

Binary Density Estimation

CPSC 440/550: Advanced Machine Learning

`cs.ubc.ca/~dsuth/440/25w2`

University of British Columbia, on unceded Musqueam land

2025-26 Winter Term 2 (Jan–Apr 2026)

Motivation: COVID-19 prevalence

- What percentage of UBC students have COVID-19 right now?
- “Brute force” approach (census):
 - Line up every single student, test them all, count the portion that test positive
- Statistical approach (survey):
 - Grab an “**independent and identically distributed**” (**iid**) sample of students
 - **Estimate** the proportion that have it, based on the sample

General problem: binary density estimation

- This is a special case of **density estimation** with binary data:
 - Input: n iid samples of binary values $x^{(1)}, x^{(2)}, \dots, x^{(n)} \in \{0, 1\}$
 - Output: a **probability model** for a random variable X : here, just $\Pr(X = 1)$
- As a picture:
$$\mathbf{X} \in \mathbb{R}^{n \times 1} \text{ contains our sample data}$$
$$X \text{ is a random variable over } \{0, 1\} \text{ from the distribution}$$

$$\mathbf{X} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \xrightarrow{\text{density estimator}} \Pr(X = 1) = 0.4$$

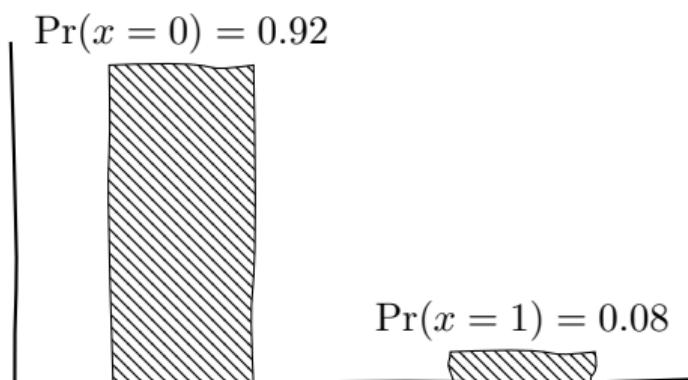
- We'll start by discussing major concepts for this very simple case
 - We'll slowly build to more complicated cases
 - Beyond binary data, more than one variable, conditional versions, deep versions, etc

Other applications of binary density estimation

- Some other questions we might ask:
 - 1 What's the probability this medical treatment works?
 - 2 What's the probability that if you plant 10 seeds, at least one will germinate?
 - 3 How many lottery tickets should you expect to buy before you win?
- In the first example, we're computing $\Pr(X = 1)$ like before
- For the other two, we're using the model to compute some other quantity
 - We call all three “inference” with this model

Model definition: Bernoulli distribution

- We're going to start by using a **parameterized** probability model
 - i.e. a model with some **parameters we can learn**
- For binary variables, we usually use the **Bernoulli distribution**
- x is Bernoulli with **parameter θ** , or $x \sim \text{Bern}(\theta)$, if $\Pr(X = 1 \mid \theta) = \theta$
 - In the COVID example, if $\theta = 0.08$, we think 8% of the population has COVID
- Require that $0 \leq \theta \leq 1$ for a valid probability distribution



Digression: “inference” in statistics vs. ML

bonus!

- In machine learning, the usual terminology is:
 - “Learning” is the task of **going from data \mathbf{X} to parameters θ**
 - “Inference” is the task of **using the parameters θ to infer/predict something**
- Statisticians sometimes use a “reverse” terminology:
 - Given data, you can “infer” parameters θ
 - Given parameters θ , you can predict something
- This is partly influenced by the history of the two communities:
 - Statisticians often assume there’s a “true” parameter we can infer things about
 - ML hackers often focus on making predictions
- Some people use “inference” in both ways!
- We’ll **use the ML terminology**

Inference task: computing probabilities

- An inference task: given θ , compute $\Pr(X = 0 | \theta)$
- We'll also sometimes write this as $p(0 | \theta)$, $p_\theta(0)$, or just $p(0)$
 - Be careful you know what we're abbreviating! "Explicit is better than implicit"
- Recall that probabilities add up to 1: since $X \in \{0, 1\}$,

$$\Pr(X = 0 | \theta) + \Pr(X = 1 | \theta) = 1$$

- Since $\Pr(X = 1 | \theta) = \theta$ by definition, this gives us

$$\Pr(X = 0 | \theta) + \theta = 1$$

- and so if $X \sim \text{Bern}(\theta)$, we know $\Pr(X = 0 | \theta) = 1 - \theta$
- First inference task down!

