log

1
δi
.

For any h = hw, let iw = max
{
1,

⌈
log2

∥w∥
r

⌉}
; then h ∈ HBiw

. We can then see

Biw = r2iw = r max
{
2, 2

⌈
log2

∥w∥
r

⌉}
≤ r max{2, 2∥w∥

r
} = 2 max{r, ∥w∥}

and
1
δiw

=
π2i2w
6δ

=
π2/6
δ

max
{

1,
⌈
log2

∥w∥
r

⌉}2

.

Using that π2/6 < 2 and ⌈log2 a⌉ < log2(a) + 1 = log2(2a),

log
1
δiw
≤ log

2
δ

+ 2 max
{

0, log log2
2 ∥w∥
r

}
.

Taking a union bound over all i ≥ 1, specializing to ĥ which has Lramp
s (ĥ) = 0,

and slightly simplifying, we get the desired result.

If we pick an r that’s much smaller than any reasonable ∥ŵ∥ but not so small
that log log2

1
r is significant, we get for ŵ that separate the sample S with

margin 1 that, roughly, L0−1
D (ŵ) = O(∥ŵ∥ /

√
n) with high probability. This

reinforces that the minimum-norm interpolator seems like a good idea.

9.3 Hard SVMs and margin maximization

We’ve argued that it seems to make sense to compute the minimum-norm
interpolator

ŵ = arg min
w

∥w∥ s.t. Lramp
S (hw) = 0.

Expanding out the definition of Lramp
S , this is equivalent to

ĥ = hŵ; ŵ = arg min
w

∥w∥2 s.t. ∀i ∈ [n], yiw
Txi ≥ 1. (HardSVM)

This form is a convex quadratic program, a well-studied class of optimization
problems. This is known as a (hard) support vector machine (SVM).

The usual motivation for SVMs is in terms of margin maximization. We can

37

9. linear classifiers and margins

see this by noting that (HardSVM) is equivalent to

ŵ = arg max
w

1
∥w∥

s.t. ∀i ∈ [n], yiw
Txi ≥ 1

= arg max
w

1
∥w∥

min
i∈[n]

wTxi s.t. ∀i ∈ [n], yiw
Txi ≥ 1

⊇ arg max
w

min
i∈[n]

wTxi
∥w∥

s.t. ∀i ∈ [n], yiw
Txi > 0.

In the second line, mini∈[n] w
Txi will equal 1 for any optimal w: it must be at

least 1 for the constraint to hold, and if it were bigger we could just scale down
w to also scale down all the predictions, which would improve the objective
while keeping the constraints valid.

In the third line, the objective is invariant to scaling w by a constant, so any
multiple of a w that minimized the second line will minimize the third line.

Also, if we scale any minimizer for the third line by mini∈[n] yiw
Txi , we’ll get a

minimizer for the second line. Note that scaling by a positive constant doesn’t
change the hard classifier, sgn(wTx) = sgn(cwTx) for c > 0; it just changes our
confidence score.

The quantity wTxi/ ∥w∥ is the geometric margin of the point xi : it’s the distance
of xi from the hyperplane {z : wTz = 0}. (For a formal proof of this fact, see
Claim 15.1 of [SSBD].)

So, (HardSVM) maximizes the worst-case geometric margin on the training
set, and anything maximizing the geometric margin will be a multiple of a
solution to (HardSVM).

For a graphical illustration of these concepts, see Figures 5.1 to 5.3 of [MRT].I should add similar illustra-
tions here eventually.

Note that, as a convex QP, we can solve (HardSVM) in polynomial time – e.g.
with a generic interior point algorithm [YT89], although there are many spe-

cialized solvers and other possibilities. Thus, if n ≥ 1
ε2

[
2R ∥w∗∥ +

√
2 log 2

δ

]2

then we efficiently achieve 0-1 loss less than ε with probability at least 1 − δ.
This doesn’t violate NP-hardness for 0-1 loss ERM, since it’s only for separable
distributions. It also doesn’t contradict our VC dimension lower bounds, since
we have two assumptions on D here: separability with a margin and the bound
R on the norm of the data. (It doesn’t even establish nonuniform learning,
because of the dependence on R, only consistency.)

