
CPSC 532D: Assignment 4 – due Saturday, 10 Dec 2022, 11:59pm
As before: use LATEX, either with the template I give or your own document if you prefer.

You can do this with a partner if you’d like (there’s a “find a group” post on Piazza), but please make sure
you understand everything you’re submitting – don’t just split an assignment in half. If you do parts
of the assignment with a partner and parts separately, submit separate solutions, and say in each part you
did together who you did it with.

If you look stuff up anywhere other than in SSBD, MRT, Telgarsky, or Wainwright, cite your sources:
just say in the answer to that question where you looked. If you ask anyone else for help, cite that too.
Please do not look at solution manuals / search for people proving the things we’re trying to prove / etc. If
you accidentally come across a solution while looking for something related, still write the argument up in
your own words, link to wherever you found it, and be clear about what happened.
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1 Proving kerneldom [25 + 5 challenge + 2 bonus points]

Prove that the following functions are kernels, i.e. that they are positive definite functions.

Hint: Recall that we proved you can do so by directly proving all kernel matrices are psd, by writing an
explicit feature mapping k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩ where ϕ maps into any Hilbert space (including Rd), or by
using steps known to produce new kernels out of old ones.

You could also use Bochner’s theorem, which we did not cover in class, if you’re a Fourier buff: a kernel
k(x, y) = ψ(x− y) with ψ(0) = 1 is psd iff it is the Fourier transform of a probability measure.

Hint: Here are two Hilbert spaces that might be useful to you. First, the space ℓ2 of square-summable
sequences (ak)

∞
k=1 with inner product ⟨(ak), (bk)⟩ℓ2 =

∑
k akbk. Second, the space L2(X ) of square-integrable

functions1 on X , with inner product ⟨f, g⟩L2 =
∫
X f(x)g(x)dx.

(a) [5 points] k(x, y) = cos(x− y) on R.

Hint: The list of trigonometric identities makes for good bedtime reading.

Answer: TODO

(b) [5 points] kn(x, y) =
1
2π [1 + 2

∑n
k=1 cos(k(x− y))] =

sin((n+ 1
2 )(x−y))

2π sin( 1
2 (x−y))

on R for any n ≥ 0.

(This is called the Dirichlet kernel; it’s a continuous kernel which converges to the Dirac delta function
δ(x− y) as n→ ∞.)

Answer: TODO

(c) [5 points] k(x, y) = min(x, y) on [0, 1].

Hint: You could consider the integral
∫
R 1(t ∈ [0, x])1(t ∈ [0, y])dt.

Answer: TODO

(d) [5 points] k(X,Y ) =
∑

x∈X

∑
y∈Y k0(x, y) on finite sets with elements in X , where k0 is a kernel on X .

Answer: TODO

(e) [5 points] k(x, y) = 1/
√
1− xy on (−1, 1).

For [2 bonus points], you can instead show 1/
√
1− xTy on {x ∈ Rd : ∥x∥ < 1}.

Hint: It might help to use the following expansion (see e.g. here), which converges for |z| < 1:

1√
1− z

=

∞∑
k=0

ckz
k for ck :=

1

22k

(
2k

k

)
.

Answer: TODO

(f) [5 challenge points] The distance kernel k(x, y) = ∥x∥ + ∥y∥ − ∥x − y∥, where ∥·∥ is the norm of any
Hilbert space.

Hint: For all n ≥ 1, for all x1, . . . , xn and c1, . . . , cn such that
∑n

i=1 ci = 0, it holds that

n∑
i=1

n∑
j=1

ci∥xi − xj∥cj ≤ 0.

Answer: TODO
1Really, this should be a space of equivalence classes of functions, since a function that’s zero only almost everywhere will

have norm zero. That won’t matter for this question.
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2 Maximizing differences [25 points]

Let’s consider learning a kernel classifier with the somewhat unusual linear loss, ℓ(h, (x, y)) = −yh(x), where
y ∈ {−1, 1}. Take the kernel k : X × X → R with associated RKHS F .

(a) [10 points] Find the regularized loss minimizer

ĥλ = argmin
h∈F

LS(h) +
1
2λ∥h∥

2
F , (RLM)

for a training sample S = ((x1, y1), . . . , (xn, yn)).