Bernoulli distribution notation

- It's sometimes helpful to combine the Bernoulli distribution into one expression:

$$p(x | \theta) = \theta^x (1 - \theta)^{1-x} = \theta^{\mathbb{1}(x=1)} (1 - \theta)^{\mathbb{1}(x=0)}$$

- $\mathbb{1}$ is an “**indicator function**”: $\mathbb{1}(E)$ is 1 if the condition E is true, and 0 if it's not

Aside: p for probability masses

bonus!

- If you're like me, you might be bothered by using a lowercase p in $p(0 | \theta)$
 - It's a probability mass, not a density!
- This is really really common among ML people, but when I first taught this class I started trying to change them all to P – or even to change everything to Pr
- . . . it got really really messy (why this is really really common among ML people)
- If you're like me, this might be reassuring:
 - p actually **is** a probability density for the Bernoulli distribution
 - It's just the Radon-Nikodym derivative wrt $\mu(A) = \mathbb{1}(0 \in A) + \mathbb{1}(1 \in A)$
- If you haven't seen measure-theoretic probability, don't worry – it's not actually relevant to this course
- But it justifies “mixing” masses and densities willy-nilly

Outline

- 1 Bernoulli distributions
- 2 Bernoulli inference tasks

Inference task: computing dataset probabilities

- Inference task: given θ and an iid sample, compute $p(x^{(1)}, x^{(2)}, \dots, x^{(n)} | \theta)$
- Also called the “likelihood”: $\Pr(X^{(1)} = x^{(1)}, X^{(2)} = x^{(2)}, \dots, X^{(n)} = x^{(n)} | \theta)$
 - Many ways to estimate/learn θ need this, e.g. maximum likelihood estimation
 - Also helpful in comparing models on validation/test data
- Assuming the $X^{(i)}$ are independent given θ , we have

$$p(x^{(1)}, x^{(2)}, \dots, x^{(n)} | \theta) = \prod_{i=1}^n p(x^{(i)} | \theta)$$

- We'll talk more explicitly about conditional independence a little later in the course

Inference task: computing dataset probabilities

- Using the independence property, for example, $p(1, 0, 1, 1 | \theta)$ is

$$\begin{aligned} p(x^{(1)}, \dots, x^{(4)} | \theta) &= \prod_{i=1}^4 p(x^{(i)} | \theta) \\ &= p(x^{(1)} | \theta) \quad p(x^{(2)} | \theta) \quad p(x^{(3)} | \theta) \quad p(x^{(4)} | \theta) \\ &= \theta \quad (1 - \theta) \quad \theta \quad \theta \\ &= \theta^3(1 - \theta) \end{aligned}$$

- More generally, we can write

$$\begin{aligned} p(\mathbf{X} | \theta) &= \theta^{\sum_{i=1}^n x_i} (1 - \theta)^{\sum_{i=1}^n (1 - x_i)} \\ &= \theta^{\sum_{i=1}^n \mathbb{1}(x_i=1)} (1 - \theta)^{\sum_{i=1}^n \mathbb{1}(x_i=0)} \\ &= \theta^{n_1} (1 - \theta)^{n_0} \end{aligned}$$

Inference task: computing dataset probabilities

```
n_1 = 0
n_0 = 0
for i in range(n):
    if X[i] == 1:
        n_1 += 1
    else: # binary data
        n_0 += 1
p = theta ** n_1 * (1 - theta) ** n_0
```

Better version:

```
n_1 = X.sum()
n_0 = X.shape[0] - n_1
log_p = n_1 * np.log(theta) \
        + n_0 * np.log1p(-theta)
```

- Computational complexity (of either): $\mathcal{O}(n)$
 - Look at each element once, doing a single addition each time, then a constant number of operations for final value
- Operating in “log space” is very practically helpful:
 - If n is huge and/or θ is very close to 0 or 1, the probability is **tiny**
 - **Calculation might underflow** and return zero / be very inaccurate
 - Logarithms give you much bigger range of effective floating point computation
 - `np.log1p(t)` is $\log(1 + t)$, but floats are much more accurate near 0 than 1!