9.4 Hinge loss and Soft SVM

When the data isn’t separable, (HardSVM) will just fail: the constraints aren’t
achievable, so it’s minimizing over an empty set.

A natural idea is to try to trade off between having a small Lramp
S (h) and a small

38

9.4. hinge loss and soft svm

∥w∥. For example, like in SRM, we could try to minimize the upper bound
in Proposition 9.1. We could try to literally do that, but there’s some cruft
in the bound based on r and so on that we might prefer to avoid worrying
about. So, let’s be a little fuzzy, and pretend we pick an r small enough that
max{r, ∥w∥} = ∥w∥ for any “reasonable” w but not so small that log log2

1
r is

relevant to anything. The
√

log log2 ∥w∥ term is also not going to be at all
relevant compared to the ∥w∥ term. So, it seems reasonable to try to pick

arg min
w

Lramp
S (hw) +

4R
√
n
∥w∥ .

Unfortunately, solving this problem is NP-hard [MI15, Theorem 2.3].

To avoid this, we can again take a surrogate loss, ℓhinge ≥ ℓramp ≥ ℓ0−1 given by

ℓhinge(h, (x, y)) = λ
hinge
y (h(x)) =

1 − yh(x) if yh(x) ≤ 1

0 if yh(x) ≥ 1.

This is like the ramp loss, except once it starts going, it never stops: you get
more loss for a more-confident wrong answer. This loss is still 1-Lipschitz,
but it’s not bounded. More importantly, though, it’s convex, which makes it
easy to optimize. (We’ll talk more about convexity shortly.)

9.4.1 Hinge loss ERM

It then makes sense to try to have both small Lhinge
S and small ∥w∥. We can see

from (9.2) that, for example, if

ĥB = arg min
h∈HB

Lhinge
S (hw), (9.3)

then, using Lhinge
S (hŵB

) ≤ Lhinge
S (h∗), with probability at least 1 − δ

L0−1
D (ĥB) ≤ Lhinge

S (ĥB) +
2RB
√
n

+

√
1

2n
log

1
δ
.

While ℓhinge is unbounded, we know that suph,x |h(x)| ≤ 1 + suph,x ∥w∥ ∥x∥.
Thus if we strengthen our assumption on D to Pr(∥x∥ ≤ R) = 1, we get

L0−1
D (hŵB

) ≤ inf
h∈HB

Lhinge
S (h) +

2RB
√
n

+ (2 + RB)

√
1

2n
log

2
δ
.

39

9. linear classifiers and margins

9.4.2 Bound minimization

Rather than picking a hard constraint B, maybe difficult to choose a priori, we
could do something SRM-like with Proposition 9.1 and let ĥ = hŵ minimize

Lhinge
S (hw) +

1
√
n

4R max{r, ∥w∥} + max

0,

√
log log2

2 ∥w∥
r


 . (9.4)

Then, like in SRM, we know that quantity is minimized for ŵ, and so can say
that, for any arbitrary h∗ = hw∗ , assigning 2

3δ failure probability for the bound

of Proposition 9.1 and 1
3δ probability for a Hoeffding bound on Lhinge

S (h∗), and
again assuming that ∥x∥ ≤ R a.s.,

L0−1
D (ĥ) ≤ Lhinge

S (ĥ) +
1
√
n

4R max{r, ∥ŵ∥} + max

0,

√
log log2

2 ∥ŵ∥
r

 +

√
1
2

log
3
δ


≤ Lhinge

S (h∗) +
1
√
n

4R max{r, ∥w∗∥} + max

0,

√
log log2

2 ∥w∗∥
r

 +

√
1
2

log
3
δ


≤ Lhinge

D (h∗) +
1
√
n

4R max{r, ∥w∗∥} + max

0,

√
log log2

2 ∥w∗∥
r

 + (2 + R ∥w∗∥)
√

1
2

log
3
δ

 .
This is like a nonuniform learning bound, but only for D satisfying ∥x∥ ≤ R.

