
CPSC 532D: Assignment 5 – due Saturday, 10 Dec 2022, 11:59pm
As before: use LATEX, either with the template I give or your own document if you prefer.

You can do this with a partner if you’d like (there’s a “find a group” post on Piazza), but please make sure
you understand everything you’re submitting – don’t just split an assignment in half. If you do parts
of the assignment with a partner and parts separately, submit separate solutions, and say in each part you
did together who you did it with.

If you look stuff up anywhere other than in SSBD, MRT, Telgarsky, or Wainwright, cite your sources:
just say in the answer to that question where you looked. If you ask anyone else for help, cite that too.
Please do not look at solution manuals / search for people proving the things we’re trying to prove / etc. If
you accidentally come across a solution while looking for something related, still write the argument up in
your own words, link to wherever you found it, and be clear about what happened.

1

1 Validation sets and expectation bounds [20 points]

Stability and SGD analyses mostly bound only the expected risk; let’s relate that a little more thoroughly to
PAC learning now.

Let A be a proper learning algorithm (one returning hypotheses in H) that guarantees: if n ≥ nH(ε), then
for every distribution D, it holds that

E
S∼Dn

LD(A(S)) ≤ inf
h∈H

LD(h) + ε.

Here LD(h) = Ez∼D ℓ(h, z) for a loss ℓ(h, z) bounded in [0, 1].

In assignment 2 question 1b, we essentially showed (not quite in these words) via Markov’s inequality that

∀ ε, δ ∈ (0, 1), if n ≥ nH(εδ), ∀D, Pr

(
LD(A(S)) ≤ inf

h∈H
LD(h) + ε

)
≥ 1− δ. (*)

(See the solutions for a2 if you want a reminder.)

(*) implies PAC learning, but the dependence on δ is quite bad. For instance, the stability bound for regu-

larized loss minimization (SSBD corollary 13.9) gives nH(εδ) = 8ρ2B2

ε2δ2 , so going from a failure probability δ
of 0.1 to 0.001 for a fixed ε requires 10,000 times as many samples, whereas for the bound we’ll show below
it’s only three times as many samples.

Here’s a “meta-algorithm” that will PAC-learn with a better sample complexity:

• Divide the training data up into k+1 chunks, S = S1 ∪ · · · ∪Sk ∪V , where each of the Si have m data
points and V has n−mk.

• Run A independently on each of the first k chunks, getting ĥi = A(Si).

• Let ı̂ = argmini∈[k] LV (ĥi), and return the hypothesis hı̂. (That is, choose the “retry” that looks best
on the validation set V .)

Give a way to choose the parameters m and k (that is, an expression for each variable depending only on
on nH, ε, and δ) such that the procedure agnostically PAC-learns the problem, and give the final sample
complexity. Your sample complexity should be O

([
nH(aε) + 1/ε2

]
log(1/δ)

)
for some constant a > 0; please

give a finite-sample expression, i.e. a function with explicit constants.

Answer: TODO

2

https://www.cs.ubc.ca/~dsuth/532D/22w1/assignments/a2sol.pdf#page=3

2 Logistic regression [30 points]

Let X = {x ∈ Rd : ∥x∥ ≤ R}. We’ll learn a linear predictor based on logistic loss,

ℓlog(w, (x, y)) = λlog
y (wTx) = log(1 + exp(−ywTx)).

Let S be a sample ((x1, y1), . . . , (xn, yn)) ∈ (X × {−1, 1})n, and let X ∈ Rn×d, y ∈ {−1, 1}n stack up the
features and labels accordingly.

(a) [10 points] Show that λlog
y (ŷ) is 1-Lipschitz and convex for y ∈ {−1, 1}.

Answer: TODO

(b) [10 points] Show that for any 1-Lipschitz convex set of functions λy, the corresponding LS(w) is a
convex, R-Lipschitz function of w.

Hint: ∥g◦h∥Lip ≤ ∥g∥Lip∥h∥Lip, since ∥g(h(x))−g(h(y))∥ ≤ ∥g∥Lip∥h(x)−h(y)∥ ≤ ∥g∥Lip∥h∥Lip∥x−y∥.

Answer: TODO

Let Aλ(S) = argminw∈Rd LS(w) + λ∥w∥2. We then have the bounds, from corollaries 13.8-13.9 of SSBD:

for any w∗ ∈ Rd, E
S
LD(Aλ(S)) ≤ LD(w

∗) + λ∥w∗∥+ 2R2

λn
;

if we use λ =
R

B

√
2

n
, E

S
LD(Aλ(S)) ≤ inf

w:∥w∥≤B
LD(w) +BR

√
8

n
. (†)

It turns out the problem is also Convex-Smooth-Bounded, but the resulting bound is usually worse and also
more annoying to work with.

(c) [10 points] Let A′
B(S) ∈ argminw∈Rd:∥w∥≤B LS(w) (constrained ERM). Use Rademacher complexity

to find a bound of the form
ELD(A

′
B(S)) ≤ inf

w:∥w∥≤B
LD(w) +Q

where Q is some term depending only on B, R, and n. Compare the resulting bound to (†).

