I’m likely to re-use at least some problems from year to year, so if you’re currently in or likely to take a future version of the course, please do not look at this solutions file; it is academic dishonesty to do so.

Personally, I kind of understand the motivation to cheat sometimes in an undergrad course (although, obviously, please please don’t do it in undergrad courses, but like, I get why people would). But in a grad course... it’s really just not going to help you.

If you’re feeling super stressed / whatever and just need to get the assignment in, please write to me about an extension or re-weighting or some kind of route to making things work for you – I’m very willing to be flexible with this kind of thing in grad courses.
1 Concentrating on concentric circles [40 + 4 bonus points]

In this problem, we’ll show that a particular infinite hypothesis class can be PAC-learned with a “direct” proof. Based in part on SSBD exercise 3.3.

Let \(X = \mathbb{R}^2 \), \(Y = \{0, 1\} \), and let \(\mathcal{H} \) be the class of indicator functions for circles around the origin – that is, \(\mathcal{H} = \{h_r : r \in \mathbb{R}_{\geq 0}\} \), where \(h_r(x) = 1_{\{|x| \leq r\}} \) (a function which is 1 if \(|x| \leq r\), 0 otherwise). Use 0-1 loss.

For a given sample \(S \), let \(r_S = \max_{i:y_i=1} |x_i| \), and use \(\hat{h}_S \) to denote \(h_{r_S} \), the indicator function of a circle with radius \(r_S \), the tightest circle containing all of the positive training points.

To start with, let’s assume realizability: that there is an \(h^* \in \mathcal{H} \) such that \(L_D(h^*) = 0 \).

(a) [5 points] Show that \(\hat{h}_S \) is an empirical risk minimizer for the hypothesis class \(\mathcal{H} \).

Answer: It’s enough to show that \(L_S(\hat{h}_S) = 0 \), since the 0-1 loss can’t be negative. For a positive example \((x,1) \in S\), we have that \(|x| \leq r_S\) by definition of \(r_S \), and so \(x \) is classified correctly.

Now, because of the realizability assumption, we know there is some \(r^* \) such that all negative examples have \(|x| > r^*\); moreover, we must have \(r_S \leq r^* \). Thus any negative example in \(S \) must have \(|x| > r^* \geq r_S \), and so it will be classified correctly as well.

(b) [20 + 4 bonus points] Prove that if we observe \(n \geq \frac{1}{\epsilon} \log \frac{1}{\delta} \) samples from a realizable \(D \), then the probability that \(L_D(\hat{h}_S) \geq \epsilon \) is at most \(\delta \).

You may assume that \(D_x \), the distribution of \(x_S \) sampled from \(D \), is continuous. For [4 bonus points], also handle the case where \(D_x \) is not continuous (e.g. if it has a point mass).

Hint: Three steps: first, what makes a hypothesis have high error in this setting? Next, what would \(S \) have to look like in order to get one of those “bad” hypotheses? Last, how likely is it to see an \(S \) like that?

Hint: A frequently useful inequality is that \(1 - a \leq \exp(-a) \).

Hint: If you’re stuck and want to see something similar-ish (but a little more complicated), check out Example 2.4 of MRT, which is also Exercise 2.3 of SSBD.

Answer: Again, realizability means that there is some \(r^* \) for which \(f \) agrees almost surely with \(h_{r^*} \).

Note that necessarily \(r^* \geq r_S \), and so \(h \) doesn’t predict 1 for anything that’s actually a 0; the only kind of mistake it can make is predicting 0 for things that are actually a 1, which happens exactly when \(r_S < |x| \leq r^* \). Thus, \(L_D(\hat{h}_S) = \Pr_{x \sim D_S}(r_S < |x| \leq r^*) \).