9.4.3 Soft SVM

Unfortunately, the optimization problem (9.4) is kind of a huge pain. It’s not
even convex, both because of the max{r, ∥w∥} thing and the

√
log log2 ∥w∥ term.

Again, we can reason that we can probably ignore r and the
√

log log2 ∥w∥
term, and argue for minimizing

Lhinge
S (hw) +

4R
√
n
∥w∥ .

It’s not obvious that these bounds are especially tight, though, so maybe 4R√
n

isn’t the right constant to trade off between the loss and ∥w∥. Also, it turns out
to be more convenient to minimize with ∥w∥2 rather than ∥w∥. Soft SVMs use
the squared norm of w and replace 4R/

√
n with a hyperparameter λ:

ĥλ = hŵλ
; ŵλ = arg min

w
Lhinge

S (hw) + λ ∥w∥2 . (SoftSVM)

(In the version with an intercept b, we typically don’t add λb2 to the loss; this
is one difference from the homogeneous reduction.)

(9.3) and (SoftSVM) are in fact dual to each other, in the sense that for anyIf you’re familiar with con-
vex optimization: set up the
Lagrangian of either prob-
lem, and use Slater’s condi-
tion to show that strong du-
ality holds.

B there is some λ such that ĥB’s weight vector agrees with ŵλ, and vice

40

9.5. hard svm duality

versa. (We can’t just write down a given B for a given λ or vice-versa, though,
unfortunately.)

Soft SVMs also have a nice motivation in terms of margin maximization. If hw The classic framing is

C L
hinge
S (hw) + ∥w∥2; there

the penalty for moving
points around is C. You can
think of C = 1

λ
.

classifies a point x correctly with margin at least 1, then it doesn’t contribute
to the objective at all. If it’s “inside” the margin or even misclassified, though,
we get loss equal to the distance by which we’re on the wrong side of the
margin. One way to consider this is as a hard SVM on a modified problem,
where we drag points around to be on the margin, and penalize how much
dragging around we need to do.

In the limit as λ→ 0, on separable data, (SoftSVM) becomes (HardSVM). Soft
SVMs with a nonzero λ might give different results from hard SVMs, though,
even on separable data: they might allow a few points to violate a bigger
“theoretical” margin.

To analyze ŵλ directly, we can still use Proposition 9.1 and (if we like) bound
the ramp loss by the hinge loss: the result holds for all linear predictors. This
gives us an upper bound on L0−1

D (ĥλ) in terms of Lhinge
S (ĥλ) and ∥ŵλ∥. It’s more

difficult to relate this to the loss of a comparison hypothesis h∗, though we can
maybe take some solace in (SoftSVM) being similar to (9.4).

Or, instead, we can use stability bounds (discussed soon).

9.5 Hard SVM duality

The following stuff is historically very important, serves as a nice segue into
our next topic, explains the name “support vector machine,” and introduces
an area of math that’s profoundly important to optimization / often useful in
theory / beautiful in its own right. It’s not, however, as practically important
as it once was.

Starting from (HardSVM), we can rewrite these hard constraints by introduc-
ing dual variables αi for i ∈ [n]:

min
w

1
2
∥w∥2 s.t. ∀i. yiwTxi ≥ 1 = min

w
max
αi≥0

1
2
∥w∥2 +

n∑
i=1

αi(1 − yiwTxi).

If any of the yiw
Txi are less than one, then the inner maximizer can drive

αi → ∞ and make the objective arbitrarily big; the outer minimizer, then,
can’t allow that to happen. If they’re all at least one, then the inner maximizer
is best by just picking αi = 0 (or unconstrained for any that are exactly one).

Now, it’s always the case that minx maxy f (x, y) ≥ maxy minx f (x, y); take
maxy f (x, y) ≥ f (x, y′) for any (x, y′), minimize both sides in x, then maximize
in y′. In this setting, this is called weak (Lagrangian) duality. In this case,
though, we actually have strong duality via something called Slater’s condition:

41

9. linear classifiers and margins

swapping the min and the max doesn’t change the value.

min
w

1
2
∥w∥2 s.t. ∀i. yiwTxi ≥ 1 = max

αi≥0
min
w

1
2
∥w∥2 +

n∑
i=1

αi(1 − yiwTxi).

