Learning with Gaussians
CPSC 440/550: Advanced Machine Learning

cs.ubc.ca/~dsuth/440/24w2
University of British Columbia, on unceded Musqueam land

2024-25 Winter Term 2 (Jan—Apr 2025)

1/21


https://cs.ubc.ca/~dsuth/440/24w2

Last time: Multivariate Gaussians

@ Continuous density estimation, d > 1 with the multivariate Gaussian distribution

1 1 _
X~ N(n, %) means plx | %) = e (x-S x|
(2m)% |52
o If X is a diagonal matrix, product of univariate normals
o p;is E[X;]; 3;; gives Cov(X;, X;)

o If Cov(X;,X;/) =0, then X; 1L X (for jointly-Gaussian variables)
If X is singular, “degenerate” Gaussian: v'x takes a constant value for some v
o AX +b~N(Apu+b, ATAT)
o Lets us sample based on Z ~ N(0,1)

e Marginalizing: still normal, just ignore the other variables in p, 3
o Conditioning: z | Z =z~ N (tty + X032, 1z — p2), By — 0. B3]

MLE: o = 5 357 x@, 30 = 5300 () = ) (@ — )T
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Outline

@ Learning multivariate Gaussians
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MAP estimation for mean
@ For fixed X, conjugate prior for mean is a Gaussian:
e~ N, 2) p~N(po,Bo) implies p| X, 5~ N(uh, ),
where
St=mzt+3,h)7h,
pt == ume + =5 o) MAP estimate of
@ In special case of ¥ = ¢?I and ¥y = %I, we get
s+ _ (%IJr)\I)_l - :21+A1,
pt=x7 <%,UMLE + )\M0>

@ Posterior predictive is N'(u™, 3 + XT) — take product of (n+ 2) then marginalize
e Many Bayesian inference tasks have closed form
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MAP Estimation in Multivariate Gaussian (Trace Regularization)

@ A common MAP estimate for X is
Y =8+,

where S'is the covariance of the data
o Key advantage: S is strictly positive definite (eigenvalues are at least \)

@ This corresponds to L1 regularization of precision diagonals (see bonus)

d
f(©) =Tx(S®) —log |©] + 1) [0}
j=1

NLL times 2/n

o Note this doesn't set ©,; values to exactly zero

o Log-determinant term becomes arbitrarily steep as the ©;; approach 0
e It's not really the case that “L1 gives sparsity”; it's “L2 + L1 gives sparsity”
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Conjugate Priors for Covariance bonus!

@ Trace regularization : not a conjugate prior

@ Conjugate prior for ® with known mean is Wishart distribution
e A multi-dimensional generalization of the gamma distribution

e Gamma is a distribution over positive scalars
o Wishart is a distribution over positive-definite matrices

e Posterior predictive is a student ¢ distribution
o Conjugate prior for X is inverse-Wishart (equivalent posterior)

o If both p and ® are random, conjugate prior is normal-Wishart
o Normal times Wishart, with a particular dependency among parameters
e Posterior predictive is again a student ¢ distribution

@ Wikipedia has already done a lot of possible homework questions for you:
e https://en.wikipedia.org/wiki/Conjugate_prior
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Outline

© Generative classifiers with Gaussians
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Generative Classification with Gaussians

o Consider a generative classifier with continuous features:

ply | z) < p(z,y) = p(z |y) p(y)
~—

continuous discrete

e Model y as a categorical distribution (classification task)
@ Previously handled p(x | y) with the naive Bayes assumption, X; I X; |V
e Strong, usually unrealistic assumption

@ In Gaussian discriminant analysis (GDA) we assume X | Y is Gaussian

o Classifier asks “which Gaussian makes this x most likely?”
e This can model pairwise correlations within each class

@ Doesn’t need the naive Bayes assumption
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Gaussian Discriminant Analysis (GDA)

@ In Gaussian discriminant analysis we assume X | Y is Gaussian

px,y=c)=py)px|y=c)= 7 px|pe Zc)
product rule Pr(y=c) Gaussian pdf

@ Classify based on

argmax p(g = ¢ | X) = arg maxlog p(y = ¢, X)
(& (&

1 1 _

= arg max logm. — ) log [Xc| — 9 (x — HC)T D28 ! (x — He)
(&

@ With general choices for pe and 3., we're taking the max of k quadratics

e Means that the decision boundary will be zeros of a quadratic (“quadric surface™)
o Leads to the equivalent name quadratic discriminant analysis (QDA)

o Fitting GDA=QDA: fit 7. as categorical, fit Gaussian for each subset with y(i) =c
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GDA=QDA example

https://web.stanford.edu/~hastie/Papers/ESLII.pdf 10/21
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Special case: Linear Discriminant Analysis (LDA)