We want to consider the probability of hitting a “bad” hypothesis: one with \(L_D(h) > \epsilon \), or – upper-bounding very slightly because it’s more convenient – \(L_D(h) \geq \epsilon \). Now, let \(r_S \) be the largest possible radius such that \(\Pr_{x \sim D}(r_S < |x| \leq r^*) \geq \epsilon \). If \(D_x \) is continuous, there is an \(r_S \) where this is exactly equal. In general, there might not be (imagine putting 2\(\epsilon \) mass exactly at norm \(r^* \), but the function \(r \to \Pr_{x \sim D_S}(r_S < |x| \leq r^*) \) will be left-continuous with right limits (aka càdlàg, the opposite of a CDF), so there will be a unique maximum. Thus, the probability of getting a “bad” hypothesis is just

\[
\Pr(L_D(\hat{h}_S) > \epsilon) \leq \Pr(L_D(h_S) \geq \epsilon) = \Pr(r_S \leq r_S).
\]

Because \(r_S = \max_{i \in [n]} \|x_i\| < r^* \), and \(S \sim D^n \), we have

\[
\Pr(r_S \leq r_S) = \Pr(\forall i \in [n], \|x_i\| \notin (r_S, r^*)) = (1 - \Pr(\|x\| \in (r_S, r^*))^n.
\]

But we chose \(r_S \) such that the probability of falling in that interval is at least \(\epsilon \), and so we get

\[
\Pr(L_D(h_S) > \epsilon) \leq (1 - \epsilon)^n \leq \exp(-n\epsilon),
\]

and so if \(n \geq \frac{1}{\epsilon} \log(1/\delta) \) we can guarantee the probability of a bad hypothesis is at most \(\delta \).
Now let’s make things a little harder on our learner, by adding random noise. Rather than perfect realizability, let \(\mathcal{D} \) be such that \(\Pr(y = 1 \mid x) = \begin{cases} 1 - \eta & \text{if } h^*(x) = 1 \\ \eta & \text{if } h^*(x) = 0 \end{cases} \) for some \(h^* \in \mathcal{H} \): that is, labels are randomly flipped with probability \(\eta \in (0, \frac{1}{2}) \). The learner knows the value of \(\eta \), but not which points have been flipped.

c [5 points] Is \(\hat{h}_S \) still an ERM?

Answer: Not necessarily. For example, suppose that the labels we observe, sorted from smallest norm of \(x \) to largest, are + + + + - - - - - +. Then \(\hat{h}_S \) would classify all points as positive, for 50% training error, while choosing the threshold before the first - would give us only 10% error.

d [10 points] Ambitious Angus claims to have proven the following:

For any \(\varepsilon, \delta > 0 \) and \(0 \leq \eta < \frac{1}{2} \), there is a function \(n_H(\eta, \varepsilon, \delta) \) such that, for any \(n \geq n(\eta, \varepsilon, \delta) \) and any \(\mathcal{D} \) of the form above,

\[
\Pr_{S \sim \mathcal{D}^n} (L_{\mathcal{D}}(\hat{h}_S) > \eta + \varepsilon) \leq 1 - \delta.
\]

This is followed by an unreadably long computer-assisted proof using both category theory and complicated partial differential equations. Without reading that proof, argue that Angus must be wrong: no such function \(n_H \) can exist.

Answer: To disprove Angus’s statement, it suffices to show one \(\mathcal{D} \) for which it cannot hold. So let’s just use a distribution where \(\|x\| \) is uniform from 0 to 2, with \(h^* = h_1 \) thresholding at a radius of 1. As \(n \to \infty \), approximately \(n/4 \) points will have norm greater than 1.5, and so approximately \(\eta n/4 \) points will have norm above 1.5 and a positive label. Thus \(\hat{h}_S \) will almost surely have a threshold at least 1.5 – but that means that its error rate must be at least 0.25, contradicting Angus’s claim that it will become arbitrarily close to 0.
2 Loss functions [35 points]

The general form of learning problems we’ll usually work with in this course is as follows: \(\mathcal{D} \) is some distribution over a space \(Z \), and \(\ell : \mathcal{H} \times Z \rightarrow \mathbb{R} \) is a loss function.

For example, classification problems as we’ve mostly considered so far are usually framed with empirical risk is

\[
\mathbb{E}_{S \sim \mathcal{D}^n} L_S(h) = \frac{1}{n} \sum_{i=1}^{n} \ell(h, z_i) = \mathbb{E}_{z \sim \mathcal{D}} \ell(h, z) = L_D(h).
\]

(a) [10 points] Prove that, for any given \(h \in \mathcal{H} \), \(L_S(h) \) is unbiased: \(\mathbb{E} L_S(h) = L_D(h) \).