The inner minimization in w is differentiable and unconstrained, so we can
find its value by setting the gradient to zero:

w +
n∑
i=1

(−αiyixi) = 0 ⇒ w =
n∑
i=1

αiyixi ,

and hence

∥w∥2 =
n∑
i=1

n∑
j=1

αiyix
T
i xjyjαj = αT diag(y)XXT diag(y)α,

where α ∈ Rn is the vector of αis, diag(y) ∈ Rn×n is a matrix with yi as its
(i, i)th entry and zero off-diagonal, and X ∈ Rn×d has ith row xi . Thus we’ve
shown that (HardSVM) is equivalent to

max
αi≥0

1Tα − 1
2
αT diag(y)XXT diag(y)α, (HardSVM’)

where once we find α we can recover w as XT diag(y)α, meaning that hw(x) =

αT diag(y)Xx =
n∑
i=1

αiyix
T
i x.

This is called the dual form of (HardSVM). We’ve transformed the primal form,
a constrained optimization over w ∈ Rb, to an unconstrained optimization
over α ∈ Rn

≥0. We can solve this with any of several algorithms: it’s also a
convex quadratic program, and there are many specialized algorithms for
(HardSVM’) in particular, but since the constraints are simple we can also
think about easy things like projected gradient descent.

Support vectors (HardSVM’) also motivates the name support vector machine.
As we mentioned when we first introduced the dual variables, if yiwTxi > 1 forThis is called complemen-

tary slackness in the KKT
conditions. some i, then we necessarily have αi = 0 at optimum. We can only have αi , 0

if yiwTxi = 0, i.e. the point (xi , yi) is exactly on the margin of the hard SVM.
These points are called support vectors, because they “support” the position
of the margin. This sparsity in the solution has some other nice consequences
as well.

9.6 Soft SVM duality

Start by introducing auxiliary variables ξi accounting for the hinge loss inWe didn’t do this out in
class, just mentioned the re-
sult. (SoftSVM), then go through the same kind of argument, where now we’ll

additionally have dual variables β for the nonnegativity constraints on ξ.
We’re also going to use our dual variables for the margin constraints as 2λαi

42

9.6. soft svm duality

instead of just αi , because it just makes stuff work out nicer in the end.

min
w,ξ

λ ∥w∥2 +
1
n

n∑
i=1

ξi s.t. ∀i, yiwTxi ≥ 1 − ξi and ξi ≥ 0

= min
w,ξ

max
α≥0,β≥0

λ ∥w∥2 +
1
n

n∑
i=1

ξi +
n∑
i=1

2λαi(1 − yiwTxi − ξi) −
n∑
i=1

βiξi

= max
α̃≥0,β≥0

min
w,ξ

λ ∥w∥2 +
1
n
1Tξ + 2λαT [1 − diag(y)Xw − ξ] − βTξ.

Setting the w gradient to zero, 2λw−2λXT diag(y)α = 0 and so w = XT diag(y)α
as before. For ξ, 1

n1 − 2λα − β = 0 means that β = 1
n1 − 2λα. We can easily

achieve this as long as αi <
1

2λn , getting the dual form

(2λ) max
0≤αi≤ 1

2λn

1Tα − 1
2
αT diag(y)XXT diag(y)α. (SoftSVM’)

Remarkably, this is exactly (HardSVM’) with an extra upper bound on α.

Using the same kind of argument as we made for support vectors earlier, we
can see that indeed ξi = 0 unless yiwTxi < 1: we only “move the input points”
if we need to. For these points, βi = 0, meaning that αi = 1

2λn , and we can
immediately tell which points are misclassified or classified correctly with too
small a margin. Any points with 0 < αi <

1
2λn have ξi = 0 but yiwTxi = 1, and

so lie exactly on the margin as before.

