
CPSC 532D: Assignment 3 – due Tuesday, 8 Nov 2022, 11:59pm
As before: use LATEX, either with the template I give or your own document if you prefer.

You can do this with a partner if you’d like (there’s a “find a group” post on Piazza), but please make sure
you understand everything you’re submitting – don’t just split an assignment in half. If you do parts
of the assignment with a partner and parts separately, submit separate solutions, and say in each part you
did together who you did it with.

If you look stuff up anywhere other than in SSBD, MRT, Telgarsky, or Wainwright, cite your sources:
just say in the answer to that question where you looked. If you ask anyone else for help, cite that too.
Please do not look at solution manuals / search for people proving the things we’re trying to prove / etc. If
you accidentally come across a solution while looking for something related, still write the argument up in
your own words, link to wherever you found it, and be clear about what happened.
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1 Monotonicity [10 points]

(a) [3 points] Prove that if H ⊆ H′, then VCdim(H) ≤ VCdim(H′).

Answer: TODO

(b) [3 points] Prove that if H ⊆ H′, then Rad(H|S) ≤ Rad(H′|S).

Answer: TODO

(c) [4 points] Comment on how we should expect parts (a) and (b) to affect the generalization loss of
running ERM in H versus H′, that is, LD(ERMH(S)) versus LD(ERMH′(S)) for a fixed n. What other
factors are at play?

Answer: TODO
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2 Threshold functions [20 points]

Recall our old friend, the class of threshold functions on R:

H = {x 7→ 1(x ≤ θ) : θ ∈ R} .

We showed in class (notes 6.1.1) that the VC dimension of H is 1: it can shatter a set of size one (a single
point), but it cannot shatter any set of size two (since it can’t label the left point 0 and the right point 1).

(a) [5 points] Use Sauer-Shelah (Lemma 6.8) and the (nicer) Corollary 6.9 to give two upper bounds on
the growth function ΠH(n).

Answer: TODO

(b) [5 points] Directly derive the exact value of the growth function ΠH from its definition. How tight are
the upper bounds from part (a)?

Answer: TODO

(c) [5 points] Plug the previous parts in to upper bound the empirical Rademacher complexity Rad(H|S)
for an S containing n distinct real numbers. You should give multiple bounds here, one per distinct
bound from the previous parts.

Answer: TODO

(d) [5 points] Give the asymptotic value of Rad(H|S) for an S containing n distinct real numbers. Your
answer might look something like “Rad(H|S) = 7n + O(1),” with a justification. To be clear, this
means that 7n − an ≤ Rad(H|S) ≤ 7n + an for some an = O(1). How does it compare to the bound
from part (c)?

Hint: Imagine playing a (pretty boring) betting game where you bet $1 whether a coin I’m flipping
comes up heads or tails. Since all physical coin flips are unbiased, you have a 50-50 shot of getting
it right. The distribution of how much money I owe you is known as a simple random walk. Your
expected winnings at any time t are always 0 (it’s the sum of a bunch of mean-zero variables), but
if you play for a while and then go back and conveniently “forget” the record of flips after a certain
point, the expected maximum value achieved at any point during a walk of length n turns out to be√

2n
π − 1

2 +O(n− 1
2 ), per (4) and (7) of the linked paper.

Answer: TODO

3

http://www.stat.columbia.edu/~gelman/research/published/diceRev2.pdf
https://arxiv.org/abs/cond-mat/0506195


3 Piecewise-constant functions [20 + 10 challenge + 5 bonus points]

Let a = (a1, a2, . . . , ak, 0, 0, . . . ) be an eventually-zero sequence with entries ai ∈ {0, 1}. Then define a
hypothesis ha : R>0 → {0, 1} by

ha(x) = a⌈x⌉ =


a1 if 0 < x ≤ 1

a2 if 1 < x ≤ 2
...

.

Consider the hypothesis class of all such functions: H = {ha : ∀i ∈ N, ai ∈ {0, 1} and a is eventually zero}.

(a) [5 points] Show VCdim(H) = ∞.

Answer: TODO

(b) [8 points] Give an example of a “nontrivial” distribution Dx on R>0 where, for some n < VCdim(H),
samples Sx ∼ Dn

x have probability zero of being shattered by H. “Nontrivial” is of course a judgement
call, but as an example, point masses at a single point are trivial, while, say, truncated normal distribu-
tions are not trivial. Thus prove that, for any D with this x marginal Dx, ERM over H (ε, δ)-competes
with the best hypothesis in H for that D with some finite sample complexity, rather than the infinite
sample complexity that would be implied by the VC bound.

Answer: TODO

(c) [7 points] Write H = H1 ∪ H2 ∪ · · · for each Hk of a finite VC dimension, and write down an explicit
SRM algorithm that nonuniformly learns H. By “an explicit algorithm,” I mean to expand out things
like the uniform convergence bound for Hk; it’s okay to write something as an argmin over H (like in
notes (7.2) if you say what kh is for a given h and give the value of the Rademacher complexity term),
or to just appeal to the SRM algorithm pseudocode from the notes (as long as you say what’s in each
Hk, what the εk functions are, and how to compute the stopping condition).