Answer:
\[
\mathbb{E}_{S \sim \mathcal{D}^n} L_S(h) = \mathbb{E}_{z \sim \mathcal{D}} \ell(h, z) = L_D(h).
\]

(b) [5 points] Prove that the zero-one loss for \(k \)-way classification (\(\mathcal{Y} = \{1, \ldots, k\} \)) is equal to one minus the accuracy (the portion of correct answers).

Answer: There are two extremely related interpretations of this (ambiguous) question: that the training accuracy is one minus the training loss, or that the generalization accuracy is one minus the true loss. I meant the second one, but either is fine.

\[
L_D(h) = \mathbb{E}_{(x,y) \sim \mathcal{D}} \mathbb{1}(h(x) \neq y) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}(h(x_i) \neq y_i) = 1 - \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}(h(x_i) = y_i).
\]

(c) [5 points] For the canonical ImageNet Large Scale Visual Recognition Challenge, images are given with one of a thousand possible labels, and one major way of evaluating those models is the top-5 accuracy: models can make 5 guesses at the label, and we count how often the correct label is one of those 5 guesses. Frame this in the language above: what kind of object does \(h(x) \) output, and what does \(\ell(h, (x, y)) \) look like?

Answer: One reasonable way is to let \(h(x) \) output five guesses, maybe a 5-tuple in \(\mathcal{Y}^5 \) or a set of size exactly 5 with elements in \(\mathcal{Y} \); then \(\ell(h, (x, y)) = \mathbb{1}(y \notin h(x)) \).

Another, more like what these methods typically actually do, would be to have \(h(x) \) output a 1000-dimensional probability vector, and have \(\ell \) check if \(y \) is one of the five largest elements of \(h(x) \). (You’d have to be a little careful about tie-breaking there, though.)

(d) [5 points] Semantic segmentation is a computer vision problem where we try to label each pixel of an image as belonging to one of several classes (“tree,” “street,” “dog,” etc.). Let \(S = ((x_1, y_1), \ldots, (x_n, y_n)) \) where \(x_i \) are the given input images and \(y_i \) their corresponding pixel labels. One typical evaluation metric is called mIoU (“mean intersection over union”), and is measured on a test set as follows:

\[
\frac{1}{\text{# of classes}} \sum_{k=1}^{\text{# of classes}} \frac{\text{# of pixels from all images predicted as } k \text{ with label } k}{\text{# of pixels from all images predicted as } k \text{ and/or with label } k}.
\]
For next time: explicitly name the mIoU as some function, say Q_S; be explicit about measuring it on a set S in “all images” in the equation, etc. Also throw in a $1-$ so it’s a better “loss.” Argue that this metric cannot be expressed using the form of loss function above on the given S. (A formal proof isn’t necessary on this question, just a good intuitive argument.)

Answer: The numerators and denominators from the different images are all “mixed together”: there’s no way to break it up into a sum over images. Any reasonably convincing argument along those lines would get full points, but here’s one way to see this formally:

Consider a problem with $k = 2$.

Let (x_1, y_1) be a 10-pixel image which are all class 1, where h correctly predicts 9 pixels as class 1, and incorrectly predicts 1 pixel as class 2.

Let (x_2, y_2) be a 10-pixel image which are all class 2, where h correctly predicts 9 pixels as class 2, and incorrectly predicts 1 pixel as class 1.

The mIoU for $S_1 = ((x_1, y_1))$ is $\frac{1}{2} \times \frac{9}{10} + \frac{1}{2} \times \frac{0}{1} = \frac{9}{20} = 0.45$; it’s the same for $S_2 = ((x_2, y_2))$.

If the mIoU were expressible as the kind of loss we look at here, the mIoU for $S_{12} = ((x_1, y_1), (x_2, y_2))$ would have to also be 0.45.

But it’s actually $\frac{1}{2} \times \frac{9}{11} + \frac{1}{2} \times \frac{9}{11} = \frac{9}{11} \approx 0.81$!