9.6.1 Including an intercept

So far, we’ve been assuming that intercept terms, sgn(wTx + b) rather than
sgn(wTx), are handled via w̃ = [b, w], x̃ = [1, x]. But then note that ∥w̃∥2 =
b2 + ∥w∥2: we’re regularizing the intercept as well, which isn’t motivated in
terms of the geometric margin and is also counter to usual statistical practice.
So, it’s maybe worth figuring out what happens if we explicitly include b and
don’t regularize it.

Compared to the derivation of (SoftSVM’), the constraint is yi(wTxi + b) ≥
1 − ξi , which only adds a term 2λαiyib. This doesn’t affect the optimization
for w or ξ, and b will have zero derivative iff αTy = 0. This gives the dual

max
0≤αi≤ 1

2λn and αTy=0
1Tα − 1

2
αT diag(y)XXT diag(y)α.

Our final predictor is wTx + b = αT diag(y)Xx + b, so we still need to figure
out the value of b. But note that, for points with 0 < αi <

1
2λn , we know that

yi(wTxi + b) = 1: so, once we’ve found α, we can just pick any such i and set
b = yi − wTxi = yi − αT diag(y)Xxi .

43

9. linear classifiers and margins

9.7 Aside (not in class): margin analysis

The following is a slightly different way to frame ramp loss analysis that can
sometimes be easier to think about. It’s also more natural to look at for general
hypothesis classes. It’s based on the ρ-margin loss, which gives us full credit
if our confidence is at least ρ:

ℓρ−margin(h, (x, y)) = λρ−margin,y(h(x)) =


1 if yh(x) ≤ 0

1 − yh(x)
ρ

if 0 ≤ yh(x) ≤ ρ

0 if yh(x) ≥ ρ.

This upper-bound to 0-1 loss ramps at ρ instead of 1, and is 1
ρ
-Lipschitz. So,

the analogue of (9.1) is that for any fixed ρ, with probability at least 1 − δ, we
have for any H of real-valued hypotheses that

∀h ∈ H, L0−1
D (h) ≤ L

ρ−margin
S (h) +

2
ρ

E
S′∼Dn

Rad(H|S′x) +

√
1

2n
log

1
δ
. (9.5)

We can avoid committing to a particular margin, similarly to in Proposition 9.1.
Another slight improvement is that we don’t have to assume HB, but allow
general real-valued H.

9.2 proposition. Let H contain functions mapping to R, and fix some margin
upper bound r > 0. Then for any δ ∈ (0, 1), we have with probability at least 1 − δ
over the choice of S ∼ Dn that for all h ∈ H and ρ ∈ (0, r],

L0−1
D (ĥ) ≤ L

ρ−margin
S (h) +

4
ρ

E
S′∼Dn

Rad(H|S′x) +

√
1
n

log log2
2r
ρ

+

√
1

2n
log

2
δ
.

Proof. Let ρi = r2−i for all i ≥ 0, and δi = 6δ
π2i2 for i ≥ 1; note that

∞∑
i=1

δi = δ.

By (9.5), it holds with probability at least 1 − δi for each ρi that

∀h ∈ H, L0−1
D (h) ≤ L

ρi−margin
S (h) +

2
ρi

E
S′∼Dn

Rad(H|S′x) +

√
1

2n
log

1
δi
.

For any ρ ∈ (0, r], the smallest i such that ρi ≤ ρ is given by i =
⌈
log2

r
ρ

⌉
.

We have ℓρ′−margin ≤ ℓρ−margin for any ρ′ ≤ ρ, so L
ρi−margin
S (h) ≤ L

ρ−margin
S (h).

We also know that ρ ≤ ρi−1 = 2ρi , so 1
ρi
≤ 2

ρ
.

Finally, from log 1
δi

= log π2

6δ + 2 log log2

⌈
log2

r
ρ

⌉
we use that π2/6 < 2 and

⌈log2 a⌉ < log2(a) + 1 = log2(2a).

We do have to commit to some predefined upper bound on the margin r,

44

REFERENCES

but the resulting bound only depends on it through log log2 r so we can pick
something big. (This r corresponds to 1

r from Proposition 9.1.)

In this bound, we think of having a fixedH but then trading off in our analysis
between trying to get a large margin (to decrease the 1

ρ
terms) and having a

small margin loss.

references

[BS00] Shai Ben-David and Hans Ulrich Simon. “Efficient learning of linear
perceptrons.” Advances in Neural Information Processing Systems.
2000.