@ A common special case: constrain X, = X for all ¢

@ Means that we classify as
argmaxp(y =c | z) = argmax logme — 5 log |2 — 3 (x — pe) ' 27 (x — pe)
C

—argmax logwc—f X2 x+u02 x—f;LCZ] Ype

= argmax (X ') T x+10g7rc—2uc§] He
c ~—

We bc

so this is a linear classifier!

o Behaves (asymptotically) optimally if the assumptions are true: X | y ~ N (g, X)
e May be terrible if these assumptions aren’t true

@ MLE in this model is simple: ptc is mean of the points with y(® = ¢,
1 i i T
Xis > <X( ) - uym) (X() - uyu))
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LDA example

e Example of fitting linear discriminant analysis (LDA) to a 3-class problem:

https://web.stanford.edu/~hastie/Papers/ESLII.pdf
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LDA and nearest neighbour bonus!

@ LDA classifies according to

argmax (8 2p,) (2 2x) — %(Efé,uc)T(Zféuc) + log .

_1 _1 _ _1
= argmax —1[|Z72x|? + (72 p.) (27 2x) — 3[|= 72 p||? + log e
C

= argmin | 272 (x — pe)||? — 2log 7.
C

e If m. are constant (all %) and X = 0?1, this picks the closest class mean

@ With constant 7. but general X, picks closest class mean in Mahalanobis distance
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Outline

© Bayesian Linear Regression
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Regression with Gaussians

@ In regression, Y is continuous

! ! |

30 40 50 60

https://en.wikipedia.org/wiki/Regression_analysis
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Generative Regression with Multivariate Normal

e With continuous features, we could model p(x,y) as a multivariate Gaussian

!
EN

!
~
o
~
»

Training could use the closed-form MLE/MAP for multivariate Gaussian
We obtain a univariate Gaussian p(y | z) using conditioning formula,

Y[ X=x~N (uy + 3,30 (x — ), 02 — zyxz;lzm

The conditional mean is a linear function, w'x + b
Could extend to multiple outputs, with correlations given based on X,

Problem: what if X isn't really normal?
16/21



Bayesian Linear Regression
@ Linear regression with Gaussian likelihood and prior,
Y[ X=x~Nw'x,0?  w~N(0, 1)

@ MAP estimate is ridge regression (L2-regularized least squares)
@ Can use Gaussian identities to work out that the posterior has the form

1 —1
wl|(Xy)~N (wMAP7 <02XTX + AI) > ,

L . . -1
which is a multivariate Gaussian centred at wyap = (XTX + %Id) XTy
o The variance tells us how much variation we have around the MAP estimate

@ In other models, the posterior mode (MAP) is often not the posterior mean

@ By more Gaussian identities, the posterior predictive has the form
1 -1
7| (X, y,&) ~N (w{,,Apfg, ol + il <2XTX + ,\I> x)
o

@ Posterior predictive mode=mean again the MAP prediction in this model

o Working with the full posterior predictive gives us variance of predictions 1721



Bayesian Linear Regression

@ Bayesian perspective gives us variability in w and predictions:

1o Posterior density (N =1}
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http://krasserm.github.i0/2019/02/23/bayesian-1linear-regression
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Bayesian Linear Regression

@ Bayesian linear regression with Gaussian RBFs as features:
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http://krasserm.github.i0/2019/02/23/bayesian-1linear-regression
@ We have not only a prediction, but Bayesian inference gives “error bars”
o Gives an idea of “where model is confident” and where it is not
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Digression: Gaussian Processes bonus!

o

@ In CPSC 340 you saw the kernel trick:
o Rewrites L2-regularized least squares linear/prediction in terms of inner products
o Allows us to efficiently use some exponential-sized or infinite-sized feature sets

@ We can use kernel trick on posterior in Gaussian likelihood/prior model
e Allows us to efficiently use some large or infinite-sized feature sets
o Posterior in this case can be written as a Gaussian process (GP)

@ Notation: a stochastic process is an infinite collection of random variables
@ In a Gaussian process, any finite subcollection is jointly Gaussian
o Defined in terms of a mean function and a covariance function
@ The set of possible covariance functions is the set of possible kernel functions
e A popular book on this topic if you want to read more:
Rasmussen /Williams, Gaussian Processes for Machine Learning

e We'll assume we have explicit features, but you could use kernels/GPs instead
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https://gaussianprocess.org/gpml/

Summary

@ Gaussian discriminant analysis and special case linear discriminant analysis
o Generative classifier where z | y is multivariate normal
@ Bayesian Linear Regression

e Gaussian conditional likelihood and Gaussian prior gives Gaussian posterior
o Posterior predictive is also Gaussian ( “regression with error bars")

@ Next time: choosing priors
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