As before: use \LaTeX, either with the template I give or your own document if you prefer.

You can do this with a partner if you’d like (there’s a “find a group” post on Piazza), but please make sure you understand everything you’re submitting – don’t just split an assignment in half. If you do parts of the assignment with a partner and parts separately, submit separate solutions, and say in each part you did together who you did it with.

If you look stuff up anywhere other than in SSBD, MRT, Telgarsky, or Wainwright, cite your sources: just say in the answer to that question where you looked. If you ask anyone else for help, cite that too.

Please do not look at solution manuals / search for people proving the things we’re trying to prove / etc. If you accidentally come across a solution while looking for something related, still write the argument up in your own words, link to wherever you found it, and be clear about what happened.
1 Validation sets and expectation bounds [20 points]

Stability and SGD analyses mostly bound only the expected risk; let’s relate that a little more thoroughly to PAC learning now.

Let A be a proper learning algorithm (one returning hypotheses in \mathcal{H}) that guarantees: if $n \geq n_\mathcal{H}(\varepsilon)$, then for every distribution D, it holds that

$$
\mathbb{E}_{S \sim D^n} L_D(A(S)) \leq \inf_{h \in \mathcal{H}} L_D(h) + \varepsilon.
$$

Here $L_D(h) = \mathbb{E}_z \ell(h, z)$ for a loss $\ell(h, z)$ bounded in $[0, 1]$.

In assignment 2 question 1b, we essentially showed (not quite in these words) via Markov’s inequality that

$$
\forall \varepsilon, \delta \in (0, 1), \text{if } n \geq n_\mathcal{H}(\varepsilon \delta), \forall D, \quad \Pr \left(L_D(A(S)) \leq \inf_{h \in \mathcal{H}} L_D(h) + \varepsilon \right) \geq 1 - \delta.
$$

(See the solutions for a2 if you want a reminder.)

(*) implies PAC learning, but the dependence on δ is quite bad. For instance, the stability bound for regularized loss minimization (SSBD corollary 13.9) gives $n_\mathcal{H}(\varepsilon \delta) = \frac{8\rho^2 B^2}{\varepsilon^2 \delta^2}$, so going from a failure probability δ of 0.1 to 0.001 for a fixed ε requires 10,000 times as many samples, whereas for the bound we’ll show below it’s only three times as many samples.

Here’s a “meta-algorithm” that will PAC-learn with a better sample complexity:

- Divide the training data up into $k + 1$ chunks, $S = S_1 \cup \cdots \cup S_k \cup V$, where each of the S_i have m data points and V has $n - mk$.
- Run A independently on each of the first k chunks, getting $\hat{h}_i = A(S_i)$.
- Let $i = \arg \min_{i \in [k]} L_V(\hat{h}_i)$, and return the hypothesis h_i. (That is, choose the “retry” that looks best on the validation set V.)

Give a way to choose the parameters m and k (that is, an expression for each variable depending only on $n_\mathcal{H}$, ε, and δ) such that the procedure agnostically PAC-learns the problem, and give the final sample complexity. Your sample complexity should be $O \left(\left[n_\mathcal{H}(a\varepsilon) + 1/\varepsilon^2 \right] \log(1/\delta) \right)$ for some constant $a > 0$; please give a finite-sample expression, i.e. a function with explicit constants.

Answer: TODO
2 Logistic regression [30 points]

Let \(\mathcal{X} = \{ x \in \mathbb{R}^d : \| x \| \leq R \} \). We’ll learn a linear predictor based on logistic loss,

\[
\ell_{\log}(w, (x, y)) = \lambda_y \log(y) = \log(1 + \exp(-y w^T x)).
\]

Let \(S \) be a sample \(((x_1, y_1), \ldots, (x_n, y_n)) \in (\mathcal{X} \times \{-1, 1\})^n \), and let \(X \in \mathbb{R}^{n \times d}, y \in \{-1, 1\}^n \) stack up the features and labels accordingly.

(a) [10 points] Show that \(\lambda_y \log(\hat{y}) \) is 1-Lipschitz and convex for \(y \in \{-1, 1\} \).