Answer: TODO

For [no points (but hopefully a sense of personal satisfaction)], convince yourself that everything in this
problem works for kernel logistic regression, i.e. X = {x :

√
k(x, x) ≤ R}, ℓlog(h, (x, y)) = λlog

y (h(x)),

Aλ(S) = argminh∈F Llog
S (h) + λ∥h∥2F , and A′

B(S) = argminh∈F :∥h∥F≤B Llog
S (h). Don’t hand anything in for

this, but if you want, it’s nice to verify for yourself that the loss is still convex and R-Lipschitz, that Aλ(S)
is still stable, and A′

B(S) still has the same Rademacher bound.

3

3 A really hard Convex-Lipschitz-Bounded problem [15 points]

Convex-Lipschitz-Bounded problems are solvable by regularized loss minimization, which we showed gradient
descent can approximately solve in polynomially many gradient steps. But this doesn’t guarantee that
Convex-Lipschitz-Bounded problems can be efficiently learned.

Let H = [0, 1] – nice and simple – but let the example domain Z be the set of all pairs of Turing machines
T with input strings s. Define

ℓ(h, (T, s)) =


1(T halts on the input s) if h = 0

1(T does not halt on the input s) if h = 1

hℓ(1, (T, s)) + (1− h)ℓ(0, (T, s)) if 0 < h < 1.

Prove that this problem is Convex-Lipschitz-Bounded, but no computable algorithm can learn this problem.

Hint: If you have no idea what I’m talking about: look up the “halting problem.”

Answer: TODO

4

4 Learning without concentration [25 points]

We’re going to do an unsupervised learning task, where we try to estimate the mean of a distribution, but
we do it with some missing observations. Specifically, let B be the unit ball B = {w ∈ Rd : ∥w∥ ≤ 1}, and
let the samples be in Z = B×{0, 1}d, where an entry z = (x, α) with α is a binary “mask” vector indicating
whether the given entry is missing. We want to estimate the mean ignoring the missing entries, i.e. H = B
and

ℓ(w, (x, α)) =

d∑
i=1

{
0 if αi = 1

(xi − wi)
2 if αi = 0.

(a) [10 points] Show that regularized loss minimization can PAC-learn this problem with a sample com-
plexity independent of d.

Hint: Appeal to (*) to show PAC learning.

Answer: TODO

(b) [10 points] Let D be a distribution where x is always the fixed vector 0, and α has its entries i.i.d.
Unif({0, 1}) = Bernoulli(1/2). Let nD(ε, δ) denote the sample complexity of uniform convergence for
this D, so that if n ≥ nD(ε, δ), then

Pr
S∼Dn

(
sup
w∈H

LD(w)− LS(w) ≤ ε

)
≥ 1− δ.

Show that, for some (small) fixed ε > 0 and δ > 0, nD(ε, δ) increases with d.

Hint: Show that if d is large enough relative to n, you’re likely to get at least one dimension j where
(αi)j = 1 for all your observed samples i ∈ [n].

Answer: TODO

(c) [5 points] Use these two results to describe a problem where RLM is a PAC learner, but uniform
convergence doesn’t hold. Describe why this doesn’t contradict the fundamental theorem of statistical
learning.

Answer: TODO

5

5 Challenge: Lasso and stability [10 points]

On-average replace-one stability is not the only notion of stability (nor even the most common). Another
useful version of stability is uniform stability, which guarantees that

∀S, S′ of size n differing for only one point, sup
z∈Z

|ℓ(A(S′), z)− ℓ(A(S), z)| ≤ γ(n)

for some γ(n) that goes to 0 as n → ∞.

One advantage of uniform stability is that you can get high-probability bounds on LD(A(S)), not just
expectation bounds. (There’s a simple route via McDiarmid, or over the past few years there have been
some breakthroughs that give potentially much better bounds based on more complex analyses.)

For ∥·∥2-regularized linear models (including kernels), the proof we did to show a bound on the on-average

replace-one stability in fact shows the same bound on the uniform stability, γ(n) ≤ 2ρ2

λn .

The Lasso algorithm is based on the square loss and a ∥w∥1 =
∑d

j=1|wj | regularizer:

Aλ(S) ∈ argmin
w∈Rd

LS(w) + λ∥w∥1.

(If there are multiple minimizers, let’s have Aλ return an arbitrary one.) The Lasso algorithm is nice because
it often returns sparse solutions, i.e. w with many wj = 0.

Let’s use Z = X × Y = {x ∈ Rd : ∥x∥ ≤ R} × [−M,M] for simplicity.

(a) [5 points] Show that the Lasso algorithm is not uniformly stable.

Hint: There’s a reason I mentioned multiple minimizers above.

Answer: TODO

(b) [5 points] Show that the Lasso algorithm for any λ > 0 is on-average replace-one stable.

Hint: This is probably easiest to show with an “indirect” route via Rademacher complexity, as in
Question 2 part (c). You’ll also have to go through Lagrange duality and bound the Rademacher
complexity of an appropriate set.

Answer: TODO

6

	Validation sets and expectation bounds [20 points]
	Logistic regression [30 points]
	A really hard Convex-Lipschitz-Bounded problem [15 points]
	Learning without concentration [25 points]
	Challenge: Lasso and stability [10 points]