Answer: TODO

(b) [5 points] Show that LS(ĥλ) = − 1
λ

∥∥∥ 1
n

∑
i:yi=1 k(xi, ·)−

1
n

∑
i:yi=−1 k(xi, ·)

∥∥∥2
F
.

Answer: TODO

(c) [5 points] Find a (data-dependent) value of λ, call it λ̂, such that ∥ĥλ̂∥F = 1, and simplify the expression

for LS(ĥλ̂).

Answer: TODO

(d) [5 points] Argue that ĥλ̂ is a solution to

min
h∈F :∥h∥≤1

LS(h). (ERM)

Further argue that solving (ERM) is equivalent to solving

max
h∈F :∥h∥≤1

∑
i:yi=1

h(xi)−
∑

i:yi=−1

h(xi), (MAX)

i.e. finding a function high on the positively-labeled points and low on the negatively-labeled ones.

Answer: TODO
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3 Kernel metrics on distributions [15 + 5 challenge points]

Here’s a slight tweak to the object we developed in Question 2, called the maximum mean discrepancy :

MMD(P,Q) = sup
f∈F :∥f∥F≤1

E
X∼P

f(X)− E
Y∼Q

f(Y ).

Assume for this question that the kernel k of F is continuous and satisfies supx∈X k(x, x) ≤ κ2 for some
κ < ∞. Define the kernel mean embedding of a (Borel) distribution P as µP = EX∼P k(X, ·); for bounded
kernels, this is guaranteed to exist, and you can move the expectation inside or outside of inner products:
for any f ∈ F ,

⟨µP , f⟩F = ⟨ E
X∼P

k(X, ·), f⟩F = E
X∼P

⟨k(X, ·), f⟩F = E
X∼P

f(X).

(a) [10 points] Prove that
MMD(P,Q) = ∥µP − µQ∥F

and
MMD2(P,Q) = E

X,X′∼P
Y,Y ′∼Q

[
k(X,X ′)− 2k(X,Y ) + k(Y, Y ′)

]
.

Answer: TODO

From the ∥µP − µQ∥F form, we can see that MMD satisfies all the conditions of a metric on probability
distributions except that we might have MMD(P,Q) = 0 for P ̸= Q. The energy distance is equivalent to
the MMD with the distance kernel from Question 1 part (f).

(b) [5 challenge points] Let X be a compact metric space, and C(X ) denote the set of continuous bounded
functions on X . A universal kernel k has an RKHS F such that for any g ∈ C(X ), for all ε > 0
there exists an f ∈ F with ∥f − g∥∞ = supx∈X |f(x) − g(x)| ≤ ε. Prove that if k is universal, then
MMD(P,Q) = 0 implies P = Q.

Hint: The following result will probably be helpful:

Lemma 3.1. Two Borel probability measures P and Q on a metric space X are equal if and only if
for all f ∈ C(X ), EX∼P f(X) = EY∼Q f(Y ).

Answer: TODO

Let U and V be (potentially dependent) random variables with values in U and V respectively. Let kU be a
kernel over U , kV a kernel over V, and kUV ((u, v), (u

′, v′)) = kU (u, u
′)kV (v, v

′) a kernel over U × V.

Define CUV = E[kU (U, ·)⊗kV (V, ·)]−E[kU (U, ·)]⊗E[kV (V, ·)]; recalling that the outer product of a ∈ A and
b ∈ B is a linear operator from B to A defined by [a⊗ b]x = a⟨b, x⟩B for all x ∈ B.

(c) [5 points] Show that ⟨f, CUV g⟩FU
= Cov(f(U), g(V )) for all f ∈ FU , g ∈ FV .

Answer: TODO

Using a similar argument to part (b), one can show that if kUV is universal (or various somewhat weaker
conditions), then U and V are independent if and only if CUV = 0. This can be checked using something
called the Hilbert-Schmidt independence criterion (HSIC), which estimates the squared Hilbert-Schmidt norm
of CUV . With the distance kernel of Question 1 part (f), this becomes proportional to the distance covariance.
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4 One way to do semi-supervised learning [25 points]

Semi-supervised learning is when you’re given not only a training set of (x, y) pairs, but also a set of
unlabeled x samples from the marginal distribution of x. (For instance, maybe you have a really big dataset
scraped from the web, and have only paid for human annotation of a small, random selection from it.) Even
though there aren’t any labels, this can be useful for determining the optimal decision function under some
reasonable assumptions: for instance, if you have a clear cluster structure, it’s perhaps more likely that the
labeling function is constant on that cluster.