Answer: TODO

(b) [10 points] Show that for any 1-Lipschitz convex set of functions \(\lambda_y \), the corresponding \(L_S(w) \) is a convex, \(R \)-Lipschitz function of \(w \).

Hint: \(\| g \circ h \|_{\text{Lip}} \leq \| g \|_{\text{Lip}} \| h \|_{\text{Lip}} \), since \(\| g(h(x)) - g(h(y)) \| \leq \| g \|_{\text{Lip}} \| h(x) - h(y) \| \leq \| g \|_{\text{Lip}} \| h \|_{\text{Lip}} \| x - y \| \).

Answer: TODO

Let \(A_\lambda(S) = \arg \min_{w \in \mathbb{R}^d} L_S(w) + \lambda \| w \|^2 \). We then have the bounds, from corollaries 13.8-13.9 of SSBD:

for any \(w^* \in \mathbb{R}^d \),

\[
\mathbb{E}_S L_D(A_\lambda(S)) \leq L_D(w^*) + \lambda \| w^* \|^2 + \frac{2R^2}{\lambda n};
\]

if we use \(\lambda = \frac{R}{B} \sqrt{\frac{2}{n}} \),

\[
\mathbb{E}_S L_D(A_\lambda(S)) \leq \inf_{w : \| w \| \leq B} L_D(w) + BR \sqrt{\frac{8}{n}}. \tag{\dagger}
\]

It turns out the problem is also Convex-Smooth-Bounded, but the resulting bound is usually worse and also more annoying to work with.

(c) [10 points] Let \(A_B'(S) \in \arg \min_{w \in \mathbb{R}^d : \| w \| \leq B} L_S(w) \) (constrained ERM). Use Rademacher complexity to find a bound of the form

\[
\mathbb{E}_L D(A_B'(S)) \leq \inf_{w : \| w \| \leq B} L_D(w) + Q
\]

where \(Q \) is some term depending only on \(B, R, \) and \(n \). Compare the resulting bound to (\dagger).

Answer: TODO

For [no points (but hopefully a sense of personal satisfaction)], convince yourself that everything in this problem works for kernel logistic regression, i.e. \(\mathcal{X} = \{ x : \sqrt{k(x, x)} \leq R \} \), \(\ell_{\log}(h, (x, y)) = \lambda_y \log(h(x)) \), \(A_\lambda(S) = \arg \min_{h \in \mathcal{F} : \| h \|_{\mathcal{F}} \leq B} L_S^\log(h) \), and \(A_B'(S) = \arg \min_{h \in \mathcal{F} : \| h \|_{\mathcal{F}} \leq B} L_S^\log(h) \). Don’t hand anything in for this, but if you want, it’s nice to verify for yourself that the loss is still convex and \(R \)-Lipschitz, that \(A_\lambda(S) \) is still stable, and \(A_B'(S) \) still has the same Rademacher bound.
3 A really hard Convex-Lipschitz-Bounded problem [15 points]

Convex-Lipschitz-Bounded problems are solvable by regularized loss minimization, which we showed gradient descent can approximately solve in polynomially many gradient steps. But this doesn’t guarantee that Convex-Lipschitz-Bounded problems can be efficiently learned.

Let \(\mathcal{H} = [0, 1] \) – nice and simple – but let the example domain \(\mathcal{Z} \) be the set of all pairs of Turing machines \(T \) with input strings \(s \). Define

\[
\ell(h, (T, s)) = \begin{cases}
1 & \text{if } h = 0 \\
1 & \text{if } h = 1 \\
h \ell(1, (T, s)) + (1 - h) \ell(0, (T, s)) & \text{if } 0 < h < 1.
\end{cases}
\]

Prove that this problem is Convex-Lipschitz-Bounded, but no computable algorithm can learn this problem.