(e) [5 points] Principal component analysis (PCA) is a common technique that can try to find an underlying low-dimensional structure by a linear mapping to a low-dimensional space: a data point $x \in \mathbb{R}^d$ is mapped to a latent code $z = Wx \in \mathbb{R}^k$, where $W \in \mathbb{R}^{k \times d}$ is a matrix with orthonormal rows ($WW^\top = I$) that we want to learn. To reconstruct a point from its latent code z, we take $W^\top z$. To find W, we minimize the squared reconstruction error on a training set:

$$\arg \min_{W:WW^\top = I} \sum_{i=1}^{n} ||W^\top Wx_i - x_i||^2.$$ \hspace{1cm} (PCA)

Frame PCA as an empirical risk minimization problem: what are the data domain Z, the sample S, the hypothesis class H, and the loss function $\ell : H \times Z \to \mathbb{R}$ such that the set of ERMs is exactly the set of solutions to (PCA)?

Answer: We can take $Z = \mathbb{R}^d$, a sample of $S = (x_1, \ldots, x_n)$, a hypothesis class of $H = \{W \in \mathbb{R}^{k \times d} : WW^\top = I\}$, and the loss function $\ell(W, x) = ||x - W^\top Wx||^2$. Then the IRM problem is exactly like (PCA) except that there’s an extra $\frac{1}{n}$, which doesn’t affect the arg min.

(f) [5 points] Frame the problem of fitting a Gaussian distribution to a set of scalar observations as loss minimization above: what are the data domain Z, the sample S, the hypothesis class H, and the loss function $\ell : H \times Z \to \mathbb{R}$ such that the ERM agrees with the maximum likelihood estimate?

Answer: (I should have said that the samples were independent here.)

The parameters of a Gaussian distribution on \mathbb{R} are just the mean and standard deviation, so we can let $H = \{(\mu, \sigma) : \mu \in \mathbb{R}, \sigma \in \mathbb{R}_{\geq 0}\}$. Our observations are also just numbers in $Z = \mathbb{R}$, so our sample is
\(S = (x_1, \ldots, x_n) \) (or call them \(z_i \), whatever). Now, remember that maximum likelihood is
\[
\begin{align*}
\arg\max_{\mu, \sigma} \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right) &= \arg\max_{\mu, \sigma} \log \left(\prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right) \right) \\
&= \arg\max_{\mu, \sigma} \sum_{i=1}^{n} \log \left(\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right) \right) \\
&= \arg\min_{\mu, \sigma} \frac{1}{n} \sum_{i=1}^{n} -\log \left(\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right) \right)
\end{align*}
\]
since the log is monotonic, and multiplying by a negative number flips maximization into minimization. This last term is ERM with the negative log-likelihood
\[
\ell((\mu, \sigma), x) = -\log \left(\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right) \right) = \frac{1}{2} \log(2\pi) + \log \sigma + \frac{(x_i - \mu)^2}{2\sigma^2}.
\]
Notice that nothing up to the last (unnecessary) simplification actually cared what the likelihood was; this works for any probabilistic model. (Also, the additive constant doesn’t do anything here; you could drop it.)
3 Bayes optimality [25 points]

A Bayes-optimal predictor is a predictor which achieves the lowest possible error for any function, regardless of a choice of hypothesis class or anything like that.\footnote{As usual in this course, I’m ignoring issues of measurability and so on; this should all be formalizable by being appropriately careful and using “disintegrations” of probability measures, etc, but for the purpose of this question you can just ignore such issues.}

We’ll consider loss functions of the form \(\ell(h, (x, y)) = \lambda(h(x), y) \), where \(h : \mathcal{X} \to \hat{\mathcal{Y}} \) and \(\lambda : \hat{\mathcal{Y}} \times \mathcal{Y} \to \mathbb{R} \).\footnote{This is often how loss functions are defined in the first place; there are a few cases in the course where the more general \(\ell \) form is more convenient, but for this question, the \(\lambda \) form is a little easier.}

(We often have \(\hat{\mathcal{Y}} = \mathcal{Y} \), as in binary classification, but not necessarily, as you may have seen in the previous question.)