One way to try to implement this is to penalize the gradient norm of the decision function, evaluated at
the data points – the decision function should be smooth where there’s data. (You might be familiar with
this type of gradient penalty from GANs.) It turns out that the special structure of RKHSes will allow for
this. Specifically, let’s let F be an RKHS for some continuously twice-differentiable kernel k on R, i.e. f ∈ F
maps R to R. (Everything here will work for Rd, the notation just gets a little messier.)

Our goal will be to minimize the following regularized loss over all of F , where both ν and λ are positive
scalars:

J(h) =
1

n

n∑
i=1

(
h(xi)− yi

)2
+
ν

m

m∑
i=1

(
h′(xi)

)2
+ λ∥h∥2F . (J)

Here we assume that we have our usual sample set
(
(x1, y1), . . . , (xn, yn)

)
, but we also have an unlabeled

sequence
(
xn+1, . . . , xm

)
, so that we have m total samples for x (of which the first n are labeled).

Kernels are two-argument functions, so differentiation notation can be slightly awkward. For brevity, we will
use ∂1 to refer to differentiating with respect to the first argument and ∂2 the second, so that ∂1k(x, y) means
∂
∂xk(x, y), ∂

2
2k(x, y) means ∂2

∂y2 k(x, y), and ∂1∂2k(x, x) means ∂2

∂z1∂z2
k(z1, z2)|z1=x

z2=x
– note that differentiation

happens “before” passing the arguments in (this is not ∂2

∂x2 k(x, x)).

The following result will be useful for us:

Lemma 4.1 (Special case of Steinwart/Christmann Lemma 4.34). Let k : R×R → R be a kernel such that
both ∂1∂2k(x, y) and ∂21∂

2
2k(x, y) exist and are continuous. Then, for all x ∈ R, ∂1k(x, ·) and ∂21k(x, ·) are

functions in F such that for all f ∈ F we have

⟨∂1k(x, ·), f⟩F = f ′(x) and ⟨∂21k(x, ·), f⟩F = f ′′(x).

For example, this also means that

⟨∂1k(x, ·), ∂1k(x′, ·)⟩F = ∂1∂2k(x, x
′) and ⟨∂21k(x, ·), k(x′, ·)⟩F = ∂21k(x, x

′).

(a) [13 points] Show a representer theorem for argminh∈H J(h), i.e. that you can write the optimal h as a
linear combination of some set of vectors in H.

Hint: The representer theorem we showed in class won’t directly apply, because J depends on the
derivatives of h. You’ll need to make an analogous argument, taking advantage of the lemma above.

Answer: TODO
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Define the following matrices:

K =

k(x1, x1) . . . k(x1, xn)
...

. . .
...

k(xn, x1) . . . k(xn, xn)

 ∈ Rn×n

G =

∂1k(x1, x1) . . . ∂1k(x1, xn)
...

. . .
...

∂1k(xm, x1) . . . ∂1k(xm, xn)

 ∈ Rm×n

H =

∂1∂2k(x1, x1) . . . ∂1∂2k(x1, xm)
...

. . .
...

∂1∂2k(xm, x1) . . . ∂1∂2k(xm, xm)

 ∈ Rm×m.

(b) [12 points] Write an explicit form for J(h) in terms of usual matrix and vector operations on the K, G,
and H matrices and the vector y ∈ Rn of labels, as well as the parameters of your linear combination
(and λ, ν, n, and m).

Hint: It will probably help to start by writing out h(xi), h
′(xi), and ∥h∥2F , then plugging those together.

It might be helpful in intermediate steps to use the standard basis vectors ei, which have a one in the
ith entry and zero in all others. Be careful about shapes matching.

Answer: TODO

If you did it right, the final form for J should be a quadratic form of your coefficients in terms of the matrices
K, G, and H. Thus, setting the gradient to zero will give an analytical solution written as the solution to a
certain linear system. (No need for you to write out that solution, since it’s a little messy.)
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