\textit{Hint: If you have no idea what I’m talking about: look up the “halting problem.”}

Answer: TODO
4 Learning without concentration [25 points]

We’re going to do an unsupervised learning task, where we try to estimate the mean of a distribution, but we do it with some missing observations. Specifically, let \mathcal{B} be the unit ball $\mathcal{B} = \{w \in \mathbb{R}^d : \|w\| \leq 1\}$, and let the samples be in $\mathcal{Z} = \mathcal{B} \times \{0, 1\}^d$, where an entry $z = (x, \alpha)$ with α is a binary “mask” vector indicating whether the given entry is missing. We want to estimate the mean ignoring the missing entries, i.e. $\mathcal{H} = \mathcal{B}$ and

$$
\ell(w, (x, \alpha)) = \sum_{i=1}^{d} \begin{cases}
0 & \text{if } \alpha_i = 1 \\
(x_i - w_i)^2 & \text{if } \alpha_i = 0.
\end{cases}
$$

(a) [10 points] Show that regularized loss minimization can PAC-learn this problem with a sample complexity independent of d.

Hint: Appeal to (*) to show PAC learning.

Answer: TODO

(b) [10 points] Let \mathcal{D} be a distribution where x is always the fixed vector 0, and α has its entries i.i.d. $\text{Unif}(\{0, 1\}) = \text{Bernoulli}(1/2)$. Let $n_{\mathcal{D}}(\varepsilon, \delta)$ denote the sample complexity of uniform convergence for this \mathcal{D}, so that if $n \geq n_{\mathcal{D}}(\varepsilon, \delta)$, then

$$
\Pr_{S \sim \mathcal{D}^n} \left(\sup_{w \in \mathcal{H}} L_{\mathcal{D}}(w) - L_S(w) \leq \varepsilon \right) \geq 1 - \delta.
$$

Show that, for some (small) fixed $\varepsilon > 0$ and $\delta > 0$, $n_{\mathcal{D}}(\varepsilon, \delta)$ increases with d.

Hint: Show that if d is large enough relative to n, you’re likely to get at least one dimension j where $(\alpha_i)_j = 1$ for all your observed samples $i \in [n]$.

Answer: TODO

(c) [5 points] Use these two results to describe a problem where RLM is a PAC learner, but uniform convergence doesn’t hold. Describe why this doesn’t contradict the fundamental theorem of statistical learning.

Answer: TODO
5 Challenge: Lasso and stability [10 points]

On-average replace-one stability is not the only notion of stability (nor even the most common). Another useful version of stability is uniform stability, which guarantees that

\[\forall S, S' \text{ of size } n \text{ differing for only one point, } \sup_{z \in Z} |\ell(A(S'), z) - \ell(A(S), z)| \leq \gamma(n) \]

for some \(\gamma(n) \) that goes to 0 as \(n \to \infty \).

One advantage of uniform stability is that you can get high-probability bounds on \(L_D(A(S)) \), not just expectation bounds. (There’s a simple route via McDiarmid, or over the past few years there have been some breakthroughs that give potentially much better bounds based on more complex analyses.)

For \(\|\cdot\|_2 \)-regularized linear models (including kernels), the proof we did to show a bound on the on-average replace-one stability in fact shows the same bound on the uniform stability, \(\gamma(n) \leq \frac{2\rho^2}{\lambda n} \).

The Lasso algorithm is based on the square loss and a \(\|w\|_1 = \sum_{j=1}^d |w_j| \) regularizer:

\[A_\lambda(S) \in \arg \min_{w \in \mathbb{R}^d} L_S(w) + \lambda\|w\|_1. \]

(If there are multiple minimizers, let’s have \(A_\lambda \) return an arbitrary one.) The Lasso algorithm is nice because it often returns sparse solutions, i.e. \(w \) with many \(w_j = 0 \).

Let’s use \(Z = \mathcal{X} \times \mathcal{Y} = \{x \in \mathbb{R}^d : \|x\| \leq R\} \times [-M, M] \) for simplicity.

(a) [5 points] Show that the Lasso algorithm is not uniformly stable.

 \textit{Hint: There’s a reason I mentioned multiple minimizers above.}

 \textbf{Answer: TODO}

(b) [5 points] Show that the Lasso algorithm for any \(\lambda > 0 \) is on-average replace-one stable.

 \textit{Hint: This is probably easiest to show with an “indirect” route via Rademacher complexity, as in Question 2 part (c). You’ll also have to go through Lagrange duality and bound the Rademacher complexity of an appropriate set.}

 \textbf{Answer: TODO}