A Bayes-optimal predictor has no pesky constraints on the form of function it’s going to be, so it can just give an arbitrary different prediction for each \(x \). Let \(F(x) \) denote the conditional distribution of \(y \) for a given \(x \) under \(D \): if \(D \) is deterministic, this won’t be a very interesting distribution (a point mass), but in general it might be more complicated.

(a) [10 points] Argue that if \(h \) and \(g \) are predictors such that for every \(x \),
\[
E_{y \sim F(x)} \lambda(h(x), y) \leq E_{y \sim F(x)} \lambda(g(x), y),
\]
then we necessarily have that \(L_D(h) \leq L_D(g) \).

Answer: Using the law of total expectation, we can see that
\[
L_D(h) = E_{(x,y) \sim D} \lambda(h(X), y) = E_{x \sim D_x} \left[E_{y \sim F(x)} \lambda(h(x), y) \right] \leq E_{x \sim D_x} \left[E_{y \sim F(x)} \lambda(g(x), y) \right] = L_D(g).
\]

(b) [5 points] Use the above formulation to argue that \(f_{D,0-1}(x) = \begin{cases} 1 & \text{if } \Pr_{y \sim F(x)}(y = 1) \geq \frac{1}{2} \\ 0 & \text{otherwise} \end{cases} \) is Bayes-optimal for binary classification problems with 0-1 loss.

Answer: We have
\[
E_{y \sim F(x)} \lambda(\hat{y}, y) = \Pr_{y \sim F(x)}(y \neq \hat{y}) \times 1 + \Pr_{y \sim F(x)}(y = \hat{y}) \times 0 = \Pr_{y \sim F(x)}(y \neq \hat{y}),
\]
which is minimized by the choice above. (It would also be minimized by changing ≥ to >.)

(c) [5 points] Use the above formulation to derive the Bayes-optimal predictor for a binary classification problem with the loss of an “is this mushroom edible” classifier:
\[
\lambda(\hat{y}, y) = \begin{cases} 0 & \text{if } \hat{y} = y \\ 0.01 & \text{if } \hat{y} = 0 \neq y = 1 \\ 1 & \text{if } \hat{y} = 1 \neq y = 0 \end{cases}.
\]
Answer: The expected loss here is

$$E_{y \sim \mathcal{F}(x)} \lambda(\hat{y}, y) = \begin{cases} \Pr_{y \sim \mathcal{F}(x)}(y = 1) \times 0.01 + \Pr_{y \sim \mathcal{F}(x)}(y = 0) \times 0 & \text{if } \hat{y} = 0 \\ \Pr_{y \sim \mathcal{F}(x)}(y = 1) \times 0 + \Pr_{y \sim \mathcal{F}(x)}(y = 0) \times 1 & \text{if } \hat{y} = 1 \end{cases}$$

Thus, we should pick $\hat{y} = 1$ only if

$$0.01 \Pr_{y \sim \mathcal{F}(x)}(y = 1) \geq \Pr_{y \sim \mathcal{F}(x)}(y = 0) = 1 - \Pr_{y \sim \mathcal{F}(x)}(y = 1)$$

i.e. $\Pr_{y \sim \mathcal{F}(x)}(y = 1) \geq \frac{1}{1.01} \approx 0.99$:

$$f_{D,\lambda} = \begin{cases} 1 & \text{if } \Pr_{y \sim \mathcal{F}(x)}(y = 1) > \frac{1}{1.01} \\ 0 & \text{otherwise} \end{cases}$$

d [5 points] Use the above formulation to argue that

$$f_{D, sq}(x) = E_{y \sim \mathcal{F}(x)} y$$

is Bayes-optimal for scalar regression problems with squared loss $\lambda(\hat{y}, y) = (\hat{y} - y)^2$.

Answer: We can see this by, for example,

$$\frac{d}{d\hat{y}} E_y (\hat{y} - y)^2 = \frac{d}{d\hat{y}} [\hat{y}^2 - 2\hat{y} E_y y + E_y y^2] = 2(\hat{y} - E_y y),$$

which is zero only if $\hat{y} = E_y y$. To check this point is actually a minimum, note that the second derivative is $2 > 0$ everywhere.