[KV94] Michael J. Kearns and Umesh Vazirani. An Introduction to Computa-
tional Learning Theory. The MIT Press, 1994.

[MI15] Søren Frejstrup Maibing and Christian Igel. “Computational Com-
plexity of Linear Large Margin Classification With Ramp Loss.”
AISTATS. 2015.

[MRT] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talkwalkar. Foun-
dations of Machine Learning. 2nd ed. MIT Press, 2018.

[SSBD] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine
Learning: From Theory to Algorithms. Cambridge University Press,
2014.

[Tel] Matus Telgarsky. Deep learning theory lecture notes. Version: 2021-
10-27 v0.0-e7150f2d (alpha). 2021.

[Val84] Leslie G. Valiant. “A Theory of the Learnable.” Commun. ACM 27.11
(1984), pp. 1134–1142.

[VC71] Vladimir N. Vapnik and Alexey Ya. Chervonenkis. “On the Uniform
Convergence of Relative Frequencies of Events to Their Probabili-
ties.” Theory of Probability & Its Applications 16.2 (1971), pp. 264–
280.

[Wai19] Martin Wainwright. High-dimensional statistics: a non-asymptotic
viewpoint. Cambridge University Press, 2019.

[YT89] Yinyu Ye and Edison Tse. “An extension of Karmarkar’s projec-
tive algorithm for convex quadratic programming.” Mathematical
Programming 44 (1989), pp. 157–159.

45

https://proceedings.neurips.cc/paper/2000/hash/39027dfad5138c9ca0c474d71db915c3-Abstract.html
https://proceedings.neurips.cc/paper/2000/hash/39027dfad5138c9ca0c474d71db915c3-Abstract.html
https://direct-mit-edu.eu1.proxy.openathens.net/books/book/2604/An-Introduction-to-Computational-Learning-Theory
https://direct-mit-edu.eu1.proxy.openathens.net/books/book/2604/An-Introduction-to-Computational-Learning-Theory
http://proceedings.mlr.press/v38/frejstrupmaibing15.pdf
http://proceedings.mlr.press/v38/frejstrupmaibing15.pdf
https://cs.nyu.edu/~mohri/mlbook/
https://cs.nyu.edu/~mohri/mlbook/
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/copy.html
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/copy.html
https://mjt.cs.illinois.edu/dlt/
http://dx.doi.org/10.1145/1968.1972
http://dx.doi.org/10.1137/1116025
http://dx.doi.org/10.1137/1116025
http://dx.doi.org/10.1137/1116025
https://go.exlibris.link/9ZMcv9J6
https://go.exlibris.link/9ZMcv9J6
http://dx.doi.org/10.1007/BF01587086
http://dx.doi.org/10.1007/BF01587086

	Setup
	PAC learning and finite hypothesis classes
	Realizable finite hypothesis classes
	PAC learning
	Agnostic PAC learning
	Uniform convergence and ERM
	ERM agnostically PAC learns finite classes

	Concentration inequalities
	Rademacher complexity
	Deriving an expectation bound
	Consequences for ERM
	Basic properties of Rademacher complexity
	Talagrand's contraction lemma
	From Rad of loss function class to Rad of hypothesis class
	Complexity of linear classes
	Binary classifiers with 0-1 loss
	Finite sets

	No Free Lunch
	VC dimension
	Examples of computing VC dimension
	Growth function bounds based on VC dimension (Sauer-Shelah)
	VC dimension and generalization
	High-probability bounds for generalization
	The fundamental theorem of statistical learning

	SRM and Nonuniform Learnability
	Structural Risk Minimization
	Nonuniform learnability
	SRM based on Rademacher complexity
	Singleton Classes
	Minimum Description Length

	Consistency
	Linear classifiers and Margins
	Surrogate losses
	Analysis with ramp loss
	Hard SVMs and margin maximization
	Hinge loss and Soft SVM
	Hard SVM duality
	Soft SVM duality
	Aside (not in class): margin analysis