Inference task: finding the mode (“decoding”)

- Inference task: given θ , find the x that maximizes $p(x | \theta)$
 - “What’s most likely to happen?”
- For Bernoulli models:
- If $\theta < 0.5$, the mode is $x = 0$
 - If $\theta = 0.03$, it’s more likely that a random person **does not** have COVID-19
- If $\theta > 0.5$, the mode is $x = 1$
 - If $\theta = 0.6$, it’s more likely that a random person **does** have COVID-19 (uh-oh)
- If $\theta = 0.5$, both $x = 0$ and $x = 1$ are valid modes
- This process isn’t very exciting for Bernoulli models
 - For more complex models, it can be pretty hard (and important)
 - We’ll see later that **classification** can be viewed as finding a (conditional) mode

Inference task: finding the most likely dataset

- Inference task: given θ , find the \mathbf{X} that maximizes $p(\mathbf{X} \mid \theta)$
 - “What set of training example are we most likely to observe?”
- Recall for Bernoullis, $p(\mathbf{X} \mid \theta) = \theta^{n_1}(1 - \theta)^{n_0}$
- If $\theta < 0.5$, the most likely dataset is $\mathbf{X} = (0, 0, 0, 0, \dots)$
 - $p(\mathbf{X} \mid \theta)$ is maximized if n_0 is as big as possible, and n_1 small
 - If $\theta = 0.3$, the “most likely” sample has zero positives!
- The modal dataset almost never represents “typical” behaviour
 - If $\theta = 0.3$, we expect about 30% of samples to be 1, not 0%!
 - The modal \mathbf{X} has the highest probability, but that probability might be really low
 - There are many datasets with some 1s in them
 - Each one is lower-probability than the (single) all-zero dataset
 - As a whole they’re overwhelmingly more likely

Inference task: sampling

- Inference task: given θ , generate X according to $p(X | \theta)$
 - Called **sampling** from the distribution
- Sampling is the “opposite” of density estimation:

$$\Pr(X = 1) = 0.4 \quad \xrightarrow{\text{sampling}} \quad \mathbf{X} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

- Given the model, your job is to generate IID examples
- Often write code to generate one sample, and call it many times

Why sample?

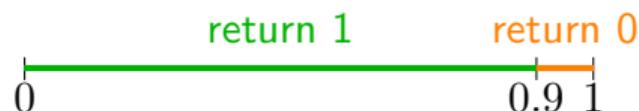
bonus!

- Sampling isn't especially interesting for Bernoulli distributions
 - Knowing θ tells you everything about the distribution
- But sampling will let us do neat things in more-complicated density models:
 - thispersondoesnotexist.com, DALL-E, ChatGPT, ...

- Sampling often helps us check whether the model is reasonable
 - If samples look nothing like the data, the model isn't very good

Inference task: sampling

- Basic ingredient of typical sampling methods:
- We assume we can sample uniformly on $[0, 1]$
- In practice, we use a “pseudo-random” number generator
 - `rng = np.random.default_rng(); t = rng.random()`
 - We won’t talk about how this works; see CPSC 436R / Nick’s book
- Consider sampling from $\text{Bern}(0.9)$
 - 90% of the time, we should produce a 1
 - 10% of the time, we should produce a 0
- How can we do that with a sample from $U \sim \text{Unif}([0, 1])$?
 - If $U \leq 0.9$, return 1; otherwise, return 0.



Inference task: sampling

- Sampling from $\text{Bern}(\theta)$:

- Generate $U \sim \text{Unif}([0, 1])$. If $U \leq \theta$, return 1; otherwise, return 0

```
u = rng.random()
```

or

```
if u <= theta:
```

```
x = 1 if rng.random() <= theta else 0
```

- ```
x = 1
```
  - ```
else:
```
 - ```
x = 0
```

or

```
x = (rng.random(t) <= theta).astype(int)
```

- Assuming the uniform RNG costs  $\mathcal{O}(1)$ , generates a single sample in  $\mathcal{O}(1)$  time
- To generate  $t$  samples, nothing smarter to do than just call it  $t$  times;  $\mathcal{O}(t)$  cost

## Summary

- **Binary density estimation**: models  $\Pr(X = 1)$  given iid samples  $x^{(1)}, \dots, x^{(n)}$
- **Bernoulli distribution** over binary variables
  - Parameterized by  $\theta \in [0, 1]$  with  $\Pr(X = 1 \mid \theta) = \theta$
- **Inference**: computing things from models, like **finding modes** and **sampling**
- Next time: the exciting world of priors