Answer: TODO

(d) [5 bonus points] Bonus question: Suppose that instead of eventually-zero sequences, we allowed all
possible sequences a, e.g. the a that infinitely alternates between 0 and 1 could be an option. Is this
bigger H′ nonuniformly learnable?

Answer: TODO

(e) [7 points] Challenge question: Prove that, for any Dx, ESx∼Dn
x
Rad(H|Sx

) → 0 as n → ∞. Hint:
One way to do it (there’s probably more than one): first, reduce to the “ceiled” distribution over N
instead of over R>0, and use Corollary 4.8 to reduce to a bound in terms of EM/n, where M is the
number of unique integers you’ve seen in S. Then prove that EM = o(n) for any distribution over N.

Answer: TODO

(f) [3 points] Challenge question: An absentminded professor made the following argument on the final
exam for a course:

If a hypothesis class has ESx∼Dn
x
Rad(H|Sx

) → 0 for all Dx, then for all realizable D,

LD(ĥS) ≤ E
SX∼Dn

x

Rad(H|Sx
) +

√
1

2n
log

1

δ
→ 0.

Thus, by the “fundamental theorem of statistical learning,” H must have finite VC dimension.

Clearly this argument is wrong, since it puts parts (a) and (e) in contradiction. What was her mistake?

Answer: TODO
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4 Generalization bound for a simple neural network [40 points]

Based on MRT exercise 3.11.

Here is a class of neural networks mapping Rd to R, with one hidden layer of width m and activations
ϕ : R → R a 1-Lipschitz function (e.g. the ReLU or sigmoid function):

H =

x 7→
m∑
j=1

wjϕ(u
T
j x) : ∥w∥1 ≤ ν, ∥uj∥2 ≤ Λ for each j ∈ [m]

 .

We haven’t used this in this class yet, but recall that ∥w∥1 =
∑m

j=1|wj |. Λ and ν are hyperparameters
defining how complex the class is allowed to be.

(a) [10 points] Show that Rad(H|Sx) =
ν

n
E
ϵ

[
sup

∥u∥2≤Λ

∣∣∣∣∣
n∑

i=1

ϵiϕ(u
Txi)

∣∣∣∣∣
]
.

Answer: TODO

This variant of Talagrand’s contraction lemma works for any H and ρ-Lipschitz function Φ:1

1

n
E
ϵ

[
sup
h∈H

∣∣∣∣∣
n∑

i=1

ϵiΦ(h(xi))

∣∣∣∣∣
]
≤ 2ρ

n
E
ϵ

[
sup
h∈H

∣∣∣∣∣
n∑

i=1

ϵih(xi)

∣∣∣∣∣
]
+

|Φ(0)|√
n

. (*)

(b) [10 points] Use (*) to upper bound Rad(H|Sx) in terms of Rad(H′|Sx), for

H′ =
{
x 7→ s (uTx) : ∥u∥2 ≤ Λ, s ∈ {−1,+1}

}
=

{
x 7→ uTx : ∥u∥2 ≤ Λ}.

Answer: TODO

(c) [10 points] Bound ES∼Dn
x
Rad(H′|S), and thereby ES∼Dn

x
Rad(H|S). You’ll need an assumption on ∥x∥

from Dx to do this; be clear what you’re assuming.

Answer: TODO

(d) [10 points] Give an expression for ε such that Pr
S∼Dn

(
sup
h∈H

(LD(h)− LS(h)) ≤ ε

)
≥ 1− δ, where you’ll

need to choose some loss function ℓ for inside L, and be clear about any additional assumptions. Please
choose a specific loss function ℓ; if it’s not one we’ve used in class, be sure to justify it as a “‘reasonable”
loss function.

There are several valid approaches here. Try to pick a reasonable set of assumptions and loss function;
something like “all the ys are equal to 0” is not reasonable. Your bound should have ε → 0 as n → ∞
with all other parameters fixed.

Answer: TODO

1The MRT exercise claims that, for any H and ρ-Lipschitz Φ,

1

n
E
ϵ

[
sup
h∈H

∣∣∣∣∣
n∑

i=1

ϵiΦ(h(xi))

∣∣∣∣∣
]
≤

ρ

n
E
ϵ

[
sup
h∈H

∣∣∣∣∣
n∑

i=1

ϵih(xi)

∣∣∣∣∣
]
. (wrong)

This would be true if you dropped the absolute value bars, but the version as stated is not true. For a counterexample, consider
the (not very interesting) hypothesis class H = {x 7→ 0} and the function Φ(x) = C which, as it ignores its argument, is
L-Lipschitz for any L ≥ 0. The LHS of (wrong) is |C| times Eϵ

∣∣ 1
n

∑n
i=1 ϵi

∣∣ > 0. The RHS of (wrong), though, is exactly 0,
since h(xi) = 0 for all xi. This example also shows that assuming a symmetric H would not be enough to fix (wrong): you
would need Φ ◦ H to be symmetric as well.
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